Internet of Things (IoT) - Application framework for industrial facility demand response energy management

IEC 62872-2:2022 presents an IoT application framework for industrial facility demand response energy management (FDREM) for the smart grid, enabling efficient information exchange between industrial facilities using IoT related communication technologies. This document specifies: - an overview of the price-based demand response program that serves as basic knowledge backbone of the IoT application framework; - a IoT-based energy management framework which describes involved functional components, as well as their relationships; - detailed information exchange flows that are indispensable between functional components; - existing IoT protocols that need to be identified for each protocol layer to support this kind of information exchange; - communication requirements that guarantee reliable data exchange services for the application framework.

Industrielle Automatisierungs- und Leittechnik - Teil 2: Internet der Dinge (IoT) - Anwendungsrahmen für das Energiemanagement von Industrieanlagen

Mesure, commande et automatisation dans les processus industriels - Partie 2: Internet des objets (IdO) - Cadre d'application pour la gestion d'énergie de la réponse à la demande des installations industrielles

L’IEC 62872-2:2022 expose un cadre d'application IdO pour la gestion d'énergie de la réponse à la demande des installations industrielles (FDREM) pour le réseau intelligent, permettant l'échange efficace d'informations entre les installations industrielles à l'aide de technologies de communication liées à l’IdO. Le présent document spécifie: - une présentation du programme de la réponse à la demande fondée sur le prix, qui sert de chaîne cognitive fondamentale au cadre d'application IdO; - un cadre de gestion de l'énergie fondé sur IdO qui décrit les composants fonctionnels concernés, ainsi que leurs relations; - les flux d'échange d'informations détaillés indispensables entre les composants fonctionnels; - les protocoles IdO existants qu'il est nécessaire d'identifier pour que chaque couche de protocole prenne en charge ce type d'échange d'informations; - les exigences de communication qui garantissent la fiabilité des services d'échange de données pour le cadre d'application.

Internet stvari (IoT) - Aplikacijski okvir uporabe za upravljanje porabe energije v industrijskih objektih

General Information

Status
Not Published
Public Enquiry End Date
29-Jul-2020
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
05-Apr-2022
Due Date
10-Jun-2022

Buy Standard

Draft
oSIST prEN IEC 62872-2:2020 - BARVE na PDF-str 20,22,23,26,27,44,45,46,47,50,51,52
English language
52 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (sample)

SLOVENSKI STANDARD
oSIST prEN IEC 62872-2:2020
01-julij-2020

Internet stvari (IoT) - Aplikacijski okvir uporabe za upravljanje porabe energije v

industrijskih objektih

Internet of Things (IoT) - Application framework for industrial facility demand response

energy management
Ta slovenski standard je istoveten z: prEN IEC 62872-2:2020
ICS:
25.040.01 Sistemi za avtomatizacijo v Industrial automation
industriji na splošno systems in general
35.100.05 Večslojne uporabniške Multilayer applications
rešitve
oSIST prEN IEC 62872-2:2020 en,fr,de

2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------
oSIST prEN IEC 62872-2:2020
---------------------- Page: 2 ----------------------
oSIST prEN IEC 62872-2:2020
65/794/CDV
COMMITTEE DRAFT FOR VOTE (CDV)
PROJECT NUMBER:
IEC 62872-2 ED1
DATE OF CIRCULATION: CLOSING DATE FOR VOTING:
2020-05-08 2020-07-31
SUPERSEDES DOCUMENTS:
65/777/CD, 65/789A/CC
IEC TC 65 : INDUSTRIAL-PROCESS MEASUREMENT, CONTROL AND AUTOMATION
SECRETARIAT: SECRETARY:
France Mr Rudy BELLIARDI
OF INTEREST TO THE FOLLOWING COMMITTEES: PROPOSED HORIZONTAL STANDARD:
TC 13,TC 57,ISO/IEC JTC 1/SC 41
Other TC/SCs are requested to indicate their interest, if
any, in this CDV to the secretary.
FUNCTIONS CONCERNED:
EMC ENVIRONMENT QUALITY ASSURANCE SAFETY
NOT SUBMITTED FOR CENELEC PARALLEL VOTING
Submitted for CENELEC parallel votingAttention
IEC the -CENELEC parallel voting
The attention of IEC National Committees, members of
CENELEC, is drawn to fact that this Committee Draft for
Vote (CDV) is submitted for parallel voting.
THE CENELEC MEMBERS ARE INVITED TO VOTE THROUGH
CENELEC ONLINE VOTING SYSTEM
THE

This document is still under study and subject to change. It should not be used for reference purposes.

Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of

which they are aware and to provide supporting documentation.
TITLE:

Internet of Things (IoT) – Application framework for industrial facility demand response energy

management
PROPOSED STABILITY DATE: 2023
NOTE FROM TC/SC OFFICERS:

Copyright © 2020 International Electrotechnical Commission, IEC. All rights reserved. It is permitted to download this

electronic file, to make a copy and to print out the content for the sole purpose of preparing National Committee positions.

You may not copy or "mirror" the file or printed version of the document, or any part of it, for any other purpose without

permission in writing from IEC.
---------------------- Page: 3 ----------------------
oSIST prEN IEC 62872-2:2020
65/794/CDV 2 CDV for IEC 62872-2  IEC 2019
1 CONTENTS

2 FOREWORD ........................................................................................................................... 5

3 INTRODUCTION ..................................................................................................................... 7

4 1. Scope .............................................................................................................................. 9

5 2. Normative references ...................................................................................................... 9

6 3. Terms and definitions ...................................................................................................... 9

7 3.1 General ................................................................................................................... 9

8 3.2 Models in automation ............................................................................................ 11

9 3.3 Models in energy management system and smart grid .......................................... 11

10 4. Abbreviated terms and acronyms ................................................................................... 15

11 5. Motivation ...................................................................................................................... 17

12 6. General approach for grid management of DR ............................................................... 17

13 6.1 General ................................................................................................................. 17

14 6.2 Price-based demand response in industrial energy management .......................... 19

15 7. IoT application framework for industrial facility demand response energy

16 management.................................................................................................................. 19

17 7.1 Framework description .......................................................................................... 19

18 7.2 System elements descriptions ............................................................................... 21

19 7.3 Functional components description ....................................................................... 23

20 7.4 IoT application framework mapped to IoT reference architecture ........................... 23

21 8. Use cases of functional components .............................................................................. 26

22 8.1 General ................................................................................................................. 26

23 8.2 Actor names and roles .......................................................................................... 26

24 8.3 Use case descriptions ........................................................................................... 27

25 8.3.1 Use case for functional component 1: Determine energy/demand price

26 information .................................................................................................... 27

27 8.3.2 Use case for functional component 2: Determine DR parameters .................. 28

28 8.3.3 Use case for functional component 3: Manage the operation point of

29 each time interval to minimize energy consumptions ...................................... 29

30 8.3.4 Use case for functional component 4: Determine the utilization of ESS ......... 31

31 8.3.5 Use case for functional component 5: Determine the utilization of EGS ........ 32

32 8.3.6 Use case for functional component 6: Measure equipment power

33 consumption .................................................................................................. 33

34 8.3.7 Use case for functional component 7: Measure the whole energy

35 consumption in a facility ................................................................................ 34

36 9. IoT protocols ................................................................................................................. 35

37 9.1 General ................................................................................................................. 35

38 9.2 Communication stack layers ................................................................................. 35

39 9.2.1 General ......................................................................................................... 35

40 9.2.2 Physical layer ................................................................................................ 36

41 9.2.3 Data link layer ............................................................................................... 36

42 9.2.4 Network layer ................................................................................................ 37

43 9.2.5 Transport layer .............................................................................................. 37

44 9.2.6 Application layer ............................................................................................ 37

45 9.3 Information model ................................................................................................. 37

46 9.4 Services ................................................................................................................ 38

47 9.4.1 General ......................................................................................................... 38

48 9.4.2 Web service ................................................................................................... 38

49 9.4.3 Service discovery .......................................................................................... 39

---------------------- Page: 4 ----------------------
oSIST prEN IEC 62872-2:2020
CDV for IEC 62872-2  IEC 2019 3 65/794/CDV

50 10. Communication requirements of the application framework ............................................ 39

51 10.1 General ................................................................................................................. 39

52 10.2 Service-related requirement .................................................................................. 40

53 10.3 Quality of service (QoS) requirement .................................................................... 40

54 10.4 Bandwidth requirement ......................................................................................... 41

55 10.5 Security requirement ............................................................................................. 41

56 Annex A (informative) Facility Smart Grid Information Model (FSGIM) ................................. 42

57 A.1 General ................................................................................................................. 42

58 A.2 Applying the FSGIM in the application framework for industrial FDREM ................ 42

59 A.2.1 Conceptual Model of Smart Grid .................................................................... 42

60 A.2.2 Common industrial information model in an industrial facility ......................... 42

61 A.2.3 Applying the FSGIM and Communication Protocols. ...................................... 45

62 Annex B (informative) State Task Network (STN) model for DR in industrial facilities ........... 47

63 B.1 General ................................................................................................................. 47

64 B.2 STN Model for DR in Industrial Facilities ............................................................... 47

65 B.2.1 General ......................................................................................................... 47

66 B.2.2 Model Elements ............................................................................................. 47

67 B.2.3 Model Architecture ......................................................................................... 48

68 BIBLIOGRAPHY ................................................................................................................... 52

70 Figure 1 – General approach common today for grid management of DR (refer IEC TS

71 62872-1:2019) ...................................................................................................................... 18

72 Figure 2 – IoT application framework for FDREM (Refer to ISO/IEC TR 22417 – IoT

73 use cases) [2] ....................................................................................................................... 20

74 Figure 3 – Model elements defined for the IoT application framework [2] ............................. 21

75 Figure 4 – IoT application framework mapped to ISO/IEC 30141 - Internet of Things

76 Reference Architecture (IoT RA) ........................................................................................... 24

77 Figure 5 – Mapping between IoT application framework and IoT RA ..................................... 25

78 Figure 6 – Sequence diagram of use case for FC 1 ............................................................... 28

79 Figure 7 – Sequence diagram of use case for FC 2 ............................................................... 29

80 Figure 8 – Sequence diagram of use case for FC 3 ............................................................... 30

81 Figure 9 – Sequence diagram of use case for FC 4 ............................................................... 31

82 Figure 10 – Sequence diagram of use case for FC 5 ............................................................. 32

83 Figure 11 – Sequence diagram of use case for FC 6 ............................................................. 33

84 Figure 12 – Sequence diagram of use case for FC 7 ............................................................. 35

85 Figure A.1 – Smart grid information model standards and relationships between

86 standards [2] ......................................................................................................................... 42

87 Figure A.2 – The relationship between the information models and their instances in

88 DR energy management for industrial facilities [2] ................................................................ 43

89 Figure A.3 – Relationships of model elements in Load model ................................................ 44

90 Figure A.4 – The relationship between FSGIM and communication protocols [2] ................... 45

91 Figure B.1 – Example of STN that consists of two types of nodes: task nodes, denoted

92 by rectangles, and state nodes, denoted by circles [7] .......................................................... 47

93 Figure B.2 – Elements of an industrial DR model [3] ............................................................. 48

94 Figure B.3 – STN model for DR in an industrial facility. Non-schedulable tasks (NSTs)

95 are shown by the double-border rectangles, and schedulable tasks (STs) are shown by

96 the single-border rectangles [3] ............................................................................................ 49

---------------------- Page: 5 ----------------------
oSIST prEN IEC 62872-2:2020
65/794/CDV 4 CDV for IEC 62872-2  IEC 2019

97 Figure B.4 – Task structure in Industrial DR Model architecture ............................................ 50

99 Table 1 – Actors and roles .................................................................................................... 26

100 Table 2 – Exchanged information in use case for FC 1.......................................................... 28

101 Table 3 – Exchanged information in use case for FC 2.......................................................... 29

102 Table 4 – Exchanged information in use case for FC 3.......................................................... 30

103 Table 5 – Exchanged information in use case for FC 4.......................................................... 31

104 Table 6 – Exchanged information in use case for FC 5.......................................................... 33

105 Table 7 – Exchanged information in use case for FC 6.......................................................... 34

106 Table 8 – Exchanged information in use case for FC 7.......................................................... 35

107 Table 9 – IoT protocols recommended to apply in domains of the application framework

108 and in use cases ................................................................................................................... 36

109 Table 10 – Data format recommended to implement the FSGIM in domains of the

110 application framework and in use cases ................................................................................ 38

111 Table 11 – Services recommended to implement the FSGIM in domains of the

112 application framework and in use cases ................................................................................ 39

113 Table 12 – Communication requirements considered in domains of the application

114 framework and in use cases.................................................................................................. 40

115
116
---------------------- Page: 6 ----------------------
oSIST prEN IEC 62872-2:2020
CDV for IEC 62872-2  IEC 2019 5 65/794/CDV
117 INTERNATIONAL ELECTROTECHNICAL COMMISSION
118 ____________
119
120 INDUSTRIAL-PROCESS MEASUREMENT, CONTROL AND AUTOMATION –
121
122 Part 2: Internet of Things (IoT) – Application framework for industrial
123 facility demand response energy management
124
125 FOREWORD

126 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising

127 all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international

128 co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and

129 in addition to other activities, IEC publishes International Standards, Documents, Technical Reports, Publicly

130 Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is

131 entrusted to technical committees; any IEC National Committee interested in the subject dealt with may

132 participate in this preparatory work. International, governmental and non-governmental organizations liaising with

133 the IEC also participate in this preparation. IEC collaborates closely with the International Organization for

134 Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

135 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international

136 consensus of opinion on the relevant subjects since each technical committee has representation from all

137 interested IEC National Committees.

138 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National

139 Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC

140 Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any

141 misinterpretation by any end user.

142 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications

143 transparently to the maximum extent possible in their national and regional publications. Any divergence between

144 any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

145 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity

146 assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any

147 services carried out by independent certification bodies.

148 6) All users should ensure that they have the latest edition of this publication.

149 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and

150 members of its technical committees and IEC National Committees for any personal injury, property damage or

151 other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and

152 expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.

153 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is

154 indispensable for the correct application of this publication.

155 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent

156 rights. IEC shall not be held responsible for identifying any or all such patent rights.

157 International Standard IEC 62872-2 Ed. 1.0 has been prepared by IEC technical committee 65:

158 Industrial-process measurement, control and automation.
159 The text of this document is based on the following documents:
FDIS Report on voting
65/xxx/FDIS 65/xxx/RVD
160

161 Full information on the voting for the approval of this document can be found in the report on

162 voting indicated in the above table.

163 This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

164 The committee has decided that the contents of this publication will remain unchanged until the

165 stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to

166 the specific publication. At this date, the publication will be
167 • transformed into an International standard,
---------------------- Page: 7 ----------------------
oSIST prEN IEC 62872-2:2020
65/794/CDV 6 CDV for IEC 62872-2  IEC 2019
168 • reconfirmed,
169 • withdrawn,
170 • replaced by a revised edition, or
171 • amended.
172

173 The National Committees are requested to note that for this publication the stability date

174 is ???? (TBD)

175 THIS TEXT IS INCLUDED FOR THE INFORMATION OF THE NATIONAL COMMITTEES AND WILL BE DELETED

176 AT THE PUBLICATION STAGE.
177

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates

that it contains colours which are considered to be useful for the correct understanding

of its contents. Users should therefore print this document using a colour printer.

178
179
---------------------- Page: 8 ----------------------
oSIST prEN IEC 62872-2:2020
CDV for IEC 62872-2  IEC 2019 7 65/794/CDV
180 INTRODUCTION

181 The World Energy Outlook 2017 [1] reported that industry consumed over 40 % of world

182 electricity generation in 2015. Furthermore, industry itself is a significant generator of internal

183 power, with many facilities increasingly implementing their own generation, co-generation and

184 energy storage resources. As a major energy consumer, the ability of some industries to

185 schedule their consumption can be used to minimize peak demands on the electrical grid. As

186 an energy supplier, industries with in-house generation or storage resources can also assist in

187 grid load management. For example, in-house generation can supply energy to the smart grid

188 and to the facility. Furthermore, storage resources can assist in smart grid load management.

189 While some larger industrial facilities already manage their use and supply of electric power,

190 more widespread deployment, especially by smaller facilities, will depend upon the availability

191 of a readily available standard interface between industrial automation equipment and the

192 “smart grid”.

193 NOTE In this document “smart grid” is used to refer to the external-to-industry entity with which industry interacts

194 for the purpose of energy management. In other documents this term can be used to refer to all of the elements,

195 including internal industrial energy elements, which work together to optimize energy generation and use.

196 Standards are already being developed for home and building automation interfaces to the

197 smart grid; however, the requirements of industry differ significantly and are addressed in this

198 document. For industry, the planning of energy resources and production processes are under

199 the responsibility of the facility energy planner and production planner while operations are

200 under the responsibility of the facility energy operator and production operator.

201 Incorrect operation of a resource could impact the safety of personnel, the facility, the

202 environment or lead to production failure and equipment damage. In addition, larger facilities

203 may have in-house production planning capabilities which could be coordinated with smart grid

204 planning, to allow longer term energy planning.

205 IEC TS 62872-1:2019 Industrial-process measurement, control and automation - Part 1: System

206 interface between industrial facilities and the smart grid defines the interface, in terms of

207 information flow, between industrial facilities and the “smart grid”. It identifies, profiles and

208 extends where required, the standards needed to allow the exchange of the information needed

209 to support the planning, management and control of electric energy flow between the industrial

210 facility and the smart grid.

211 “Internet of Things” (IoT) is being applied into different domains to facilitate the application.

212 Building on the system interface between industrial facilities and the smart grid defined in IEC

213 TS 62872-1:2019, this document addresses IoT application for industrial facility demand

214 response energy management (FDREM).The smart grid is a modern electric power grid

215 infrastructure system, whereby advanced information and communication technologies (ICTs)

216 are integrated with the power grid. Industry is the largest consumer of electricity among all end

217 user sectors. This has led to significant interest in the development of industrial energy

218 management around the world in recent years. Interconnectivity and interoperability are very

219 important features in the development of integrated energy management systems for industrial

220 facilities. Therefore, IoT technologies are needed and suitable for exchanging energy-related

221 information in FDREM. By using the IoT for communication, it enables real-time data-acquisition

222 (In this standard, it means acquisition of real time data, not data in real time.) and efficient data-

223 analysis, which can make industrial energy management more intelligent and cost-saving.

224 Currently, there may exist different implementation of IoT-based FDREM. Thus, a standard

225 specification is urgently needed to guide different kinds of IoT application to data-exchange in

226 industrial energy management.

227 The proposed IoT application framework is divided into the utility side and industrial electricity

228 demand side, with the utility meter as the boundary between the two. Functional components

229 that are essential for building the automatic demand response energy management are

230 described clearly in this framework. the IoT application framework is compliant with the IoT

231 Reference Architecture (IoT RA) standardized in ISO/IEC 30141, therefore, functional

232 components of the IoT application framework can be mapped to the IoT RA appropriately.

1 Numbers in square brackets refer to the Bibliography.
---------------------- Page: 9 ----------------------
oSIST prEN IEC 62872-2:2020
65/794/CDV 8 CDV for IEC 62872-2  IEC 2019

233 This document will also describe the functionality of each IoT protocol stack layers in regard to

234 communication of the IoT application framework, aiming to provide related information

235 exchange services for functional components. Identification of existing IoT protocols will be

236 executed to support this kind of information exchange. Non-functional communication

237 requirements will also be analysed to ensure comprehensive performance of the information

238 exchange.

239 Presently no standard covers industrial facility energy management with IoT technologies;

240 therefore this standard not only fills the gap to support such an IoT framework, but also can

241 guide the deployment of IoT into different energy management applications. For this purpose,

242 this standard will specify a general IoT-based communication framework for industrial FDREM.

243
---------------------- Page: 10 ----------------------
oSIST prEN IEC 62872-2:2020
CDV for IEC 62872-2  IEC 2019 9 65/794/CDV
244 INDUSTRIAL-PROCESS MEASUREMENT, CONTROL AND AUTOMATION –
245
246 Part 2: Internet of Things (IoT) – Application framework for industrial
247 facility demand response energy management
248 1. Scope

249 This document presents an IoT application framework for industrial facility demand response

250 energy management (FDREM) for the smart grid, enabling efficient information exchange

251 between industrial facilities using IoT related communication technologies. This document

252 specifies:

253 ‐ Overview of price-based demand response program that serves as basic knowledge

254 backbone of the IoT application framework;

255 ‐ An IoT-based energy management framework which describes involved functional

256 components, as well as their relationships;

257 ‐ Detailed information exchange flows that are indispensable between functional

258 components;

259 ‐ Existing IoT protocols that need to be identified for each protocol layer to support this kind

260 of information exchange;

261 ‐ Communication requirements that guarantee reliable data exchange services for the

262 application framework.
263 2. Normative references

264 The following documents are referred to in the text in such a way that some or all of their content

265 constitutes requirements of this document. For dated references, only the edition cited applies.

266 For undated references, the latest edition of the referenced document (including any

267 amendments) applies.

268 ISO/IEC 30141:2018, Internet of Things – Internet of Things Reference Architecture (IoT RA)

269 ISO/IEC TR 22417:2017, Information technology - Internet of things (IoT) use cases

270 IEC TS 62872-1:2019, Industrial-process measurement, control and automation - Part 1:

271 System interface between industrial facilities and the smart grid.
272 3. Terms and definitions

273 For the purposes of this document, the following terms and definitions apply.

274 ISO and IEC maintain terminological databases for use in standardization at the following

275 addresses:
276 • IEC Electropedia: available at http://www.electropedia.org/
277 • ISO Online browsing platform: available at http://www.iso.org/obp
278 3.1 General
279 3.1.1
280 facility
281 industrial facility

282 site, or area within a site, that includes the resources within the site or area and includes the

283 activities associated with the use of the resources
284 [SOURCE: IEC 62264-1:2013, 3.1.20, modified – The preferred term
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.