ISO 21813 specifies methods for the chemical analysis of fine high purity barium titanate powders used as the raw material for fine ceramics. ISO 21813 stipulates the determination methods of the barium, titanium, aluminium, cadmium, calcium, cobalt, dysprosium, iron, lead, magnesium, manganese, nickel, niobium, potassium, silicon, sodium, strontium, vanadium, zirconium, carbon, oxygen and nitrogen contents in high purity barium titanate powders. The barium and titanium contents, the major elements, are determined by using an acid decomposition-gravimetric method or an acid decomposition-inductively coupled plasma-optical emission spectrometry (ICP-OES) method. The aluminium, cadmium, calcium, chromium, cobalt, dysprosium, iron, lead, magnesium, manganese, nickel, niobium, potassium, silicon, strontium, vanadium and zirconium contents are simultaneously determined via an acid digestion-ICP-OES method. The nitrogen content is determined by using an inert gas fusion-thermal conductivity method, while that of oxygen is determined via an inert gas fusion-IR absorption spectrometry method. Finally, the carbon content is determined using a combustion-IR absorption spectrometry method or a combustion-conductometry method.

  • Standard
    25 pages
    English language
    sale 15% off

This document specifies methods for the chemical analysis of fine aluminium nitride powders used as the raw material for fine ceramics. This document stipulates the determination methods of the aluminium, total nitrogen, boron, calcium, copper, iron, magnesium, manganese, molybdenum, nickel, potassium, silicon, sodium, titanium, tungsten, vanadium, zinc, zirconium, carbon, chlorine, fluorine, and oxygen contents in aluminium nitride powders. The aluminium content is determined by using either an acid pressure decomposition-CyDTA-zinc back titration method or an acid digestion-inductively coupled plasma-optical emission spectrometry (ICP-OES) method. The total nitrogen content is determined by using an acid pressure decomposition-distillation separation-acidimetric titration method, a direct decomposition-distillation separation-acidimetric titration method, or an inert gas fusion-thermal conductivity method. The boron, calcium, copper, iron, magnesium, manganese, molybdenum, nickel, potassium, silicon, sodium, titanium, tungsten, vanadium and zinc contents are determined by using an acid digestion-ICP-OES method or an acid pressure decomposition-ICP-OES method. The sodium and potassium contents are determined via an acid pressure decomposition-flame emission method or an acid pressure decomposition-atomic absorption spectrometry method. The oxygen content is determined by using an inert gas fusion-IR absorption spectrometry method, while that of carbon is determined via a combustion-IR absorption spectrometry method or a combustion-conductometry method. The chlorine and fluorine contents are determined by using a pyrohydrolysation method followed by ion chromatography or spectrophotometry.

  • Standard
    36 pages
    English language
    sale 15% off

ISO 17947:2014 specifies the methods for the chemical analysis of fine silicon nitride powders used as the raw material for fine ceramics. It stipulates the determination methods of total silicon, total nitrogen, aluminium, iron, calcium, oxygen, carbon, fluorine, and chlorine in fine silicon nitride powders.

  • Standard
    32 pages
    English language
    sale 15% off

ISO 17942:2014 specifies the methods for the chemical analysis of fine boron nitride powders used as the raw material for fine ceramics. It stipulates the analysis methods of total boron, free boron, total nitrogen, aluminium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, silicon, sodium, titanium, vanadium, zinc, carbon, and oxygen in boron nitride powders for fine ceramics. Total boron is determined by using either a fusion?titration method or a fusion?inductively coupled plasma-optical emission spectrometry (ICP-OES). Free boron is determined by using either an acid digestion?ICP-OES or a methanol extraction?ICP-OES. If necessary, the boron amount which arises from the hydrolysis of boron nitride during sample treatment is corrected using spectrophotometry. Total nitrogen is determined by using either an acid pressure decomposition?distillation separation?titration method or an inert gas fusion?thermal conductivity method. Silicon is determined by using a fusion?ICP-OES. Aluminium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, titanium, vanadium, zinc are determined by using an acid pressure decomposition?ICP-OES or a fusion?ICP-OES. Sodium and potassium are determined by using atomic absorption spectrometry (AAS), flame emission spectrometry (FES), or ICP-OES following acid pressure decomposition. Carbon is determined by using a combustion?IR absorption spectrometry or a combustion?thermal conductivity method. Oxygen is determined by using an inert gas fusion?IR absorption spectrometry.

  • Standard
    60 pages
    English language
    sale 15% off