ISO/TC 61/SC 2/WG 7 - Fracture and fatigue behavior
Comportement vis-à-vis de la fracture et de la fatigue
General Information
This document specifies the principles and provides guidelines for determining the fracture toughness of plastics in the crack-opening mode (Mode I) by a linear elastic fracture mechanics (LEMF) approach, at load-point displacement rates of up to 1 m/s. It supplements ISO 13586 so as to extend its applicability to loading rates somewhat higher than is the case in the scope of the latter document. Fracture testing at high loading rates presents special problems because of the presence of dynamic effects: vibrations in the test system producing oscillations in the recorded quantities, and inertial loads producing forces on the test specimen different from the forces sensed by the test fixture. These effects need either to be controlled and, if possible, reduced by appropriate action, or else to be taken into account through proper analysis of the measured data. The relative importance of such effects increases with increasing testing rate (decreasing test duration). At speeds of less than 0,1 m/s (loading times of greater than 10 ms) the dynamic effects may be negligible and the testing procedure given in ISO 13586 can be applied as it stands. At speeds approaching 1 m/s (loading times of the order of 1 ms) the dynamic effects may become significant but still controllable. The procedure given in ISO 13586 can still be used though with some provisos and these are contemplated in this document. At speeds of several meters per second and higher (loading times markedly shorter than 1 ms) the dynamic effects become dominant, and different approaches to fracture toughness determination are required, which are outside the scope of this document. The general principles, methods and rules given in ISO 13586 for fracture testing at low loading rates remain valid except where expressly stated otherwise in this document. The methods are suitable for use with the same range of materials as covered by ISO 13586, i.e. — rigid and semi-rigid thermoplastic moulding, extrusion and casting materials; — rigid and semi-rigid thermosetting moulding and casting materials; and their compounds containing fibres ≤ 7,5mm in length. In general, fibres 0,1 mm to 7,5 mm in length are known to cause heterogeneity and anisotropy, especially significant in the fracture processes. Therefore, in parallel with Annex B of ISO 13586:2018, where relevant Annex C of this document offers some guidelines to extend the application of the same testing procedure, with some reservations, to rigid and semi-rigid thermoplastic or thermosetting plastics containing such short fibres. Although the dynamic effects occurring at high loading rates are largely dependent on the material tested as well as on the test equipment and test geometry used, the guidelines given here are valid in general, irrespective of test equipment, test geometry and material tested. The same restrictions as to linearity of the load-displacement diagram, specimen size and notch tip sharpness apply as for ISO 13586.
- Standard29 pagesEnglish languagesale 15% off
This document specifies the principles for determining the fracture toughness of plastics in the crack-opening mode (mode I) under defined conditions. Two test methods with cracked specimens are defined, namely three-point-bending tests and compact-specimen tensile tests in order to suit different types of equipment available or different types of material. The methods are suitable for use with the following range of materials, including their compounds containing short fibres of the length ≤ 7,5 mm: — rigid and semi-rigid thermoplastic moulding, extrusion and casting materials; — rigid and semi-rigid thermosetting moulding and casting materials. In general, short fibre lengths of 0,1 mm to 7,5 mm are known to cause heterogeneity and anisotropy in the crack tip fracture process zone. Therefore, where relevant, Annex B offers some guidelines to extend the application of the same testing procedure, with some reservations, to rigid and semi-rigid thermoplastic or thermosetting plastics containing such short fibres. Certain restrictions on the linearity of the load-displacement diagram, on the specimen width and on the thickness are imposed to ensure validity (see 6.4) since the scheme used assumes linear elastic behaviour of the cracked material and a state of plane strain at the crack tip. Finally, the crack needs to be sharp enough so that an even sharper crack does not result in significantly lower values of the measured properties.
- Standard22 pagesEnglish languagesale 15% off
ISO 15850:2014 specifies a method for measuring the propagation of a crack in a notched specimen subjected to a cyclic tensile load varying between a constant positive minimum and a constant positive maximum value. The test results include the crack length as a function of the number of load cycles and the crack length increase rate as a function of the stress intensity factor and energy release rate at the crack tip. The possible occurrence of discontinuities in crack propagation is detected and reported. The test can be also used for the purpose of determining the resistance to crack propagation failure. In this case, the results can be presented in the form of number of cycles to failure or total time taken to cause crack propagation failure versus the stress intensity factor.
- Standard23 pagesEnglish languagesale 15% off
ISO 29221:2014 specifies a method for the determination of the plane-strain crack-arrest fracture toughness, Kla, of polymeric materials by using a side-grooved, crack-line-wedge-loaded compact tension specimen to obtain a rapid crack run-arrest segment of flat-tensile separation with a satisfactory crack front. ISO 29221:2014 employs a static fracture analysis determination of the stress intensity factor at a short time after crack arrest. The estimate is denoted as Ka and when certain size requirements are met, the test result provides an estimate, termed as Kla, of the plane-strain crack-arrest toughness of the polymer. The specimen size requirements provide for in-plane dimensions large enough to allow the specimen to be modelled by linear elastic analysis.
- Standard19 pagesEnglish languagesale 15% off
ISO 25217:2009 specifies a method, based upon linear elastic fracture mechanics (LEFM), for the determination of the fracture resistance of structural adhesive joints under an applied mode I opening load, using double cantilever beam (DCB) and tapered double cantilever beam (TDCB) specimens.
- Standard24 pagesEnglish languagesale 15% off
- Standard6 pagesEnglish languagesale 15% off
- Standard7 pagesFrench languagesale 15% off
ISO 17281 provides guidelines for determining the fracture toughness of plastics in the crack-opening mode (Mode I) by a linear elastic fracture mechanics (LEMF) approach, at load-point displacement rates of up to 1 m/s. It supplements ISO 13586 so as to extend its applicability to loading rates somewhat higher than is the case in the scope of the latter International Standard. The general principles, methods and rules given in ISO 13586 for fracture testing at low loading rates remain valid and should be followed except where expressly stated otherwise in this International Standard. The methods are suitable for use with the same range of materials as covered by ISO 13586. Although the dynamic effects occurring at high loading rates are largely dependent on the material tested as well as on the test equipment and test geometry used, the guidelines given here are valid in general, irrespective of test equipment, test geometry and material tested. The same restrictions as to linearity of the load-displacement diagram, specimen size and notch tip sharpness apply as for ISO 13586.
- Standard22 pagesEnglish languagesale 15% off
ISO 15850 specifies a method for measuring the propagation of a crack in a notched specimen subjected to a cyclic tensile load varying between a constant positive minimum and a constant positive maximum value. The test results include the crack length as a function of the number of load cycles and the crack length increase rate as a function of the stress intensity factor and energy release rate at the crack tip. The possible occurrence of discontinuities in crack propagation is detected and reported. The method is suitable for use with the following range of materials: rigid and semi-rigid thermoplastic moulding and extrusion materials (including filled and short-fibre-reinforced compounds) plus rigid and semi-rigid thermoplastic sheets; rigid and semi-rigid thermosetting materials (including filled and short-fibre-reinforced compounds) plus rigid and semi-rigid thermosetting sheets.
- Standard17 pagesEnglish languagesale 15% off
- Standard16 pagesEnglish languagesale 15% off
- Standard17 pagesFrench languagesale 15% off