Corrosion tests in artificial atmospheres - Salt spray tests (ISO/FDIS 9227:2022)

Korrosionsprüfungen in künstlichen Atmosphären - Salzsprühnebelprüfungen (ISO/FDIS 9227:2022)

Essais de corrosion en atmosphères artificielles - Essais aux brouillards salins (ISO/FDIS 9227:2022)

Korozijski preskusi v umetnih atmosferah - Korozijski preskusi v slani komori (ISO/DIS 9227:2021)

General Information

Status
Not Published
Public Enquiry End Date
21-Mar-2022
Current Stage
5020 - Formal vote (FV) (Adopted Project)
Start Date
24-Aug-2022
Due Date
12-Oct-2022
Completion Date
24-Aug-2022

RELATIONS

Buy Standard

Draft
oSIST prEN ISO 9227:2022
English language
28 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (sample)

SLOVENSKI STANDARD
oSIST prEN ISO 9227:2022
01-marec-2022
Korozijski preskusi v umetnih atmosferah - Korozijski preskusi v slani komori
(ISO/DIS 9227:2021)
Corrosion tests in artificial atmospheres - Salt spray tests (ISO/DIS 9227:2021)

Korrosionsprüfungen in künstlichen Atmosphären - Salzsprühnebelprüfungen (ISO/DIS

9227:2021)

Essais de corrosion en atmosphères artificielles - Essais aux brouillards salins (ISO/DIS

9227:2021)
Ta slovenski standard je istoveten z: prEN ISO 9227
ICS:
77.060 Korozija kovin Corrosion of metals
oSIST prEN ISO 9227:2022 en,fr,de

2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------
oSIST prEN ISO 9227:2022
---------------------- Page: 2 ----------------------
oSIST prEN ISO 9227:2022
DRAFT INTERNATIONAL STANDARD
ISO/DIS 9227
ISO/TC 156 Secretariat: SAC
Voting begins on: Voting terminates on:
2021-12-29 2022-03-23
Corrosion tests in artificial atmospheres — Salt spray tests
Essais de corrosion en atmosphères artificielles — Essais aux brouillards salins
ICS: 77.060
This document is circulated as received from the committee secretariat.
THIS DOCUMENT IS A DRAFT CIRCULATED
FOR COMMENT AND APPROVAL. IT IS
ISO/CEN PARALLEL PROCESSING
THEREFORE SUBJECT TO CHANGE AND MAY
NOT BE REFERRED TO AS AN INTERNATIONAL
STANDARD UNTIL PUBLISHED AS SUCH.
IN ADDITION TO THEIR EVALUATION AS
BEING ACCEPTABLE FOR INDUSTRIAL,
TECHNOLOGICAL, COMMERCIAL AND
USER PURPOSES, DRAFT INTERNATIONAL
STANDARDS MAY ON OCCASION HAVE TO
BE CONSIDERED IN THE LIGHT OF THEIR
POTENTIAL TO BECOME STANDARDS TO
WHICH REFERENCE MAY BE MADE IN
Reference number
NATIONAL REGULATIONS.
ISO/DIS 9227:2021(E)
RECIPIENTS OF THIS DRAFT ARE INVITED
TO SUBMIT, WITH THEIR COMMENTS,
NOTIFICATION OF ANY RELEVANT PATENT
RIGHTS OF WHICH THEY ARE AWARE AND TO
PROVIDE SUPPORTING DOCUMENTATION. © ISO 2021
---------------------- Page: 3 ----------------------
oSIST prEN ISO 9227:2022
ISO/DIS 9227:2021(E)
COPYRIGHT PROTECTED DOCUMENT
© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may

be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on

the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below

or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
© ISO 2021 – All rights reserved
---------------------- Page: 4 ----------------------
oSIST prEN ISO 9227:2022
ISO/DIS 9227:2021(E)
Contents Page

Foreword ..........................................................................................................................................................................................................................................v

Introduction .............................................................................................................................................................................................................................. vi

1 Scope ................................................................................................................................................................................................................................. 1

2 Normative references ..................................................................................................................................................................................... 1

3 Terms and definitions .................................................................................................................................................................................... 2

4 Principle ........................................................................................................................................................................................................................ 2

5 Test solutions ........................................................................................................................................................................................................... 2

5.1 Preparation of the sodium chloride solution ............................................................................................................... 2

5.2 Preparation of each test solution with pH adjustment ....................................................................................... 3

5.2.1 pH of the salt solution .................................................................................................................................................... 3

5.2.2 Neutral salt spray (NSS) test ................................................................................................................................... 3

5.2.3 Acetic acid salt spray (AASS) test ........................................................................................................................ 3

5.2.4 Copper-accelerated acetic acid salt spray (CASS) test ...................................................................... 3

5.3 Filtration ...................................................................................................................................................................................................... 4

6 Apparatus .................................................................................................................................................................................................................... 4

6.1 Component protection ..................................................................................................................................................................... 4

6.2 Spray cabinet ............................................................................................................................................................................................ 4

6.3 Heater and temperature control ........................................................................................................................................... .. 4

6.4 Spraying device ...................................................................................................................................................................................... 4

6.5 Collecting devices ................................................................................................................................................................................ 5

6.6 Re-use ............................................................................................................................................................................................................. 6

7 Method for evaluating cabinet corrosivity .............................................................................................................................. 6

7.1 General ........................................................................................................................................................................................................... 6

7.2 Reference specimens ......................................................................................................................................................................... 6

7.3 Arrangement of the reference specimens ...................................................................................................................... 7

7.4 Determination of mass loss (mass per area) ................................................................................................................ 7

7.5 Satisfactory performance of cabinet ................................................................................................................................... 7

8 Test specimens ....................................................................................................................................................................................................... 8

9 Arrangement of the test specimens .................................................................................................................................................8

10 Operating conditions ....................................................................................................................................................................................... 9

11 Duration of tests ................................................................................................................................................................................................... 9

12 Treatment of test specimens after test .....................................................................................................................................10

12.1 General ........................................................................................................................................................................................................ 10

12.2 Non-organic coated test specimens: metallic and/or inorganic coated ........................................... 10

12.3 Organic coated test specimens ............................................................................................................................................. 10

12.3.1 Scribed organic coated test specimens ....................................................................................................... 10

12.3.2 Organic coated but not scribed test specimens ................................................................................... 10

13 E valuation of results .....................................................................................................................................................................................10

14 Test report ...............................................................................................................................................................................................................11

Annex A (informative) Example schematic diagram of one possible design of spray cabinet

with means for optional treating fog exhaust and drain .......................................................................................13

Annex B (informative) Complementary method for evaluating cabinet corrosivity using

zinc reference specimens ........................................................................................................................................................................15

Annex C (normative) Preparation of specimens with organic coatings for testing .......................................17

Annex D (informative) Required supplementary information for testing test specimens

with organic coatings...................................................................................................................................................................................18

iii
© ISO 2021 – All rights reserved
---------------------- Page: 5 ----------------------
oSIST prEN ISO 9227:2022
ISO/DIS 9227:2021(E)

Annex E (informative) Examples of arrangement of the collecting devices ...........................................................19

Bibliography .............................................................................................................................................................................................................................21

© ISO 2021 – All rights reserved
---------------------- Page: 6 ----------------------
oSIST prEN ISO 9227:2022
ISO/DIS 9227:2021(E)
Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards

bodies (ISO member bodies). The work of preparing International Standards is normally carried out

through ISO technical committees. Each member body interested in a subject for which a technical

committee has been established has the right to be represented on that committee. International

organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of

electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are

described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the

different types of ISO documents should be noted. This document was drafted in accordance with the

editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of

patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of

any patent rights identified during the development of the document will be in the Introduction and/or

on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not

constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and

expressions related to conformity assessment, as well as information about ISO's adherence to

the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see

www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 156, Corrosion of metals and alloys.

This fifth edition cancels and replaces the fourth edition (ISO 9227:2017), which has been technically

revised.
The main changes compared to the previous edition are as follows:
— arrangement of collecting devices has been changed;
— examples of arrangement of collecting devices have been added as Annex E.

Any feedback or questions on this document should be directed to the user’s national standards body. A

complete listing of these bodies can be found at www.iso.org/members.html.
© ISO 2021 – All rights reserved
---------------------- Page: 7 ----------------------
oSIST prEN ISO 9227:2022
ISO/DIS 9227:2021(E)
Introduction

There is seldom a direct relation between resistance to the action of salt spray and resistance to

corrosion in other media, because several factors influencing the progress of corrosion, such as the

formation of protective films, vary greatly with the conditions encountered. Therefore, the test results

should not be regarded as a direct guide to the corrosion resistance of the tested metallic materials in

all environments where these materials might be used. Also, the performance of different materials

during the test should not be taken as a direct guide to the corrosion resistance of these materials in

service.

Nevertheless, the method described gives a means of checking that the comparative quality of a metallic

material, with or without corrosion protection, is maintained.

Different metallic substrates (metals) cannot be tested in direct comparison in accordance to their

corrosion resistances in salt spray tests. Comparative testing is only applicable for the same kind of

substrate.

Salt spray tests are generally suitable as corrosion protection tests for rapid analysis for discontinuities,

pores and damage in organic and inorganic coatings. In addition, for quality control purposes,

comparison can be made between specimens coated with the same coating. As comparative tests,

however, salt spray tests are only suitable if the coatings are sufficiently similar in nature.

When interpreting test results, e.g. minimum time until appearance defects or protection defects, for

product quality control or acceptance specifications, it is important to recognize that the salt spray test

may be a low level of reproducibility, especially with production parts tested in different laboratories.

It is often not possible to use results gained from salt spray testing as a comparative guide to the

long-term behaviour of different coating systems, since the corrosion stress during these tests differs

significantly from the corrosion stresses encountered in practice.
© ISO 2021 – All rights reserved
---------------------- Page: 8 ----------------------
oSIST prEN ISO 9227:2022
DRAFT INTERNATIONAL STANDARD ISO/DIS 9227:2021(E)
Corrosion tests in artificial atmospheres — Salt spray tests
1 Scope

This document specifies the apparatus, the reagents and the procedure to be used in conducting the

neutral salt spray (NSS), acetic acid salt spray (AASS) and copper-accelerated acetic acid salt spray

(CASS) tests for assessment of the corrosion resistance of metallic materials, with or without permanent

or temporary corrosion protection.

It also describes the method employed to evaluate the corrosivity of the test cabinet environment.

It does not specify the dimensions or types of test specimens, the exposure period to be used for a

particular product, or the interpretation of results. Such details are provided in the appropriate product

specifications.

The salt spray tests are particularly useful for detecting discontinuities, such as pores and other defects,

in certain metallic, organic, anodic oxide and conversion coatings.
The neutral salt spray (NSS) test particularly applies to
— metals and their alloys,
— metallic coatings (anodic and cathodic),
— conversion coatings,
— anodic oxide coatings, and
— organic coatings on metallic materials.

The acetic acid salt spray (AASS) test is especially useful for testing decorative coatings of copper +

nickel + chromium, or nickel + chromium. It has also been found suitable for testing anodic and organic

coatings on aluminium.

The copper-accelerated acetic acid salt spray (CASS) test is useful for testing decorative coatings of

copper + nickel + chromium, or nickel + chromium. It has also been found suitable for testing anodic

and organic coatings on aluminium.

The salt spray methods are all suitable for checking that the quality of a metallic material, with or

without corrosion protection, is maintained. They are not intended to be used for comparative testing

as a means of ranking different materials relative to each other with respect to corrosion resistance or

as means of predicting long-term corrosion resistance of the tested material.
2 Normative references

The following documents are referred to in the text in such a way that some or all of their content

constitutes requirements of this document. For dated references, only the edition cited applies. For

undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 1514, Paints and varnishes — Standard panels for testing
ISO 2808, Paints and varnishes — Determination of film thickness
ISO 3574, Cold-reduced carbon steel sheet of commercial and drawing qualities

ISO 4623-2:2016, Paints and varnishes — Determination of resistance to filiform corrosion — Part 2:

Aluminium substrates
© ISO 2021 – All rights reserved
---------------------- Page: 9 ----------------------
oSIST prEN ISO 9227:2022
ISO/DIS 9227:2021(E)
ISO 8044, Corrosion of metals and alloys — Vocabulary

ISO 8407, Corrosion of metals and alloys — Removal of corrosion products from corrosion test specimens

ISO 17872, Paints and varnishes — Guidelines for the introduction of scribe marks through coatings on

metallic panels for corrosion testing
3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 8044 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at https:// www .electropedia .org/
3.1
reference material
material with known test performance
3.2
reference specimen

portion of the reference material (3.1) that is to be exposed with the intention to check the reproducibility

and repeatability of the test results for the test cabinet in use
3.3
test specimen
specific portion of the samples upon which the testing is to be performed
3.4
substitute specimen

specimen made of inert materials (such as plastic or glass) used for the substitute of a test specimen

(3.3)
4 Principle

WARNING — This document may involve hazardous materials, operations and equipment. This

document does not purport to address all of the safety concerns, if any, associated with its use.

It is the responsibility of the user of this document to establish appropriate safety and health

practices and determine the applicability of regulatory limitations prior to use.

The neutral salt spray (NSS) test is the test method in which a neutral approximate 5 % sodium chloride

solution is atomized under a controlled environment.

The acetic acid salt spray (AASS) test is the test method in which an approximate 5 % sodium chloride

solution acidified by the addition of glacial acetic acid is atomized under a controlled environment.

The copper-accelerated acetic acid salt spray (CASS) test is the test method in which an approximate

5 % sodium chloride solution acidified by the addition glacial acetic acid and with the addition of

copper(II) chloride is atomized under a controlled environment.
5 Test solutions
5.1 Preparation of the sodium chloride solution

Dissolve a sufficient mass of sodium chloride in distilled or deionized water with a conductivity not

higher than 20 µS/cm at 25 °C ± 2 °C to produce a concentration in a range between 45 g/l and 55 g/l.

© ISO 2021 – All rights reserved
---------------------- Page: 10 ----------------------
oSIST prEN ISO 9227:2022
ISO/DIS 9227:2021(E)

The sodium chloride concentration of the sprayed solution collected shall be 50 g/l ± 5 g/l. The specific

gravity range for a 50 g/l ± 5 g/l solution is 1,029 to 1,036 at 25 °C.

The sodium chloride shall not contain a mass fraction of the heavy metals copper (Cu), nickel (Ni) and

lead (Pb) in total more than 0,005 %. It shall not contain a mass fraction of sodium iodide more than

0,1 % and a mass fraction of total impurities more than 0,5 %, calculated for dry salt.

NOTE Anti-caking agents added to the sodium chloride can act as corrosion inhibitors or accelerators. A

useful sodium chloride salt grade is a grade named Ph. Eur/USP or JIS, ACS.
5.2 Preparation of each test solution with pH adjustment
5.2.1 pH of the salt solution

Adjust the pH of the salt solution to the desired value on the basis of the pH of the sprayed solution

collected.
5.2.2 Neutral salt spray (NSS) test

Adjust the pH of the salt solution (5.1) so that the pH of the sprayed solution collected within the test

cabinet (6.2 and 6.5) is 6,5 to 7,2 at 25 °C ± 2 °C. Check the pH using electrometric measurement.

Measurements of pH shall be done using electrodes suitable for measuring in weakly buffered

sodium chloride solutions in distilled or deionized water. Make any necessary corrections by adding

hydrochloric acid, sodium hydroxide or sodium bicarbonate solution of analytical grade.

WARNING — Hydrochloric acid (CAS no. 7647-01-0) solution is toxic, corrosive, irritating and

very toxic to aquatic life. Refer to Safety Data Sheet for details. Handling of hydrochloric acid

solution shall be restricted to skilled personnel or conducted under their control. Care shall be

taken in the disposal of this solution.

WARNING — Sodium hydroxide (CAS no. 1310-73-2) solution is toxic, corrosive and irritating.

Refer to Safety Data Sheet for details. Handling of sodium hydroxide solution shall be restricted

to skilled personnel or conducted under their control. Care shall be taken in the disposal of this

solution.

NOTE Possible changes in pH can result from loss of carbon dioxide in the solution when it is sprayed. Such

changes can be avoided by reducing the carbon dioxide content of the solution by, for example, heating it to a

temperature above 35 °C before it is placed in the apparatus, or by making the solution using freshly boiled water.

5.2.3 Acetic acid salt spray (AASS) test

Add a sufficient amount of glacial acetic acid not less than 99,7 % of mass fraction to the salt solution

(5.1) to ensure that the pH of samples of sprayed solution collected in the test cabinet (6.2 and 6.5)

is between 3,1 and 3,3 at 25 °C ± 2 °C. If the pH of the solution initially prepared is 3,0 to 3,1, the pH

of the sprayed solution is likely to be within the specified limits. Check the pH using electrometric

measurement. Measurements of pH shall be done using electrodes suitable for measuring in weakly

buffered sodium chloride solutions in distilled or deionized water. Make any necessary corrections by

adding glacial acetic acid, sodium hydroxide, or sodium bicarbonate of analytical grade.

WARNING — Glacial acetic acid (CAS no. 64-19-7) is flammable liquids, toxic, corrosive and

irritating. Refer to Safety Data Sheet for details. Handling of glacial acetic acid shall be restricted

to skilled personnel or conducted under their control. Care shall be taken in the disposal of this

solution.
5.2.4 Copper-accelerated acetic acid salt spray (CASS) test

Dissolve a sufficient mass of copper(II) chloride dihydrate (CuCl ⋅2H O) not less than 99,0 % of mass

2 2

fraction in the salt solution (5.1) to produce a concentration of 0,26 g/l ± 0,02 g/l [equivalent to

(0,205 ± 0,015) g of CuCl per litre].
© ISO 2021 – All rights reserved
---------------------- Page: 11 ----------------------
oSIST prEN ISO 9227:2022
ISO/DIS 9227:2021(E)

WARNING — Copper(II) chloride dihydrate (CAS no. 10125-13-0) is toxic, corrosive, irritating

and very toxic to aquatic life. Refer to Safety Data Sheet for details. Handling of copper(II)

chloride dihydrate shall be restricted to skilled personnel or conducted under their control.

Care shall be taken in the disposal of this solution.
Adjust the pH using the procedures described in 5.2.3.
5.3 Filtration

If necessary, filter the solution before placing it in the reservoir of the apparatus, to remove any solid

matter which might block the apertures of the spraying device.
6 Apparatus
6.1 Component protection

All components in contact with the spray or the test solution shall be made of, or lined with, materials

resistant to corrosion by the sprayed solution and which do not influence the corrosivity of the sprayed

test solutions.

The supports for the test specimen shall be constructed such that different substrate types do not

influence each other. It shall also be constructed so that the supports themselves do not influence the

test specimens.
6.2 Spray cabinet

The cabinet shall be such that the conditions of homogeneity and distribution of the spray are met.

Due to the limited capacity of cabinets smaller than 0,4 m , the effect of the loading of the cabinet on

the distribution of the spray and temperature shall be carefully considered. The solution shall not be

sprayed directly onto test specimens but rather spread throughout the cabinet so that it falls naturally

down to them. The upper parts of the cabinet shall be designed so that drops of sprayed solution formed

on its surface do not fall on the test specimens being tested.

The size and shape of the cabinet shall be such that the collection rate of solution in the cabinet is within

the limits specified in 10.3.

Preference shall be given to apparatus that has a means for properly dealing with fog after the test,

prior to releasing it from the building for environmental conservation, and for drawing water prior to

discharging it to the drainage system.

NOTE A schematic diagram of one possible design of spray cabinet is shown in Annex A (see Figure A.1 and

Figure A.2).
6.3 Heater and temperature control

The test cabinet shall be maintained at the specified temperature (see 10.1) in the zone where the test

specimens are placed by the appropriate system.
6.4 Spraying device

The device for spraying the salt solution comprises a supply of clean air, of controlled pressure and

humidity, a reservoir to contain the solution to be sprayed, and one or more atomizers.

The compressed air supplied to the atomizers shall be passed through a filter to remove all traces of

oil or solid matter, and the atomizing pressure shall be at an overpressure of 70 kPa to 170 kPa. The

pressure is typically 98 kPa ± 10 kPa but can vary depending on the type of cabinet and atomizer used.

1) 1 kPa = 1 kN/m = 0,01 atm = 0,01 bar = 0,145 psi.
© ISO 2021 – All rights reserved
---------------------- Page: 12 ----------------------
oSIST prEN ISO 9227:2022
ISO/DIS 9227:2021(E)

In order to prevent the evaporation of water from the sprayed droplets (aerosol), the air shall be

humidified before entering the atomizer by passing through a suitable humidifier. The humidified air

shall be saturated such that the concentration of the fallout solution falls within the specifications of

5.1. The humidified air shall also be heated such that when mixed with the salt solution and after the

adiabatic expansion at the atomizer nozzle, there is no significant disturbance of the temperature in

the cabinet. The appropriate temperature depends on the pressure used and on the type of atomizer

nozzle. Temperature, pressure or humidification, or a combination thereof, shall be adjusted so that the

rate of collection of the spray in the cabinet and the concentration of the collected spray are kept within

the specified limits (see 10.3). A commonly used humidifier is the saturation tower, where temperature

and p
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.