SIST ISO 80000-7:2020
Quantities and units - Part 7: Light and radiation
Quantities and units - Part 7: Light and radiation
This document gives names, symbols, definitions and units for quantities used for light and optical radiation in the wavelength range of approximately 1 nm to 1 mm. Where appropriate, conversion factors are also given.
Grandeurs et unités - Partie 7: Lumière et rayonnements
Le pr�sent document donne les noms, les symboles, les d�finitions et les unit�s des grandeurs utilis�es pour la lumi�re et les autres rayonnements optiques dans le domaine de longueurs d'onde de 1 nm � 1 mm environ. Des facteurs de conversion sont �galement indiqu�s, s'il y a lieu.
Veličine in enote - 7. del: Svetloba in sevanje
General Information
Relations
Buy Standard
Standards Content (Sample)
SLOVENSKI STANDARD
SIST ISO 80000-7:2020
01-december-2020
Nadomešča:
SIST ISO 80000-7:2013
Veličine in enote - 7. del: Svetloba in sevanje
Quantities and units - Part 7: Light and radiation
Grandeurs et unités - Partie 7: Lumière et rayonnements
Ta slovenski standard je istoveten z: ISO 80000-7:2019
ICS:
01.060 Veličine in enote Quantities and units
SIST ISO 80000-7:2020 en
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
---------------------- Page: 1 ----------------------
SIST ISO 80000-7:2020
---------------------- Page: 2 ----------------------
SIST ISO 80000-7:2020
INTERNATIONAL ISO
STANDARD 80000-7
Second edition
2019-08
Quantities and units —
Part 7:
Light and radiation
Grandeurs et unités —
Partie 7: Lumière et rayonnements
Reference number
ISO 80000-7:2019(E)
©
ISO 2019
---------------------- Page: 3 ----------------------
SIST ISO 80000-7:2020
ISO 80000-7:2019(E)
COPYRIGHT PROTECTED DOCUMENT
© ISO 2019
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2019 – All rights reserved
---------------------- Page: 4 ----------------------
SIST ISO 80000-7:2020
ISO 80000-7:2019(E)
Contents Page
Foreword .iv
Introduction — Special remarks .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
Bibliography .31
Alphabetical index .32
© ISO 2019 – All rights reserved iii
---------------------- Page: 5 ----------------------
SIST ISO 80000-7:2020
ISO 80000-7:2019(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www. iso. org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www. iso.o rg/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www. iso
.org/iso/foreword. html.
This document was prepared by Technical Committee ISO/TC 12, Quantities and units, in collaboration
with Technical Committee IEC/TC 25, Quantities and units.
This second edition cancels and replaces the first edition (ISO 80000-7:2008), which has been
technically revised.
The main changes compared to the previous edition are as follows:
— the table giving the quantities and units has been simplified;
— some definitions and the remarks have been stated physically more precisely.
A list of all parts in the ISO 80000 and IEC 80000 series can be found on the ISO and IEC websites.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www. iso. org/members. html.
iv © ISO 2019 – All rights reserved
---------------------- Page: 6 ----------------------
SIST ISO 80000-7:2020
ISO 80000-7:2019(E)
Introduction — Special remarks
0.1 Quantities
ISO 80000-7 contains a selection of quantities pertaining to light and other electromagnetic
radiation. Radiometric quantities relating to radiation in general may be useful for the whole range of
electromagnetic radiations, whereas photometric quantities pertain only to visible radiation.
In several cases, the same symbol is used for a trio of corresponding radiant, luminous and photon
quantities with the understanding that subscripts “e” for energetics, “v” for visible and “p” for photon
will be added whenever confusion among these quantities might otherwise occur.
For ionizing radiation, however, see ISO 80000-10.
Several of the quantities in ISO 80000-7 can be defined for monochromatic radiation, i.e. radiation of
a single frequency v only. They are denoted by their reference quantity as an argument like q(v). An
example is speed of light in a medium c(v), or the refractive index in a medium n(v) = c /c(v) Some of
0
those quantities are derivatives
dqq()λ ()λλ+D −q()λ
q′ λ = = lim
()
dλ Dλ→0 Dλ
of a quantity which are also frequently described as fractions Δq(λ) of a quantity q corresponding to the
radiation with wavelength in the interval λλ, +Dλ divided by the range Δλ of that interval to point to
[]
the physical measurement process behind. Such fractions must be additive so that the integral yields
the overall quantity, e.g. radiance (item 7-6.1) and spectral radiance (item 7-6.2). These derivatives of
quantities are called spectral quantities and are denoted by subscript λ.
On the other hand, some multidimensional quantities like radiant intensity I ()ϑϕ, , irradiance
e
Ex(),y , radiance Lx(),,y ϑϕ, , etc., are quantities that are strictly defined as values of a derivative at
e e
a certain point, a certain direction or at a certain point and direction in space. Hence, the most
fundamental definition according to ISO 80000-2 would be e.g. in case of the most complex term
“radiance” (item 7-6.1):
“at a given point xy, of a real or imaginary surface, in a given direction ϑϕ, ,
() ()
11 11
22
xx=
¶ ΦΦ()xy,,ϑϕ, ¶
1
ee
Lx(),,y ϑϕ, = =
e
yy=
¶¶Ax(),cyA⋅⋅osεϑW(),cϕε¶ ⋅⋅os ¶¶W 1
ϑϑ=
1
ϕϕ=
1
where Φ ()xy,,ϑϕ, represents the radiant flux transmitted through an area A(x, y) at a given
e
point (x , y ) and propagating in a given direction ϑϕ, , and ε is the angle between the normal
()
1 1
11
Ax ,y to that area at the given point and the given direction ϑϕ, ”.
() ()
11 11
To ease the use of the table in Clause 3, the simplified definitions (like item 7-6.1 in case of radiance) are
used which assume that fractions of quantities are always isotropic and uniform and continuous. In this
case, the given definitions are equivalent to the fundamental approach given above.
Instead of frequency v, other reference quantities of light may be used: angular frequency ων=2p ,
wavelength in a medium λν=cn/( ) , wavelength in vacuum λν=c / , wavenumber in medium σ = 1/λ,
0 00
© ISO 2019 – All rights reserved v
---------------------- Page: 7 ----------------------
SIST ISO 80000-7:2020
ISO 80000-7:2019(E)
wavenumber in vacuum νν==//cnσλ=1/ , etc. As an example, the refractive index may be given as
00
n(λ = 555 nm) ≈ 1,333.
Spectral quantities corresponding to different reference quantities are related, e.g.
dq==qv()dv qd()ωω==qv()dv qd()λλ=qd()σσ
vvωλ σ
thus
qqνω=⋅2p =qcνλ //=qc⋅=nq σ ⋅nc/
() () () () ()
νω νλ 00 σ 0
From the theoretical point of view, the frequency v is the more fundamental reference quantity, keeping
its value when a light beam passes through media with different refractive index, n. For historical
reasons, the wavelength, λ, is still mostly used as a reference quantity as it had been the most accurately
measured quantity in the past. In this respect, spectral quantities, as the spectral radiance (item 7-6.2),
L λ , have the meaning of spectral “densities” corresponding to the respective integrated quantities
()
e,λ
– i.e. in the case of radiance, L λ (item 7-6.1),
()
e
¶L
e
L =
e,λ
¶λ
0.2 Units
In photometry and radiometry, the unit steradian is retained for convenience.
0.3 Photopic quantities
In the great majority of instances, photopic vision (provided by the cones in the human visual system
and used for vision in daylight) is dealt with. Standard values of the spectral luminous efficiency function
V(λ) for photopic vision were originally adopted by the International Commission on Illumination (CIE)
in 1924. These values were adopted by the International Committee for Weights and Measures (CIPM)
(see BIPM Monograph in Reference [11]).
0.4 Scotopic quantities
For scotopic vision (provided by the rods and used for vision at night), corresponding quantities are
defined in the same manner as the photopic ones (items 7-10 to 7-18), using symbols with a prime.
For the term “spectral luminous efficiency” (item 7-10.2), the remarks would read:
“Standard values of luminous efficiency function V ' λ for scotopic vision were originally adopted
()
[11]
by CIE in 1951. They were later adopted by the CIPM .”
For the term “maximum luminous efficacy” (item 7-11.3), the definition would read:
“ maximum value of the spectral luminous efficacy for scotopic vision”
In the Remark it would read:
vi © ISO 2019 – All rights reserved
---------------------- Page: 8 ----------------------
SIST ISO 80000-7:2020
ISO 80000-7:2019(E)
“The value is calculated by
−1
683lmW
' −1
K = ≈1700lmW
m
V' λ
()
cd
where V '()λ is the spectral luminous efficiency in terms of wavelength λ for scotopic vision and
12
λ is the wavelength in air corresponding to the frequency 540·10 Hz given in the definition of
cd
the SI unit candela.”
0.5 Mesopic quantities
For mesopic vision (provided by the rods and cones and used for vision intermediate between photopic
and scotopic vision), corresponding quantities are defined in the same manner as the photopic ones
(items 7-10 to 7-18), using symbols with the subscript “mes”.
For the term “spectral luminous efficiency” (item 7-10.2), the remarks would read:
“Standard values of spectral luminous efficiency functions V λ for mesopic vision depend on
()
mes
[12]
the used adaptation level m and were originally recommended by CIE in 2010 . They are adopted
[11]
by the CIPM .”
For the term “maximum luminous efficacy” (item 7-11.3), the definition would read:
“ adaptation level m dependent maximum value of the spectral luminous effi-
cacy for mesopic vision”
In the Remark it would read:
“The value is calculated by
−1
683lmW
K =
mm,;esm
V λ
()
mesc;m d
where V ()λ is the spectral luminous efficiency for mesopic vision at an adaptation level m
mes;m
12
and λ is the wavelength in air corresponding to the frequency 540·10 Hz given in the defini-
cd
tion of the SI unit candela.”
© ISO 2019 – All rights reserved vii
---------------------- Page: 9 ----------------------
SIST ISO 80000-7:2020
---------------------- Page: 10 ----------------------
SIST ISO 80000-7:2020
INTERNATIONAL STANDARD ISO 80000-7:2019(E)
Quantities and units —
Part 7:
Light and radiation
1 Scope
This document gives names, symbols, definitions and units for quantities used for light and optical
radiation in the wavelength range of approximately 1 nm to 1 mm. Where appropriate, conversion
factors are also given.
2 Normative references
There are no normative references in this document.
3 Terms and definitions
Names, symbols, definitions and units for quantities used in light and optical radiation in the wavelength
range of approximately 1 nm to 1 mm are given in Table 1.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https: //www .iso .org/obp
— IEC Electropedia: available at http: //www .electropedia .org/
In the field of light, the CIE maintains the Electronic international lighting vocabulary, available at http:
//eilv .cie .co .at/.
© ISO 2019 – All rights reserved 1
---------------------- Page: 11 ----------------------
SIST ISO 80000-7:2020
ISO 80000-7:2019(E)
2 © ISO 2019 – All rights reserved
Table 1 — Quantities and units used in light and optical radiation in the wavelength range of approximately 1 nm to 1 mm
Item No. Quantity Unit Remarks
Name Symbol Definition
−1
7-1.1 speed of light in a c phase speed of an electromagnetic wave m s See also ISO 80000-3.
medium at a given point in a medium
The value of the speed of light in a medium can depend
on the frequency, polarization, and direction.
For the definition of the speed of electromagnetic
waves in vacuum, c , see ISO 80000-1.
0
7-1.2 refractive index n quotient of speed of light in vacuum 1 The value of the refractive index can depend on the
(ISO 80000-1) and speed of light in a frequency, polarization, and direction.
medium (item 7-1.1)
The refractive index is expressed by n = c /c, where
0
c is the speed of light in vacuum and c is the speed of
0
light in the medium.
For a medium with absorption, the complex refractive
index n is defined by
n = n + ik
where k is spectral absorption index (IEC 60050-845)
and i is imaginary unit.
The refractivity is expressed by n −1, where n is refrac-
tive index.
7-2.1 radiant energy Q , W, U energy (ISO 80000-5) emitted, trans- J Radiant energy can be expressed by the time integral
e
ferred or received in form of electromag- of radiant flux (item 7-4.1), Φ , over a given duration
2 −2 e
(Q) kg m s
netic waves (ISO 80000-3), Δt
Qt= Φ d
ee∫
Dt
Radiant energy is expressed either as a function of
wavelength (ISO 80000-3), λ, as a function of frequency
(ISO 80000-3), v, or as a function of wavenumber, σ.
(See also 0.1.)
The corresponding photometric quantity is “luminous
energy” (item 7-12). The corresponding quantity for
photons is “photon energy” (item 7-19.2).
---------------------- Page: 12 ----------------------
SIST ISO 80000-7:2020
ISO 80000-7:2019(E)
© ISO 2019 – All rights reserved 3
Table 1 (continued)
Item No. Quantity Unit Remarks
Name Symbol Definition
7-2.2 spectral radiant energy Q , W , spectral density of radiant energy, ex- J/nm The integral of (total) radiant energy is determined by
e,λ λ
U pressed by the wavelength interval (λ , λ ) under consideration:
λ −2 1 2
kg m s
(Q )
λ
λ dQ
2
e
Q =
e,λ
QQ= dλ
dλ
ee∫ ,λ
λ
where Q is radiant energy (item 7-2.1) in
1
e
terms of wavelength λ (ISO 80000-3)
3
7-3.1 radiant energy density w volumetric density of radiant energy, J/m Radiant energy density within a Planckian radiator is
expressed by given by
−1 −2
(ρ ) kg m s
e
dQ
4σ
e 4
w= T
w=
c
dV
0
where Q is radiant energy (item 7-2.1)
e where σ is the Stefan-Boltzmann constant (ISO 80000-
in an elementary three-dimensional do-
1), c is speed of light in vacuum (ISO 80000-1) and T is
0
main and V is the volume (ISO 80000-3)
thermodynamic temperature (ISO 80000-5).
of that domain
3
7-3.2 spectral radiant energy w change of radiant energy density with J/(m nm) Spectral radiant energy density within a Planckian
λ
density in terms of wavelength, expressed by radiator is given by w = 8πhc · f(λ, T), where h is the
−2 −2 λ 0
kg m s
wavelength Planck constant (ISO 80000-1), c is speed of light in
0
dw
vacuum (ISO 80000-1), T is thermodynamic tempera-
w =
λ
ture (ISO 80000-5) and
dλ
where w is radiant energy density (item
−5
λ
7-3.1) as a function of wavelength λ
fT()λ, =
−−11
exp cTλ −1
(ISO 80000-3) ()
2
For the radiation constant c in f(λ, T), see ISO 80000-1.
2
2
7-3.3 spectral radiant energy change of radiant energy density with J/m
w ,ρ
ν ν
density in terms of wavenumber, expressed by
−2
kg s
wavenumber
dw
w =
ν
dν
where w is radiant energy density (item
7-3.1) as a function of wavenumber ν
(ISO 80000-3)
---------------------- Page: 13 ----------------------
SIST ISO 80000-7:2020
ISO 80000-7:2019(E)
4 © ISO 2019 – All rights reserved
Table 1 (continued)
Item No. Quantity Unit Remarks
Name Symbol Definition
7-4.1 radiant flux, Φ , P change in radiant energy with time, W The corresponding photometric quantity is “luminous
e e
expressed by flux” (item 7-13). The corresponding quantity for pho-
2 −3
radiant power (Φ, P) kg m s
tons is “photon flux” (item 7-20).
dQ
e
Φ =
e
dt
where Q is the radiant energy (item
e
7-2.1) emitted, transferred or received
and t is time (ISO 80000-3)
7-4.2 spectral radiant flux, Φ , P spectral density of radiant flux, ex- W/nm The integral of (total) radiant flux is determined by the
e,λ e,λ
pressed by wavelength interval (λ , λ ) under consideration:
−3 1 2
spectral radiant power (Φ , P ) kg m s
λ λ
λ
dΦ
2
e
Φ =
e,λ
ΦΦ= dλ
dλ
ee,λ
∫
λ
where Φ is radiant flux (item 7-4.1) in
1
e
terms of wavelength λ (ISO 80000-3)
7-5.1 radiant intensity I density of radiant flux with respect W/sr The definition holds strictly only for a point source.
e
to solid angle in a specified direction,
2 −3 −1
(I) kg m s sr The distribution of the radiant intensities as a function
expressed by
of the direction of emission, e.g. given by the polar
dΦ angles ()ϑϕ, , is used to determine the radiant flux
e
I =
e
dW
(item 7-4.1) within a certain solid angle (ISO 80000-3),
Ω, of a source:
where Φ is the radiant flux (item 7-4.1)
e
emitted in a specified direction, and Ω is
Φ = I ϑϕ,sinϑϕddϑ
()
the solid angle (ISO 80000-3) containing
ee
∫∫
that direction
W
The corresponding photometric quantity is “luminous
intensity” (item 7-14). The corresponding quantity for
photons is “photon intensity” (item 7-21).
7-5.2 spectral radiant inten- I spectral density of radiant intensity, W/(sr nm) The integral of (total) radiant intensity is determined
e,λ
sity expressed by by the wavelength interval (λ , λ ) under consideration:
−3 −1 1 2
(I ) kg m s sr
λ
λ
I
d
2
e
I =
e,λ
II= dλ
dλ
ee,λ
∫
λ
where I is radiant intensity (item 7-5.1)
1
e
in terms of wavelength λ (ISO 80000-3)
---------------------- Page: 14 ----------------------
SIST ISO 80000-7:2020
ISO 80000-7:2019(E)
© ISO 2019 – All rights reserved 5
Table 1 (continued)
Item No. Quantity Unit Remarks
Name Symbol Definition
2
7-6.1 radiance L density of radiant intensity with respect W/(sr m ) See also 0.1.
e
to projected area in a specified direction
−3 −1
(L) kg s sr For Planckian radiation,
at a specified point on a real or imagi-
nary surface, expressed by
σ
4
LT=
e
π
dI
1
e
L =
e where T is thermodynamic temperature (ISO 80000-5)
dA cosα
and σ is the Stefan-Boltzmann constant (ISO 80000-1).
where I is radiant intensity (item 7-5.1),
e
The corresponding photometric quantity is “lumi-
A is area (ISO 80000-3), and α is the
nance” (item 7-15). The corresponding quantity for
angle between the normal to the surface
photons is “photon radiance” (item 7-22).
at the specified point and the specified
direction
2
7-6.2 spectral radiance L density of radiance with respect to W/(sr m nm) For Planckian radiation,
e,λ
wavelength, expressed by
−1 −3 −1
(L ) kg m s sr
λ c()λ
2
L ()λ = ωλ()=⋅hc fT()λ,
e,λλ 0
dL
e 4π
L =
e,λ
dλ
where c(λ) is phase speed (ISO 80000-3) of electro-
magnetic radiation of a wavelength (ISO 80000-3) λ
where L is radiance (item 7-6.1) in
e
in a given medium, ω (λ) is spectral radiant energy
terms of wavelength λ (ISO 80000-3)
λ
density in terms of wavelength, c is speed of light
0
in vacuum (ISO 80000-1), h is the Planck constant
(ISO 80000-1), and
−5
λ
fTλ, =
()
−−11
exp cTλ −1
()
2
where the radiation constant c = hc/k.
2
The integral of (total) radiance is determined by the
wavelength interval (λ , λ ) under consideration:
1 2
λ
2
LL= dλ
ee,λ
∫
λ
1
---------------------- Page: 15 ----------------------
SIST ISO 80000-7:2020
ISO 80000-7:2019(E)
6 © ISO 2019 – All rights reserved
Table 1 (continued)
Item No. Quantity Unit Remarks
Name Symbol Definition
2
7-7.1 irradiance E density of incident radiant flux with W/m The corresponding photometric quantity is “illumi-
e
respect to area at a point on a real or nance” (item 7-16). The corresponding quantity for
−3
(E) kg s
imaginary surface, expressed by photons is “photon irradiance” (item 7-23).
The quantity “spherical irradiance” is defined by the
dΦ
e
E = mean value of irradiance on the outer curved surface of a
e
dA
very small (real or imaginary) sphere at a point in space.
where Φ is radiant flux (item 7-4.1) and
e
It can be expressed by
A is the area (ISO 80000-3) on which the
radiant flux is incident
EL= dW
ee,0
∫
4p
where Ω is solid angle (ISO 80000-3) and L is radiance
e
(item 7-6.1).
(See CIE DIS 017/E:2016, term 17-21–054.)
It can be expressed by the quotient of the radiant flux
(item 7-4.1) of all the radiation incident on the outer
surface of an infinitely small sphere centred at the
specified point and the area (ISO 80000-3) of the dia-
metrical cross-section of that sphere.
Spherical irradiance is also called “fluence rate” or
“radiant fluence rate”.
The corresponding photometric quantity to spherical
irradiance is called “spherical illuminance”.
2
7-7.2 spectral irradiance E density of irradiance with respect to W/(m nm) The integral of (total) irradiance is determined by the
e,λ
wavelength, expressed by wavelength interval (λ , λ ) under consideration:
−1 −3 1 2
(E ) kg m s
λ
λ
dE
2
e
E =
e,λ
EE= dλ
dλ
ee,λ
∫
λ
where E is irradiance (item 7-7.1) in
1
e
terms of wavelength λ (ISO 80000-3)
---------------------- Page: 16 ----------------------
SIST ISO 80000-7:2020
ISO 80000-7:2019(E)
© ISO 2019 – All rights reserved 7
Table 1 (continued)
Item No. Quantity Unit Remarks
Name Symbol Definition
2 4
7-8.1 radiant exitance M density of exiting radiant flux with W/m For Planckian radiation, M = σT where T is ther-
e e
respect to area at a point on a real or modynamic temperature (ISO 80000-5) and σ is the
−3
DEPRECATED: radiant (M) kg s
imaginary surface, expressed by Stefan-Boltzmann constant (ISO 80000-1).
emittance
The corresponding photometric quantity is “luminous
dΦ
e
M = exitance” (item 7-17). The corresponding quantity for
e
dA
photons is “photon exitance” (item 7-24).
where Φ is radiant flux (item 7-4.1) and
e
A is the area (ISO 80000-3) from which
the radiant flux leaves
2
7-8.2 spectral radiant ex- M density of radiant exitance with respect W/(m nm) The integral of (total) radiant exitance is determined
e,λ
itance to wavelength, expressed by by the wavelength interval (λ , λ ) under consideration:
−1 −3 1 2
(M ) kg m s
λ
λ
dM
2
e
M =
e,λ
MM= dλ
dλ
ee,λ
∫
λ
where M is radiant exitance (item 7-8.1)
1
e
in terms of wavelength λ (ISO 80000-3)
2
7-9.1 radiant exposure H density of incident radiant energy with J/m The corresponding photometric quantity is “luminous
e
respect to area at a point on a real or exposure” (item 7-18). The corresponding quantity for
−2
(H) kg s
imaginary surface, expressed by photons is “photon exposure” (item 7-25).
dQ
e
H =
e
dA
where Q is radiant energy (item 7-2.1)
e
and A is the area on which the radiant
energy is incident (ISO 80000-3)
2
7-9.2 spectral radiant H density of radiant exposure with respect J/(m nm) The integral of (total) radiant exposure is determined
e,λ
exposure to wavelength, expressed by by the wavelength interval (λ , λ ) under consideration:
−1 −2 1 2
(H ) kg m s
λ
λ
dH
2
e
H =
e,λ
HH= dλ
dλ
ee,λ
∫
λ
where H is radiant exposure (item 7-9.1)
1
e
in terms of wavelength λ (ISO 80000-3)
---------------------- Page: 17 ----------------------
SIST ISO 80000-7:2020
ISO 80000-7:2019(E)
8 © ISO 2019 – All rights reserved
Table 1 (continued)
Item No. Quantity Unit Remarks
Name Symbol Definition
7-10.1 luminous efficiency V quotient of radiant flux (item 7-4.1) 1 Luminous efficiency for photopic vision is expressed by
∞
condition> ciency (item 7-10.2) and the correspond-
Φ ()λλV()dλ
e,λ
∫
K
ing radiant flux for a specified photomet-
0
V= =
∞
ric condition
K
m
Φ λλd
()
e,λ
∫
0
where Φ is spectral radiant flux (item 7-4.2), V(λ)
e,λ
is spectral luminous efficiency, λ is wavelength, K is
luminous efficacy of radiation (item 7-11.1), and K is
m
maximum luminous efficacy (item 7-11.3).
For scotopic and mesopic vision see 0.4 and 0.5.
Symbols for different photometric conditions:
V, ; V′, ;
V , ; V ,
mes;m 10
photopic photometric observer>; V ,
M
modified 2° spectral luminous efficiency function for
photopic vision>.
7-10.2 spectral luminous V(λ) quotient of the radiant flux (item 7-4.1) 1 The spectral luminous efficiency of the human eye
efficiency at wavelength λ and that at wavelength depends on a number of factors, particularly the state
m
condition> luminous sensations for a specified pho- source in the visual field. The photometric condition
tometric condition and λ is chosen so should be specified (e.g. photopic, scotopic, mesopic). If
m
that the maximum value of this quotient it is not specified, photopic vision is assumed and the
is equal to 1 symbol V(λ) is used.
For scotopic and mesopic vision see 0.4 and 0.5.
Symbols for different photometric conditions:
V (λ), ; V′(λ),
sion>; V (λ), ; V (λ),
mes;m 10
CIE 10° photopic photometric observer>; V (λ),
M
the CIE 1988 modified 2° spectral luminous efficiency
function for photopic vision>.
---------------------- Page: 18 ----------------------
SIST ISO 80000-7:2020
ISO 80000-7:2019(E)
© ISO 2019 – All rights reserved 9
Table 1 (continued)
Item No. Quantity Unit Remarks
Name Symbol Definition
7-11.1 luminous efficacy K quotient of luminous flux (item 7-13) lm/W Luminous efficacy of radiation for photopic vision is
of radiation and the corresponding radiant flux expressed by
−1 −2 3
cd sr kg m s
Φ
condition> condition
v
K=
Φ
e
where Φ is luminous flux (item 7-13) and Φ is radiant
v e
flux (item 7-4.1).
For scotopic and mesopic vision see 0.4 and 0.5.
Symbols for different photometric conditions:
K, ; K′, ;
K , ; K ,
mes;m 10
photopic photometric observer>; K ,
M
modified 2° spectral luminous efficiency function for
photopic vision>.
7-11.2 spectral luminous K(λ) product of spectral luminous efficiency lm/W Spectral luminous efficacy for photopic vision is ex-
efficacy (item 7-10.2) and maximum luminous pressed by
−1 −2 3
cd sr kg m s
K(λ) = K V(λ)
m
condition> tometric condition
where K is maximum luminous efficacy (item 7-11.3),
m
V(λ) is spectral luminous efficiency (item 7-10.2) and λ
is wavelength.
For scotopic and mesopic vision see 0.4 and 0.5.
Symbols for different photometric conditions:
K(λ), ; K′(λ),
sion>; K (λ), ; K (λ),
mes;m 10
CIE 10° photopic photometric observer>; K (λ),
M
the CIE 1988 modified 2° spectral luminous efficiency
function for photopic vision>.
---------------------- Page: 19 ----------------------
SIST ISO 80000-7:2020
ISO 80000-7:2019(E)
10 © ISO 2019 – All rights reserved
Table 1 (continued)
Item No. Quantity Unit Remarks
Name Symbol Definition
7-11.3 maximum luminous K maximum value of spectral luminous lm/W See also 0.4 and 0.5.
m
efficacy efficacy for a specified photometric
−1 −2 3
cd sr kg m s The value of maximum luminous efficacy for photopic
...
INTERNATIONAL ISO
STANDARD 80000-7
Second edition
2019-08
Quantities and units —
Part 7:
Light and radiation
Grandeurs et unités —
Partie 7: Lumière et rayonnements
Reference number
ISO 80000-7:2019(E)
©
ISO 2019
---------------------- Page: 1 ----------------------
ISO 80000-7:2019(E)
COPYRIGHT PROTECTED DOCUMENT
© ISO 2019
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2019 – All rights reserved
---------------------- Page: 2 ----------------------
ISO 80000-7:2019(E)
Contents Page
Foreword .iv
Introduction — Special remarks .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
Bibliography .31
Alphabetical index .32
© ISO 2019 – All rights reserved iii
---------------------- Page: 3 ----------------------
ISO 80000-7:2019(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www. iso. org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www. iso.o rg/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www. iso
.org/iso/foreword. html.
This document was prepared by Technical Committee ISO/TC 12, Quantities and units, in collaboration
with Technical Committee IEC/TC 25, Quantities and units.
This second edition cancels and replaces the first edition (ISO 80000-7:2008), which has been
technically revised.
The main changes compared to the previous edition are as follows:
— the table giving the quantities and units has been simplified;
— some definitions and the remarks have been stated physically more precisely.
A list of all parts in the ISO 80000 and IEC 80000 series can be found on the ISO and IEC websites.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www. iso. org/members. html.
iv © ISO 2019 – All rights reserved
---------------------- Page: 4 ----------------------
ISO 80000-7:2019(E)
Introduction — Special remarks
0.1 Quantities
ISO 80000-7 contains a selection of quantities pertaining to light and other electromagnetic
radiation. Radiometric quantities relating to radiation in general may be useful for the whole range of
electromagnetic radiations, whereas photometric quantities pertain only to visible radiation.
In several cases, the same symbol is used for a trio of corresponding radiant, luminous and photon
quantities with the understanding that subscripts “e” for energetics, “v” for visible and “p” for photon
will be added whenever confusion among these quantities might otherwise occur.
For ionizing radiation, however, see ISO 80000-10.
Several of the quantities in ISO 80000-7 can be defined for monochromatic radiation, i.e. radiation of
a single frequency v only. They are denoted by their reference quantity as an argument like q(v). An
example is speed of light in a medium c(v), or the refractive index in a medium n(v) = c /c(v) Some of
0
those quantities are derivatives
dqq()λ ()λλ+D −q()λ
q′ λ = = lim
()
dλ Dλ→0 Dλ
of a quantity which are also frequently described as fractions Δq(λ) of a quantity q corresponding to the
radiation with wavelength in the interval λλ, +Dλ divided by the range Δλ of that interval to point to
[]
the physical measurement process behind. Such fractions must be additive so that the integral yields
the overall quantity, e.g. radiance (item 7-6.1) and spectral radiance (item 7-6.2). These derivatives of
quantities are called spectral quantities and are denoted by subscript λ.
On the other hand, some multidimensional quantities like radiant intensity I ()ϑϕ, , irradiance
e
Ex(),y , radiance Lx(),,y ϑϕ, , etc., are quantities that are strictly defined as values of a derivative at
e e
a certain point, a certain direction or at a certain point and direction in space. Hence, the most
fundamental definition according to ISO 80000-2 would be e.g. in case of the most complex term
“radiance” (item 7-6.1):
“at a given point xy, of a real or imaginary surface, in a given direction ϑϕ, ,
() ()
11 11
22
xx=
¶ ΦΦ()xy,,ϑϕ, ¶
1
ee
Lx(),,y ϑϕ, = =
e
yy=
¶¶Ax(),cyA⋅⋅osεϑW(),cϕε¶ ⋅⋅os ¶¶W 1
ϑϑ=
1
ϕϕ=
1
where Φ ()xy,,ϑϕ, represents the radiant flux transmitted through an area A(x, y) at a given
e
point (x , y ) and propagating in a given direction ϑϕ, , and ε is the angle between the normal
()
1 1
11
Ax ,y to that area at the given point and the given direction ϑϕ, ”.
() ()
11 11
To ease the use of the table in Clause 3, the simplified definitions (like item 7-6.1 in case of radiance) are
used which assume that fractions of quantities are always isotropic and uniform and continuous. In this
case, the given definitions are equivalent to the fundamental approach given above.
Instead of frequency v, other reference quantities of light may be used: angular frequency ων=2p ,
wavelength in a medium λν=cn/( ) , wavelength in vacuum λν=c / , wavenumber in medium σ = 1/λ,
0 00
© ISO 2019 – All rights reserved v
---------------------- Page: 5 ----------------------
ISO 80000-7:2019(E)
wavenumber in vacuum νν==//cnσλ=1/ , etc. As an example, the refractive index may be given as
00
n(λ = 555 nm) ≈ 1,333.
Spectral quantities corresponding to different reference quantities are related, e.g.
dq==qv()dv qd()ωω==qv()dv qd()λλ=qd()σσ
vvωλ σ
thus
qqνω=⋅2p =qcνλ //=qc⋅=nq σ ⋅nc/
() () () () ()
νω νλ 00 σ 0
From the theoretical point of view, the frequency v is the more fundamental reference quantity, keeping
its value when a light beam passes through media with different refractive index, n. For historical
reasons, the wavelength, λ, is still mostly used as a reference quantity as it had been the most accurately
measured quantity in the past. In this respect, spectral quantities, as the spectral radiance (item 7-6.2),
L λ , have the meaning of spectral “densities” corresponding to the respective integrated quantities
()
e,λ
– i.e. in the case of radiance, L λ (item 7-6.1),
()
e
¶L
e
L =
e,λ
¶λ
0.2 Units
In photometry and radiometry, the unit steradian is retained for convenience.
0.3 Photopic quantities
In the great majority of instances, photopic vision (provided by the cones in the human visual system
and used for vision in daylight) is dealt with. Standard values of the spectral luminous efficiency function
V(λ) for photopic vision were originally adopted by the International Commission on Illumination (CIE)
in 1924. These values were adopted by the International Committee for Weights and Measures (CIPM)
(see BIPM Monograph in Reference [11]).
0.4 Scotopic quantities
For scotopic vision (provided by the rods and used for vision at night), corresponding quantities are
defined in the same manner as the photopic ones (items 7-10 to 7-18), using symbols with a prime.
For the term “spectral luminous efficiency” (item 7-10.2), the remarks would read:
“Standard values of luminous efficiency function V ' λ for scotopic vision were originally adopted
()
[11]
by CIE in 1951. They were later adopted by the CIPM .”
For the term “maximum luminous efficacy” (item 7-11.3), the definition would read:
“ maximum value of the spectral luminous efficacy for scotopic vision”
In the Remark it would read:
vi © ISO 2019 – All rights reserved
---------------------- Page: 6 ----------------------
ISO 80000-7:2019(E)
“The value is calculated by
−1
683lmW
' −1
K = ≈1700lmW
m
V' λ
()
cd
where V '()λ is the spectral luminous efficiency in terms of wavelength λ for scotopic vision and
12
λ is the wavelength in air corresponding to the frequency 540·10 Hz given in the definition of
cd
the SI unit candela.”
0.5 Mesopic quantities
For mesopic vision (provided by the rods and cones and used for vision intermediate between photopic
and scotopic vision), corresponding quantities are defined in the same manner as the photopic ones
(items 7-10 to 7-18), using symbols with the subscript “mes”.
For the term “spectral luminous efficiency” (item 7-10.2), the remarks would read:
“Standard values of spectral luminous efficiency functions V λ for mesopic vision depend on
()
mes
[12]
the used adaptation level m and were originally recommended by CIE in 2010 . They are adopted
[11]
by the CIPM .”
For the term “maximum luminous efficacy” (item 7-11.3), the definition would read:
“ adaptation level m dependent maximum value of the spectral luminous effi-
cacy for mesopic vision”
In the Remark it would read:
“The value is calculated by
−1
683lmW
K =
mm,;esm
V λ
()
mesc;m d
where V ()λ is the spectral luminous efficiency for mesopic vision at an adaptation level m
mes;m
12
and λ is the wavelength in air corresponding to the frequency 540·10 Hz given in the defini-
cd
tion of the SI unit candela.”
© ISO 2019 – All rights reserved vii
---------------------- Page: 7 ----------------------
INTERNATIONAL STANDARD ISO 80000-7:2019(E)
Quantities and units —
Part 7:
Light and radiation
1 Scope
This document gives names, symbols, definitions and units for quantities used for light and optical
radiation in the wavelength range of approximately 1 nm to 1 mm. Where appropriate, conversion
factors are also given.
2 Normative references
There are no normative references in this document.
3 Terms and definitions
Names, symbols, definitions and units for quantities used in light and optical radiation in the wavelength
range of approximately 1 nm to 1 mm are given in Table 1.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https: //www .iso .org/obp
— IEC Electropedia: available at http: //www .electropedia .org/
In the field of light, the CIE maintains the Electronic international lighting vocabulary, available at http:
//eilv .cie .co .at/.
© ISO 2019 – All rights reserved 1
---------------------- Page: 8 ----------------------
ISO 80000-7:2019(E)
2 © ISO 2019 – All rights reserved
Table 1 — Quantities and units used in light and optical radiation in the wavelength range of approximately 1 nm to 1 mm
Item No. Quantity Unit Remarks
Name Symbol Definition
−1
7-1.1 speed of light in a c phase speed of an electromagnetic wave m s See also ISO 80000-3.
medium at a given point in a medium
The value of the speed of light in a medium can depend
on the frequency, polarization, and direction.
For the definition of the speed of electromagnetic
waves in vacuum, c , see ISO 80000-1.
0
7-1.2 refractive index n quotient of speed of light in vacuum 1 The value of the refractive index can depend on the
(ISO 80000-1) and speed of light in a frequency, polarization, and direction.
medium (item 7-1.1)
The refractive index is expressed by n = c /c, where
0
c is the speed of light in vacuum and c is the speed of
0
light in the medium.
For a medium with absorption, the complex refractive
index n is defined by
n = n + ik
where k is spectral absorption index (IEC 60050-845)
and i is imaginary unit.
The refractivity is expressed by n −1, where n is refrac-
tive index.
7-2.1 radiant energy Q , W, U energy (ISO 80000-5) emitted, trans- J Radiant energy can be expressed by the time integral
e
ferred or received in form of electromag- of radiant flux (item 7-4.1), Φ , over a given duration
2 −2 e
(Q) kg m s
netic waves (ISO 80000-3), Δt
Qt= Φ d
ee∫
Dt
Radiant energy is expressed either as a function of
wavelength (ISO 80000-3), λ, as a function of frequency
(ISO 80000-3), v, or as a function of wavenumber, σ.
(See also 0.1.)
The corresponding photometric quantity is “luminous
energy” (item 7-12). The corresponding quantity for
photons is “photon energy” (item 7-19.2).
---------------------- Page: 9 ----------------------
ISO 80000-7:2019(E)
© ISO 2019 – All rights reserved 3
Table 1 (continued)
Item No. Quantity Unit Remarks
Name Symbol Definition
7-2.2 spectral radiant energy Q , W , spectral density of radiant energy, ex- J/nm The integral of (total) radiant energy is determined by
e,λ λ
U pressed by the wavelength interval (λ , λ ) under consideration:
λ −2 1 2
kg m s
(Q )
λ
λ dQ
2
e
Q =
e,λ
QQ= dλ
dλ
ee∫ ,λ
λ
where Q is radiant energy (item 7-2.1) in
1
e
terms of wavelength λ (ISO 80000-3)
3
7-3.1 radiant energy density w volumetric density of radiant energy, J/m Radiant energy density within a Planckian radiator is
expressed by given by
−1 −2
(ρ ) kg m s
e
dQ
4σ
e 4
w= T
w=
c
dV
0
where Q is radiant energy (item 7-2.1)
e where σ is the Stefan-Boltzmann constant (ISO 80000-
in an elementary three-dimensional do-
1), c is speed of light in vacuum (ISO 80000-1) and T is
0
main and V is the volume (ISO 80000-3)
thermodynamic temperature (ISO 80000-5).
of that domain
3
7-3.2 spectral radiant energy w change of radiant energy density with J/(m nm) Spectral radiant energy density within a Planckian
λ
density in terms of wavelength, expressed by radiator is given by w = 8πhc · f(λ, T), where h is the
−2 −2 λ 0
kg m s
wavelength Planck constant (ISO 80000-1), c is speed of light in
0
dw
vacuum (ISO 80000-1), T is thermodynamic tempera-
w =
λ
ture (ISO 80000-5) and
dλ
where w is radiant energy density (item
−5
λ
7-3.1) as a function of wavelength λ
fT()λ, =
−−11
exp cTλ −1
(ISO 80000-3) ()
2
For the radiation constant c in f(λ, T), see ISO 80000-1.
2
2
7-3.3 spectral radiant energy change of radiant energy density with J/m
w ,ρ
ν ν
density in terms of wavenumber, expressed by
−2
kg s
wavenumber
dw
w =
ν
dν
where w is radiant energy density (item
7-3.1) as a function of wavenumber ν
(ISO 80000-3)
---------------------- Page: 10 ----------------------
ISO 80000-7:2019(E)
4 © ISO 2019 – All rights reserved
Table 1 (continued)
Item No. Quantity Unit Remarks
Name Symbol Definition
7-4.1 radiant flux, Φ , P change in radiant energy with time, W The corresponding photometric quantity is “luminous
e e
expressed by flux” (item 7-13). The corresponding quantity for pho-
2 −3
radiant power (Φ, P) kg m s
tons is “photon flux” (item 7-20).
dQ
e
Φ =
e
dt
where Q is the radiant energy (item
e
7-2.1) emitted, transferred or received
and t is time (ISO 80000-3)
7-4.2 spectral radiant flux, Φ , P spectral density of radiant flux, ex- W/nm The integral of (total) radiant flux is determined by the
e,λ e,λ
pressed by wavelength interval (λ , λ ) under consideration:
−3 1 2
spectral radiant power (Φ , P ) kg m s
λ λ
λ
dΦ
2
e
Φ =
e,λ
ΦΦ= dλ
dλ
ee,λ
∫
λ
where Φ is radiant flux (item 7-4.1) in
1
e
terms of wavelength λ (ISO 80000-3)
7-5.1 radiant intensity I density of radiant flux with respect W/sr The definition holds strictly only for a point source.
e
to solid angle in a specified direction,
2 −3 −1
(I) kg m s sr The distribution of the radiant intensities as a function
expressed by
of the direction of emission, e.g. given by the polar
dΦ angles ()ϑϕ, , is used to determine the radiant flux
e
I =
e
dW
(item 7-4.1) within a certain solid angle (ISO 80000-3),
Ω, of a source:
where Φ is the radiant flux (item 7-4.1)
e
emitted in a specified direction, and Ω is
Φ = I ϑϕ,sinϑϕddϑ
()
the solid angle (ISO 80000-3) containing
ee
∫∫
that direction
W
The corresponding photometric quantity is “luminous
intensity” (item 7-14). The corresponding quantity for
photons is “photon intensity” (item 7-21).
7-5.2 spectral radiant inten- I spectral density of radiant intensity, W/(sr nm) The integral of (total) radiant intensity is determined
e,λ
sity expressed by by the wavelength interval (λ , λ ) under consideration:
−3 −1 1 2
(I ) kg m s sr
λ
λ
I
d
2
e
I =
e,λ
II= dλ
dλ
ee,λ
∫
λ
where I is radiant intensity (item 7-5.1)
1
e
in terms of wavelength λ (ISO 80000-3)
---------------------- Page: 11 ----------------------
ISO 80000-7:2019(E)
© ISO 2019 – All rights reserved 5
Table 1 (continued)
Item No. Quantity Unit Remarks
Name Symbol Definition
2
7-6.1 radiance L density of radiant intensity with respect W/(sr m ) See also 0.1.
e
to projected area in a specified direction
−3 −1
(L) kg s sr For Planckian radiation,
at a specified point on a real or imagi-
nary surface, expressed by
σ
4
LT=
e
π
dI
1
e
L =
e where T is thermodynamic temperature (ISO 80000-5)
dA cosα
and σ is the Stefan-Boltzmann constant (ISO 80000-1).
where I is radiant intensity (item 7-5.1),
e
The corresponding photometric quantity is “lumi-
A is area (ISO 80000-3), and α is the
nance” (item 7-15). The corresponding quantity for
angle between the normal to the surface
photons is “photon radiance” (item 7-22).
at the specified point and the specified
direction
2
7-6.2 spectral radiance L density of radiance with respect to W/(sr m nm) For Planckian radiation,
e,λ
wavelength, expressed by
−1 −3 −1
(L ) kg m s sr
λ c()λ
2
L ()λ = ωλ()=⋅hc fT()λ,
e,λλ 0
dL
e 4π
L =
e,λ
dλ
where c(λ) is phase speed (ISO 80000-3) of electro-
magnetic radiation of a wavelength (ISO 80000-3) λ
where L is radiance (item 7-6.1) in
e
in a given medium, ω (λ) is spectral radiant energy
terms of wavelength λ (ISO 80000-3)
λ
density in terms of wavelength, c is speed of light
0
in vacuum (ISO 80000-1), h is the Planck constant
(ISO 80000-1), and
−5
λ
fTλ, =
()
−−11
exp cTλ −1
()
2
where the radiation constant c = hc/k.
2
The integral of (total) radiance is determined by the
wavelength interval (λ , λ ) under consideration:
1 2
λ
2
LL= dλ
ee,λ
∫
λ
1
---------------------- Page: 12 ----------------------
ISO 80000-7:2019(E)
6 © ISO 2019 – All rights reserved
Table 1 (continued)
Item No. Quantity Unit Remarks
Name Symbol Definition
2
7-7.1 irradiance E density of incident radiant flux with W/m The corresponding photometric quantity is “illumi-
e
respect to area at a point on a real or nance” (item 7-16). The corresponding quantity for
−3
(E) kg s
imaginary surface, expressed by photons is “photon irradiance” (item 7-23).
The quantity “spherical irradiance” is defined by the
dΦ
e
E = mean value of irradiance on the outer curved surface of a
e
dA
very small (real or imaginary) sphere at a point in space.
where Φ is radiant flux (item 7-4.1) and
e
It can be expressed by
A is the area (ISO 80000-3) on which the
radiant flux is incident
EL= dW
ee,0
∫
4p
where Ω is solid angle (ISO 80000-3) and L is radiance
e
(item 7-6.1).
(See CIE DIS 017/E:2016, term 17-21–054.)
It can be expressed by the quotient of the radiant flux
(item 7-4.1) of all the radiation incident on the outer
surface of an infinitely small sphere centred at the
specified point and the area (ISO 80000-3) of the dia-
metrical cross-section of that sphere.
Spherical irradiance is also called “fluence rate” or
“radiant fluence rate”.
The corresponding photometric quantity to spherical
irradiance is called “spherical illuminance”.
2
7-7.2 spectral irradiance E density of irradiance with respect to W/(m nm) The integral of (total) irradiance is determined by the
e,λ
wavelength, expressed by wavelength interval (λ , λ ) under consideration:
−1 −3 1 2
(E ) kg m s
λ
λ
dE
2
e
E =
e,λ
EE= dλ
dλ
ee,λ
∫
λ
where E is irradiance (item 7-7.1) in
1
e
terms of wavelength λ (ISO 80000-3)
---------------------- Page: 13 ----------------------
ISO 80000-7:2019(E)
© ISO 2019 – All rights reserved 7
Table 1 (continued)
Item No. Quantity Unit Remarks
Name Symbol Definition
2 4
7-8.1 radiant exitance M density of exiting radiant flux with W/m For Planckian radiation, M = σT where T is ther-
e e
respect to area at a point on a real or modynamic temperature (ISO 80000-5) and σ is the
−3
DEPRECATED: radiant (M) kg s
imaginary surface, expressed by Stefan-Boltzmann constant (ISO 80000-1).
emittance
The corresponding photometric quantity is “luminous
dΦ
e
M = exitance” (item 7-17). The corresponding quantity for
e
dA
photons is “photon exitance” (item 7-24).
where Φ is radiant flux (item 7-4.1) and
e
A is the area (ISO 80000-3) from which
the radiant flux leaves
2
7-8.2 spectral radiant ex- M density of radiant exitance with respect W/(m nm) The integral of (total) radiant exitance is determined
e,λ
itance to wavelength, expressed by by the wavelength interval (λ , λ ) under consideration:
−1 −3 1 2
(M ) kg m s
λ
λ
dM
2
e
M =
e,λ
MM= dλ
dλ
ee,λ
∫
λ
where M is radiant exitance (item 7-8.1)
1
e
in terms of wavelength λ (ISO 80000-3)
2
7-9.1 radiant exposure H density of incident radiant energy with J/m The corresponding photometric quantity is “luminous
e
respect to area at a point on a real or exposure” (item 7-18). The corresponding quantity for
−2
(H) kg s
imaginary surface, expressed by photons is “photon exposure” (item 7-25).
dQ
e
H =
e
dA
where Q is radiant energy (item 7-2.1)
e
and A is the area on which the radiant
energy is incident (ISO 80000-3)
2
7-9.2 spectral radiant H density of radiant exposure with respect J/(m nm) The integral of (total) radiant exposure is determined
e,λ
exposure to wavelength, expressed by by the wavelength interval (λ , λ ) under consideration:
−1 −2 1 2
(H ) kg m s
λ
λ
dH
2
e
H =
e,λ
HH= dλ
dλ
ee,λ
∫
λ
where H is radiant exposure (item 7-9.1)
1
e
in terms of wavelength λ (ISO 80000-3)
---------------------- Page: 14 ----------------------
ISO 80000-7:2019(E)
8 © ISO 2019 – All rights reserved
Table 1 (continued)
Item No. Quantity Unit Remarks
Name Symbol Definition
7-10.1 luminous efficiency V quotient of radiant flux (item 7-4.1) 1 Luminous efficiency for photopic vision is expressed by
∞
condition> ciency (item 7-10.2) and the correspond-
Φ ()λλV()dλ
e,λ
∫
K
ing radiant flux for a specified photomet-
0
V= =
∞
ric condition
K
m
Φ λλd
()
e,λ
∫
0
where Φ is spectral radiant flux (item 7-4.2), V(λ)
e,λ
is spectral luminous efficiency, λ is wavelength, K is
luminous efficacy of radiation (item 7-11.1), and K is
m
maximum luminous efficacy (item 7-11.3).
For scotopic and mesopic vision see 0.4 and 0.5.
Symbols for different photometric conditions:
V, ; V′, ;
V , ; V ,
mes;m 10
photopic photometric observer>; V ,
M
modified 2° spectral luminous efficiency function for
photopic vision>.
7-10.2 spectral luminous V(λ) quotient of the radiant flux (item 7-4.1) 1 The spectral luminous efficiency of the human eye
efficiency at wavelength λ and that at wavelength depends on a number of factors, particularly the state
m
condition> luminous sensations for a specified pho- source in the visual field. The photometric condition
tometric condition and λ is chosen so should be specified (e.g. photopic, scotopic, mesopic). If
m
that the maximum value of this quotient it is not specified, photopic vision is assumed and the
is equal to 1 symbol V(λ) is used.
For scotopic and mesopic vision see 0.4 and 0.5.
Symbols for different photometric conditions:
V (λ), ; V′(λ),
sion>; V (λ), ; V (λ),
mes;m 10
CIE 10° photopic photometric observer>; V (λ),
M
the CIE 1988 modified 2° spectral luminous efficiency
function for photopic vision>.
---------------------- Page: 15 ----------------------
ISO 80000-7:2019(E)
© ISO 2019 – All rights reserved 9
Table 1 (continued)
Item No. Quantity Unit Remarks
Name Symbol Definition
7-11.1 luminous efficacy K quotient of luminous flux (item 7-13) lm/W Luminous efficacy of radiation for photopic vision is
of radiation and the corresponding radiant flux expressed by
−1 −2 3
cd sr kg m s
Φ
condition> condition
v
K=
Φ
e
where Φ is luminous flux (item 7-13) and Φ is radiant
v e
flux (item 7-4.1).
For scotopic and mesopic vision see 0.4 and 0.5.
Symbols for different photometric conditions:
K, ; K′, ;
K , ; K ,
mes;m 10
photopic photometric observer>; K ,
M
modified 2° spectral luminous efficiency function for
photopic vision>.
7-11.2 spectral luminous K(λ) product of spectral luminous efficiency lm/W Spectral luminous efficacy for photopic vision is ex-
efficacy (item 7-10.2) and maximum luminous pressed by
−1 −2 3
cd sr kg m s
K(λ) = K V(λ)
m
condition> tometric condition
where K is maximum luminous efficacy (item 7-11.3),
m
V(λ) is spectral luminous efficiency (item 7-10.2) and λ
is wavelength.
For scotopic and mesopic vision see 0.4 and 0.5.
Symbols for different photometric conditions:
K(λ), ; K′(λ),
sion>; K (λ), ; K (λ),
mes;m 10
CIE 10° photopic photometric observer>; K (λ),
M
the CIE 1988 modified 2° spectral luminous efficiency
function for photopic vision>.
---------------------- Page: 16 ----------------------
ISO 80000-7:2019(E)
10 © ISO 2019 – All rights reserved
Table 1 (continued)
Item No. Quantity Unit Remarks
Name Symbol Definition
7-11.3 maximum luminous K maximum value of spectral luminous lm/W See also 0.4 and 0.5.
m
efficacy efficacy for a specified photometric
−1 −2 3
cd sr kg m s The value of maximum luminous efficacy for photopic
vision is calculated by
condition>
683
−1
K = cdsrW
m
V λ
()
cd
−1
≈683lmW
where V(λ) is the spectral luminous efficiency for
photopic vision and λ is the wavelength in air corre-
cd
12
sponding to the frequency 540·10 Hz specified in the
definition of the SI unit candela.
Symbols for different photometric conditions:
K , ; K' , ;
m m
K , ; K ,
m,mes;m m,10
photopic photometric observer>; K ,
m,M
CIE 1988 modified 2° spectral luminous efficiency
function for photopic vision>.
7-11.4 luminous efficacy η quotient of the luminous flux emitted lm/W
v
of a source and the power consumed by the source,
−1 −2 3
(η) cd sr kg m s
expressed by
Φ
v
η =
v
P
where Φ is luminous flux (item 7-13)
v
and P is the power (ISO 80000-4) con-
sumed by the source
---------------------- Page: 17 ----------------------
ISO 80000-7:2019(E)
© ISO 2019 – All rights reserved 11
Table 1 (continued)
Item No. Quantity Unit Remarks
Name Symbol Definition
7-12 luminous en
...
NORME ISO
INTERNATIONALE 80000-7
Deuxième édition
2019-08
Grandeurs et unités —
Partie 7:
Lumière et rayonnements
Quantities and units —
Part 7: Light and radiation
Numéro de référence
ISO 80000-7:2019(F)
©
ISO 2019
---------------------- Page: 1 ----------------------
ISO 80000-7:2019(F)
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2019
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
Fax: +41 22 749 09 47
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse
ii © ISO 2019 – Tous droits réservés
---------------------- Page: 2 ----------------------
ISO 80000-7:2019(F)
Sommaire Page
Avant-propos .iv
Introduction — Remarques particulières .v
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes et définitions . 1
Bibliographie .30
Index alphabétique.31
© ISO 2019 – Tous droits réservés iii
---------------------- Page: 3 ----------------------
ISO 80000-7:2019(F)
Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes
nationaux de normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est
en général confiée aux comités techniques de l’ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l’ISO participent également aux travaux.
L’ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents
critères d’approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www
.iso .org/ directives).
L’attention est attirée sur le fait que certains des éléments du présent document peuvent faire l’objet de
droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l’élaboration du document sont indiqués dans l’Introduction et/ou dans la liste des déclarations de
brevets reçues par l’ISO (voir www .iso .org/ brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l’ISO liés à l’évaluation de la conformité, ou pour toute information au sujet de l’adhésion
de l’ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les obstacles
techniques au commerce (OTC), voir le lien suivant: www .iso .org/ iso/ fr/ avant -propos.
Le présent document a été élaboré par le comité technique ISO/TC 12, Grandeurs et unités, en
collaboration avec le comité d’études IEC/TC 25, Grandeurs et unités.
Cette deuxième édition annule et remplace la première édition (ISO 80000-7:2008), qui a fait l’objet
d’une révision technique.
Les principales modifications par rapport à l’édition précédente sont les suivantes:
— le tableau donnant les grandeurs et les unités a été simplifié;
— certaines définitions et les remarques ont été énoncées physiquement de manière plus précise.
Une liste de toutes les parties des séries ISO 80000 et IEC 80000 se trouve sur les sites de l’ISO et de l’IEC.
Il convient que l’utilisateur adresse tout retour d’information ou toute question concernant le présent
document à l’organisme national de normalisation de son pays. Une liste exhaustive desdits organismes
se trouve à l’adresse www .iso .org/ fr/ members .html.
iv © ISO 2019 – Tous droits réservés
---------------------- Page: 4 ----------------------
ISO 80000-7:2019(F)
Introduction — Remarques particulières
0.1 Grandeurs
L’ISO 80000-7 contient une sélection de grandeurs relatives à la lumière et à d’autres rayonnements
électromagnétiques. Les grandeurs radiométriques, correspondant aux rayonnements en général,
peuvent être utilisées pour toute la gamme des rayonnements électromagnétiques, alors que les
grandeurs photométriques correspondent seulement aux rayonnements visibles.
Dans plusieurs cas, le même symbole est employé pour un trio de grandeurs énergétique, lumineuse et
photonique qui se correspondent, étant entendu que les indices «e» pour énergétique, «v» pour visible
et «p» pour photonique seront ajoutés chaque fois qu’une confusion entre ces grandeurs risque de se
produire.
Néanmoins, pour les rayonnements ionisants, voir l’ISO 80000-10.
Plusieurs des grandeurs spécifiées dans l’ISO 80000-7 peuvent être définies pour un rayonnement
monochromatique, c’est-à-dire un rayonnement d’une seule fréquence v. Elles sont appelées grandeurs
spectrales et notées en indiquant leur grandeur de référence par un argument, comme q(v). Des
exemples sont la vitesse de la lumière dans un milieu c(v) ou l’indice de réfraction dans un milieu
n(v) = c /c(v). Certaines de ces grandeurs sont des dérivées
0
dqq()λ ()λλ+D − q()λ
′
q ()λ = = lim
dλ Dλ→0 Dλ
d’une grandeur, qui sont aussi souvent définies comme quotient de la fraction Δq(λ) d’une grandeur q
correspondant au rayonnement dont la longueur d’onde se trouve dans l’intervalle λλ, +Dλ , par
[]
l’étendue Δλ de cet intervalle, afin de souligner le processus de mesure physique sous-jacent. De telles
fractions doivent être additives de sorte que l’intégrale donne la grandeur globale, par exemple la
luminance énergétique (7-6.1) et la luminance énergétique spectrique (7-6.2). Ces dérivées de grandeurs
sont appelées grandeurs spectriques et notées par l’indice λ.
D’autre part, certaines grandeurs multidimensionnelles telles que l’intensité énergétique I ()ϑϕ, ,
e
l’éclairement énergétique Ex,y , la luminance énergétique Lx,,y ϑϕ, , etc. sont des grandeurs qui
() ()
e e
sont strictement définies comme des valeurs d’une dérivée en un point donné, dans une direction
donnée ou en un point et dans une direction donnés dans l’espace. Par conséquent, la définition la plus
fondamentale selon l’ISO 80000-2 serait par exemple dans le cas du terme le plus complexe «luminance
énergétique» (7-6.1):
«en un point donné xy, d’une surface réelle ou fictive, dans une direction donnée ϑϕ, ,
() ()
11 11
22
¶ ΦΦ()xy,,ϑϕ, ¶ xx=
ee 1
Lx(),,y ϑϕ, = =
e
yy=
¶¶yA⋅⋅ W ϕε¶ ⋅⋅¶¶W
Ax(),cosεϑ(),cos 1
ϑϑ=
1
ϕϕ=
1
où Φ ()xy,,ϑϕ, représente le flux énergétique transmis à travers une aire A(x, y) en un point
e
donné (x , y ) et se propageant dans une direction donnée ϑϕ, , et ε est l’angle entre la normale
()
1 1
11
Ax ,y à cette aire au point donné et dans la direction donnée ϑϕ, .»
() ()
11 11
Pour faciliter l’utilisation du tableau de l’Article 3, les définitions simplifiées (telles que 7-6.1 dans le
cas de la luminance énergétique) sont utilisées, ce qui suppose que les fractions des grandeurs sont
toujours isotropes, uniformes et continues. Dans ce cas, les définitions données sont équivalentes à
l’approche fondamentale indiquée ci-dessus.
© ISO 2019 – Tous droits réservés v
---------------------- Page: 5 ----------------------
ISO 80000-7:2019(F)
Au lieu de la fréquence v, il est possible d’utiliser d’autres grandeurs de référence relatives à la lumière:
pulsation ων= 2p , longueur d’onde dans un milieu λν=cn/( ) , longueur d’onde dans le vide λν= c / ,
0 00
nombre d’onde dans un milieu σ = 1/λ, nombre d’onde dans le vide νν==//cnσλ=1/ , etc. À titre
00
d’exemple, l’indice de réfraction peut être donné par n(λ = 555 nm) ≈ 1,333.
Les grandeurs spectriques correspondant à différentes grandeurs de référence sont reliées, par exemple
dq==qv()dv qd()ωω==qv()dv qd()λλ=qd()σσ
vvωλ σ
ainsi
qqνω=⋅2p =qcνλ //=qc⋅=nq σ ⋅nc/
() () () () ()
νω νλ 00 σ 0
Du point de vue théorique, la fréquence v est la grandeur de référence la plus fondamentale parce qu’elle
conserve sa valeur lorsqu’un faisceau lumineux traverse des milieux ayant des indices de réfraction, n,
différents. Pour des raisons historiques, la longueur d’onde, λ, est encore dans la plupart des cas utilisée
comme grandeur de référence parce qu’elle était autrefois la grandeur mesurée avec la plus grande
exactitude. À cet égard, les grandeurs spectriques, telles que la luminance énergétique spectrique (7-
6.2), L λ , ont la signification de «densités» spectrales correspondant aux grandeurs intégrées
()
e,λ
respectives – c’est-à-dire dans le cas de la luminance énergétique, L λ (7-6.1),
()
e
¶L
e
L =
e,λ
¶λ
0.2 Unités
En photométrie et en radiométrie, il est commode d’utiliser l’unité stéradian.
0.3 Grandeurs photopiques
Dans la plupart des cas, on a affaire à la vision photopique (assurée par les cônes dans le système
visuel humain et utilisée pour la vision de jour). Les valeurs normales de l’efficacité lumineuse relative
spectrale V(λ) en vision photopique ont été adoptées initialement par la Commission internationale
de l’éclairage (CIE) en 1924. Elles ont été adoptées plus tard par le Comité International des Poids et
Mesures (CIPM) (voir la monographie du BIPM dans la Référence [11]).
0.4 Grandeurs scotopiques
En vision scotopique (assurée par les bâtonnets et utilisée pour la vision de nuit), des grandeurs
correspondantes sont définies de la même manière que les grandeurs photopiques (7-10 à 7-18), avec
les symboles primes.
Pour le terme «efficacité lumineuse relative spectrale» (7-10.2), la remarque deviendrait:
«Les valeurs normales de l’efficacité lumineuse relative spectrale V ' λ en vision scotopique ont
()
[11]
été adoptées initialement par la CIE en 1951. Elles ont été adoptées plus tard par le CIPM .»
Pour le terme «efficacité lumineuse maximale» (7-11.3), la définition deviendrait:
« valeur maximale de l’efficacité lumineuse spectrale en vision scotopique».
vi © ISO 2019 – Tous droits réservés
---------------------- Page: 6 ----------------------
ISO 80000-7:2019(F)
La Remarque deviendrait:
«La valeur est calculée par:
−1
683lmW
' −1
K = ≈1700lmW
m
V' λ
()
cd
où V '()λ est l’efficacité lumineuse relative spectrale en longueur d’onde λ en vision scotopique et
12
λ est la longueur d’onde dans l’air correspondant à la fréquence 540·10 Hz donnée dans la défi-
cd
nition de l’unité SI de la candela.»
0.5 Grandeurs mésopiques
En vision mésopique (assurée par les bâtonnets et les cônes et utilisée pour la vision intermédiaire
entre la vision photopique et scotopique), des grandeurs correspondantes sont définies de la même
manière que les grandeurs photopiques (7-10 à 7-18), en utilisant les symboles avec l’indice «mes».
Pour le terme «efficacité lumineuse relative spectrale» (7-10.2), la remarque deviendrait:
«Les valeurs normales de l’efficacité lumineuse relative spectrale V ()λ en vision mésopique
mes
dépendent du niveau d’adaptation utilisé m et ont été initialement recommandées par la CIE en
[12] [11]
2010. Elles sont adoptées par le CIPM .»
Pour le terme «efficacité lumineuse maximale» (7-11.3), la définition deviendrait:
« valeur maximale de l’efficacité lumineuse spectrale dépendant du niveau
d’adaptation m en vision mésopique»
La Remarque deviendrait:
«La valeur est calculée par
−1
683lmW
K =
mm,;esm
V λ
()
mesc;m d
où V λ est l’efficacité lumineuse relative spectrale en vision mésopique à un niveau
()
mes;m
12
d’adaptation m et λ est la longueur d’onde dans l’air correspondant à la fréquence 540·10 Hz
cd
donnée dans la définition de l’unité SI de la candela.»
© ISO 2019 – Tous droits réservés vii
---------------------- Page: 7 ----------------------
NORME INTERNATIONALE ISO 80000-7:2019(F)
Grandeurs et unités —
Partie 7:
Lumière et rayonnements
1 Domaine d’application
Le présent document donne les noms, les symboles, les définitions et les unités des grandeurs utilisées
pour la lumière et les autres rayonnements optiques dans le domaine de longueurs d’onde de 1 nm à
1 mm environ. Des facteurs de conversion sont également indiqués, s’il y a lieu.
2 Références normatives
Le présent document ne contient aucune référence normative.
3 Termes et définitions
Les noms, les symboles, les définitions et les unités des grandeurs utilisées pour la lumière et les autres
rayonnements optiques dans le domaine de longueurs d’onde de 1 nm à 1 mm environ sont indiqués
dans le Tableau 1.
L’ISO et l’IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en
normalisation, consultables aux adresses suivantes:
— ISO Online browsing platform: disponible à l’adresse https:// www .iso .org/ obp;
— IEC Electropedia: disponible à l’adresse http:// www .electropedia .org/ .
Dans le domaine de la lumière, la CIE tient à jour le vocabulaire international de l’éclairage au format
électronique, disponible à l’adresse http:// eilv .cie .co .at/ .
© ISO 2019 – Tous droits réservés 1
---------------------- Page: 8 ----------------------
ISO 80000-7:2019(F)
2 © ISO 2019 – Tous droits réservés
Tableau 1 — Grandeurs et unités de lumière et autres rayonnements optiques dans le domaine de longueurs d’onde de 1 nm à 1 mm
environ
N° Grandeur Unité Remarques
Nom Symbole Définition
−1
7-1.1 vitesse de la lumière c vitesse de phase d’une onde électro- m s Voir également l’ISO 80000-3.
dans un milieu, f magnétique en un point donné dans un
La valeur de la vitesse de la lumière dans un milieu
milieu
peut dépendre de la fréquence, de la polarisation et de
la direction.
Pour la définition de la vitesse des ondes électroma-
gnétiques dans le vide, c , voir l’ISO 80000-1.
0
7-1.2 indice de réfraction, m n quotient de la vitesse de la lumière dans 1 La valeur de l’indice de réfraction peut dépendre de la
le vide (ISO 80000-1) par la vitesse de la fréquence, de la polarisation et de la direction.
lumière dans un milieu (7-1.1)
L’indice de réfraction est exprimé par n = c /c, où c est
0 0
la vitesse de la lumière dans le vide et c est la vitesse de
la lumière dans le milieu.
Pour un milieu avec absorption, l’indice de réfraction
complexe n est défini par
n = n + ik
où k est l’indice d’absorption spectral (IEC 60050-845)
et i est l’unité imaginaire.
La réfractivité est exprimée par n −1, où n est l’indice
de réfraction.
7-2.1 énergie rayonnante, f Q , W, U énergie (ISO 80000-5) émise, transpor- J L’énergie rayonnante peut être exprimée par l’intégrale
e
<électromagnétisme> tée ou reçue sous forme d’ondes électro- par rapport au temps du flux énergétique (7-4.1), Φ ,
2 -2 e
(Q) kg m s
magnétiques pendant une durée (ISO 80000-3) donnée, Δt
Qt= Φ d
ee
∫
Dt
L’énergie rayonnante est exprimée en fonction de la
longueur d’onde (ISO 80000-3), λ, en fonction de la
fréquence (ISO 80000-3), v, ou en fonction du nombre
d’onde, σ. (Voir également 0.1.)
La grandeur photométrique correspondante est la
«quantité de lumière» (7-12). La grandeur photonique
correspondante est l’«énergie photonique» (7-19.2).
---------------------- Page: 9 ----------------------
ISO 80000-7:2019(F)
© ISO 2019 – Tous droits réservés 3
Tableau 1 (suite)
N° Grandeur Unité Remarques
Nom Symbole Définition
7-2.2 énergie rayonnante Q , W , U densité spectrale de l’énergie rayon- J/nm L’intégrale de l’énergie rayonnante (totale) est déter-
e,λ λ λ
spectrique, f nante, exprimée par minée par l’intervalle de longueurs d’onde (λ , λ )
−2 1 2
(Q ) kg m s
λ
considéré:
dQ
e
Q =
λ
e,λ
2
dλ
QQ= dλ
où Q est l’énergie rayonnante (7-2.1)
ee∫ ,λ
e
en fonction de la longueur d’onde λ
λ
1
(ISO 80000-3)
3
7-3.1 énergie rayonnante w densité volumique de l’énergie rayon- J/m L’énergie rayonnante volumique d’un radiateur de
volumique, f nante, exprimée par Planck est donnée par
−1 −2
(ρ ) kg m s
e
dQ 4σ
e
4
w= T
w=
c
dV
0
où Q est l’énergie rayonnante (7-2.1)
où σ est la constante de Stefan-Boltzmann (ISO 80000-
e
dans un domaine tridimensionnel élé-
1), c est la vitesse de la lumière dans le vide
0
mentaire et V est le volume (ISO 80000-
(ISO 80000-1) et T est la température thermodyna-
3) de ce domaine.
mique (ISO 80000-5).
3
7-3.2 énergie rayonnante w variation de l’énergie rayonnante volu- J/(m nm) L’énergie rayonnante spectrique volumique d’un
λ
spectrique volumique mique en fonction de la longueur d’onde, radiateur de Planck est donnée par w = 8πhc · f(λ, T),
-2 −2 λ 0
kg m s
en longueur d’onde, f exprimée par où h est la constante de Planck (ISO 80000-1), c est la
0
vitesse de la lumière dans le vide (ISO 80000-1), T est
dw
la température thermodynamique (ISO 80000-5) et
w =
λ
dλ
−5
λ
où w est l’énergie rayonnante volumique
fT()λ, =
−−11
(7-3.1) en fonction de la longueur d’onde
exp cTλ −1
()
2
λ (ISO 80000-3)
Pour la constante de rayonnement c dans f(λ, T), voir
2
l’ISO 80000-1.
2
7-3.3 énergie rayonnante w ,ρ variation de l’énergie rayonnante volu- J/m
ν ν
spectrique volumique mique en fonction du nombre d’onde,
−2
kg s
en nombre d’onde, f exprimée par
dw
w =
ν
dν
où w est l’énergie rayonnante volumique
(7-3.1) en fonction du nombre d’onde ν
(ISO 80000-3)
---------------------- Page: 10 ----------------------
ISO 80000-7:2019(F)
4 © ISO 2019 – Tous droits réservés
Tableau 1 (suite)
N° Grandeur Unité Remarques
Nom Symbole Définition
7-4.1 flux énergétique, m Φ , P variation de l’énergie rayonnante dans W La grandeur photométrique correspondante est le
e e
le temps, exprimée par «flux lumineux» (7-13). La grandeur photonique cor-
2 −3
puissance rayon- (Φ, P) kg m s
respondante est le «flux photonique» (7-20).
nante, f dQ
e
Φ =
e
dt
où Q est l’énergie rayonnante (7-2.1)
e
émise, transportée ou reçue et t est le
temps (ISO 80000-3)
7-4.2 flux énergétique spec- Φ , P densité spectrale du flux énergétique, W/nm L’intégrale du flux énergétique (total) est déterminée
e,λ e,λ
trique, m exprimée par par l’intervalle de longueurs d’onde (λ , λ ) considéré:
−3 1 2
(Φ , P ) kg m s
λ λ
λ
puissance rayonnante dΦ
2
e
Φ =
spectrique, f e,λ
ΦΦ= dλ
dλ
ee,λ
∫
où Φ est le flux énergétique (7-4.1)
λ
e
1
en fonction de la longueur d’onde λ
(ISO 80000-3)
7-5.1 intensité énergétique, f I dérivée du flux énergétique par rapport W/sr La définition ne s’applique strictement que pour une
e
à l’angle solide dans une direction spéci- source ponctuelle.
2 −3 −1
(I) kg m s sr
fiée, exprimée par
La répartition des intensités énergétiques en fonction
dΦ de la direction d’émission, par exemple donnée par les
e
I =
e coordonnées angulaires ()ϑϕ, , est utilisée pour
dW
déterminer le flux énergétique (7-4.1) à l’intérieur d’un
où Φ est le flux énergétique (7-4.1)
e
angle solide (ISO 80000-3) donné, Ω, d’une source:
émis dans une direction spécifiée, et Ω
est l’angle solide (ISO 80000-3) conte-
Φ = I ϑϕ,sinϑϕddϑ
()
ee
∫∫
nant cette direction
W
La grandeur photométrique correspondante est
l’«intensité lumineuse» (7-14). La grandeur photonique
correspondante est l’«intensité photonique» (7-21).
7-5.2 intensité énergétique I , densité spectrale de l’intensité énergé- W/(sr nm) L’intégrale de l’intensité énergétique (totale) est
eλ
spectrique, f tique, exprimée par déterminée par l’intervalle de longueurs d’onde (λ , λ )
−3 −1 1 2
(I ) kg m s sr
λ
considéré:
dI
e
I =
λ
e,λ
2
dλ
II= dλ
où I est l’intensité énergétique (7-5.1)
ee,λ
e ∫
en fonction de la longueur d’onde λ
λ
1
(ISO 80000-3)
---------------------- Page: 11 ----------------------
ISO 80000-7:2019(F)
© ISO 2019 – Tous droits réservés 5
Tableau 1 (suite)
N° Grandeur Unité Remarques
Nom Symbole Définition
2
7-6.1 luminance énergé- L quotient de l’intensité énergétique reçue W/(sr m ) Voir également 0.1.
e
tique, f par un élément d’une surface réelle ou
−3 −1
(L) kg s sr Pour un rayonnement de Planck,
radiance, f fictive contenant un point spécifié par
l’aire de la projection de cet élément dans
σ
4
LT=
une direction spécifiée, exprimée par e
π
où T est la température thermodynamique (ISO 80000-
dI
1
e
L =
5) et σ est la constante de Stefan-Boltzmann
e
dA cosα
(ISO 80000-1).
où I est l’intensité énergétique (7-5.1),
e
La grandeur photométrique correspondante est la
A est l’aire (ISO 80000-3) et α est l’angle
«luminance» (7-15). La grandeur photonique corres-
entre la normale à la surface au point
pondante est la «luminance photonique» (7-22).
spécifié et la direction spécifiée
2
7-6.2 luminance énergétique L , dérivée de la luminance énergétique W/(sr m nm) Pour un rayonnement de Planck,
eλ
spectrique, f par rapport à la longueur d’onde,
−1 −3 −1
(L ) kg m s sr
c()λ
λ
radiance spectrique, f exprimée par 2
L ()λ = ωλ()=⋅hc fT()λ,
e,λλ
0
4π
dL
e
où c(λ) est la vitesse de phase (ISO 80000-3) du
L =
e,λ
dλ rayonnement électromagnétique de longueur d’onde
où L est la luminance énergétique (ISO 80000-3) λ dans un milieu donné, ω (λ) est l’énergie
e λ
(7-6.1) en fonction de la longueur d’onde rayonnante spectrique volumique en longueur d’onde, c
0
λ (ISO 80000-3) est la vitesse de la lumière dans le vide (ISO 80000-1), h
est la constante de Planck (ISO 80000-1) et
−5
λ
fTλ, =
()
−−11
exp cTλ −1
()
2
où la constante de rayonnement c = hc/k.
2
L’intégrale de la luminance énergétique (totale) est
déterminée par l’intervalle de longueurs d’onde (λ , λ )
1 2
considéré:
λ
2
LL= dλ
ee,λ
∫
λ
1
---------------------- Page: 12 ----------------------
ISO 80000-7:2019(F)
6 © ISO 2019 – Tous droits réservés
Tableau 1 (suite)
N° Grandeur Unité Remarques
Nom Symbole Définition
2
7-7.1 éclairement énergé- E dérivée du flux énergétique incident par W/m La grandeur photométrique correspondante est
e
tique, m rapport à l’aire, en un point d’une sur- l’«éclairement lumineux» (7-16). La grandeur photo-
−3
(E) kg s
face réelle ou fictive, exprimée par nique correspondante est l’«éclairement photonique»
(7-23).
dΦ
e
E =
La grandeur «éclairement sphérique énergétique» est
e
dA
définie par la valeur moyenne de l’éclairement énergé-
où Φ est le flux énergétique (7-4.1) et A
e
tique sur la surface extérieure courbe d’une très petite
est l’aire (ISO 80000-3) de la surface qui
sphère (réelle ou fictive) en un point de l’espace.
reçoit le flux énergétique
Elle peut être exprimée par:
EL= dW
ee,0
∫
4p
où Ω est l’angle solide (ISO 80000-3) et L est la lumi-
e
nance énergétique (7-6.1).
(Voir CIE DIS 017/E:2016, terme 17-21–054.)
Elle peut être exprimée par le quotient du flux éner-
gétique (7-4.1) de tous les rayonnements incidents sur
la surface extérieure d’une sphère infiniment petite
centrée sur le point spécifié par l’aire (ISO 80000-3) de
la section diamétrale de cette sphère.
L’éclairement sphérique énergétique est également
appelé «débit de fluence» ou «débit de fluence éner-
gétique».
La grandeur photométrique correspondant à l’éclaire-
ment sphérique énergétique est appelée «éclairement
sphérique lumineux».
2
7-7.2 éclairement énergé- E , dérivée de l’éclairement énergétique W/(m nm) L’intégrale de l’éclairement énergétique (total) est
eλ
tique spectrique, m par rapport à la longueur d’onde, déterminée par l’intervalle de longueurs d’onde (λ , λ )
−1 −3 1 2
(E ) kg m s
λ
exprimée par considéré:
λ
dE
2
e
E =
e,λ
EE= dλ
dλ
ee,λ
∫
où E est l’éclairement énergétique
λ
e
1
(7-7.1) en fonction de la longueur d’onde
λ (ISO 80000-3)
---------------------- Page: 13 ----------------------
ISO 80000-7:2019(F)
© ISO 2019 – Tous droits réservés 7
Tableau 1 (suite)
N° Grandeur Unité Remarques
Nom Symbole Définition
2 4
7-8.1 exitance énergétique, f M dérivée du flux énergétique sortant par W/m Pour un rayonnement de Planck, M = σT où T est la
e e
rapport à l’aire, en un point d’une sur- température thermodynamique (ISO 80000-5) et σ est
−3
DÉCONSEILLÉ: émit- (M) kg s
face réelle ou fictive, exprimée par la constante de Stefan-Boltzmann (ISO 80000-1).
tance énergétique
dΦ La grandeur photométrique correspondante est
e
M =
l’«exitance lumineuse» (7-17). La grandeur photonique
e
dA
correspondante est l’«exitance photonique» (7-24).
où Φ est le flux énergétique (7-4.1) et
e
A est l’aire (ISO 80000-3) de la surface
quittée par le flux énergétique
2
7-8.2 exitance énergétique M , dérivée de l’exitance énergétique par W/(m nm) L’intégrale de l’exitance énergétique (totale) est
eλ
spectrique, f rapport à la longueur d’onde, exprimée déterminée par l’intervalle de longueurs d’onde (λ , λ )
−1 −3 1 2
(M ) kg m s
λ
par considéré:
λ
dM
2
e
M =
e,λ
MM= dλ
dλ
ee,λ
∫
où M est l’exitance énergétique (7-8.1)
λ
e
1
en fonction de la longueur d’onde λ
(ISO 80000-3)
2
7-9.1 exposition énergé- H dérivée de l’énergie rayonnante incidente J/m La grandeur photométrique correspondante est
e
tique, f par rapport à l’aire, en un point d’une l’«exposition lumineuse» (7-18). La grandeur photonique
−2
(H) kg s
surface réelle ou fictive, exprimée par correspondante est l’«exposition photonique» (7-25).
dQ
e
H =
e
dA
où Q est l’énergie rayonnante (7-2.1) et
e
A est l’aire (ISO 80000-3) de la surface
qui reçoit l’énergie rayonnante
2
7-9.2 exposition énergétique H , dérivée de l’exposition énergétique J/(m nm) L’intégrale de l’exposition énergétique (totale) est
eλ
spectrique, f par rapport à la longueur d’onde, déterminée par l’intervalle de longueurs d’onde (λ , λ )
−1 −2 1 2
(H ) kg m s
λ
exprimée par considéré:
dH λ
2
e
H =
e,λ
HH= dλ
dλ
ee,λ
∫
où H est l’exposition énergétique (7-9.1)
λ
e
1
en fonction de la longueur d’onde λ
(ISO 80000-3)
---------------------- Page: 14 ----------------------
ISO 80000-7:2019(F)
8 © ISO 2019 – Tous droits réservés
Tableau 1 (suite)
N° Grandeur Unité Remarques
Nom Symbole Définition
7-10.1 efficacité lumineuse V quotient du flux énergétique (7-4.1) 1 L’efficacité lumineuse relative en vision photopique est
relative, f
photométrique spéci- relative spectrale (7-10.2) par le flux
∞
fiée> énergétique correspondant pour une
Φ λλV dλ
() ()
e,λ
∫
K
0
condition photométrique spécifiée
V = =
∞
K
m
Φ ()λλd
e,λ
∫
0
où Φ est le flux énergétique spectrique (7-4.2), V(λ)
e,λ
est l’efficacité lumineuse relative spectrale, λ est la lon-
gueur d’onde, K est l’efficacité lumineuse du rayonne-
ment (7-11.1) et K est l’efficacité lumineuse maximale
m
(7-11.3).
En vision scotopique et mésopique, voir 0.4 et 0.5.
Symboles pour différentes conditions photométriques:
V, ; V′, ;
V , ; V ,
mes;m 10
teur photométrique CIE 10° en vision photopique>; V ,
M
teur CIE 1988 2° modifié en vision photopique>.
7-10.2 efficacité lumineuse V(λ) quotient du flux énergétique (7-4.1) à la 1 L’efficacité lumineuse relative spectrale de l’œil
relative spectrale, f longueur d’onde λ par le flux énergé- humain dépend de nombreux paramètres, en particu-
m
trique spécifiée> rayonnements produisant des sensa- position de la source dans le champ visuel. Il convient
tions lumineuses également intenses de spécifier la condition photométrique (par exemple
dans une condition photométrique photopique, scotopique, mésopique). Si elle n’est pas
spécifiée et λ étant choisi de façon que spécifiée, la vision photopique est supposée et le sym-
m
la valeur maximale de ce quotient soit bole V(λ) est utilisé.
égale à 1
En vision scotopique et mésopique, voir 0.4 et 0.5.
Symboles pour différentes conditions photométriques:
V (λ), ; V′(λ),
topique>; V (λ), ; V (λ),
mes;m 10
photopique>; V (λ),
M
spectrale pour l’observat
...
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.Grandeurs et unités - Partie 7: Lumière et rayonnementsQuantities and units - Part 7: Light and radiation01.060Quantities and unitsICS:Ta slovenski standard je istoveten z:ISO/FDIS 80000-7kSIST ISO/FDIS 80000-7:2019en01-april-2019kSIST ISO/FDIS 80000-7:2019SLOVENSKI
STANDARD
kSIST ISO/FDIS 80000-7:2019
© ISO 2019Quantities and units —Part 7: Light and radiationGrandeurs et unités —Partie 7: Lumière et rayonnementsReference numberISO/FDIS 80000-7:2019(E)INTERNATIONAL STANDARDISO/FDIS80000-7FINALDRAFTRECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPOR TING DOCUMENTATION.IN ADDITION TO THEIR EVALUATION AS
BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-LOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STAN-DARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.ISO/TC 12Secretariat: SISVoting begins on: 2019-02-07Voting terminates on: 2019-04-04This draft is submitted to a parallel vote in ISO and in IEC.kSIST ISO/FDIS 80000-7:2019
ISO/FDIS 80000-7:2019(E) ii © ISO 2019 – All rights reservedCOPYRIGHT PROTECTED DOCUMENT©
ISO 2019All rights reservedä Unless otherwise speci Ðiedá or required in the context of its implementationá no part of this publication may be reproduced or utilized otherwise in any form or by any meansá electronic or mechanicalá including photocopyingá or posting on the internet or an intranetá without prior written permissionä Permission can be requested from either ISO at the address below or ISOïs member body in the country of the requesteräISO copyright of ÐiceCP 401 • Ch. de Blandonnet 8CH-1214 Vernier, GenevaPhone: +41 22 749 01 11Faxã
ª v s
t t
y v {
r {
v yEmailã copyright 7isoäorgWebsite: www.iso.orgPublished in SwitzerlandkSIST ISO/FDIS 80000-7:2019
ISO/FDIS 80000-7:2019(E)
iiiFContents
Page Foreword . iv Introduction — Special remarks . v 1 Scope . 1 2 Normative references . 1 3 Terms and definitions . 1 Bibliography . 32 Alphabetical index . 33
kSIST ISO/FDIS 80000-7:2019
ISO/FDIS 80000-7:2019(E) ivFForeword orldwideFfederationFofFnationalFernationalFStandardsFisFnormallyFcarriedFoutFthroughFISOFtechnicalFcommitteesäFEachFmemberFbodyFinterestedFinFaFsubjectFforFwhichFaFtechnicalFcommitteeFhasFbeenFestablishedFhasFtheFrightFtoFbeFrepresentedFonFthatFcommitteeäFInternationalForganizationsáFgovernmentalFandFnonægovernmentaláFinFliaisonFwithFISOáFalsoFtakeFpartFinFtheFworkäFISOFcollaboratesFcloselymattersFofFelectrotechnicalFstandardizationäFTheFproceduresFusedFtoFdevelopFthisFdocumentFandFthoseFintendedFforFitsFfurtherFmaintenanceFareFFdifferentFapprovalFcriteriaFneededFforFtheFdifferentFtypesFofFISOFdocumentsFshouldFbeFnotedäFThisFdocumentFwasFdraftedFinFaccordanceFwithFtheFAttentionFisFdrawnFtoFtheFpossibilityFthatFsomeFofFtheFelementsFofFthisFdocumentFmayFbeFtheFsubjectFofFpatentFrightsäFISOFshallFnotFbeFheldFresponsibleFforFidentifyingFanyForFallFsuchFpatentFrightsäFDetailsFofFanyFpatentFrightsFidentifiedFduringFtheFdevelopmentFofFtheFdocuFAnyFtradeFnameFusedFinFthisFdocumentFisFinformationFgivenFforFtheFconvenienceFofFusersFandFdoesFnotFconstituteFanFendorsementäFForFanFexplanationFofFtheFvoluntaryFnatureFofFstandardsáFtheFmeaningFofFISOFspecificFtermsFandFexpressionsFrelatedFtoFconformityFassessmentáFasFwellFasFinformationFaboutFISOF5sFadherenceFtoFtheFseeFäFQuantities and unitsäFtechnicallyFrevisedäFTheFmainFchangesFcomparedFtoFtheFpreviousFeditionFareFasFfollowsãFsFandFunitsFhasFbeenFsimplifiedâFmoreFpreciselyäFAFlistFofFallFpartsFinFtheFISOFFzFrFrFrFrFandFIECFFzFrFrFrFrFseriesFcanFbeFfoundFonFtheFISOFandFIECFwebsitesäFAnyFfeedbackForFquestionsFonFthisFdocumentFshouldFbeFdirectedFtoFtheFuserïsFnationalFstandardsFbodyäFAFcompleteFlistingFofFtheseFbodiesFcanFbeFfoundFatFäFkSIST ISO/FDIS 80000-7:2019
ISO/FDIS 80000-7:2019(E)
vIntroduction — Special remarks 0.1 QuantitiesFISOFFzFrFrFrFræFyFcontainsFaFselectionFofFquantitiesFpertainingFtoFlightFandFotherFelectromagneticFradiationäFRadiometricFquantitiesFrelatingFtoFradiationFinFgeneralFmayFbeFusefulFforFtheFwholeFrangeFofFelectromagneticFradiationsáFwhereasFphotometricFquantitiesFpertainFonlyFtoFvisibleFradiationäFInFseveralFcasesáFtheFsameFsymbolFisFusedFforFaFtrioFofFcorrespondingFradiantáFluminousFandFphotonFquantitiesFwithFtheFunderstandingFthatFsubscriptsFòeóFforFenergeticsáFòvóFforFvisibleFandFòpóFforFphotonFwillFbeFaddedFwheneverFconfusionFbetweenFtheseFquantitiesFmightFotherwiseFoccuräFForFionizingFradiationáFhoweveráFseeFISOFFzFrFrFrFræFsFräFSeveralFofFtheFquantitiesFinFISOFFzFrFrFrFræFyFcanFbeFdefinedFforFmonochromaticFradiationáFiäeäFradiationFofFaFsingleFfrequencyFvFonlyäFTheyFareFdenotedFbyFtheirFreferenceFquantityFasFanFargumentFlikeFqvexampleFisFspeedFofFlightFinFaFmediumFcvnvcFrcvthoseFquantitiesFareFderivativesFFrdlimdqqqqDDDofFaFquantityFwhichFareFalsoFfrequentlyFdescribedFasFfractionsFqqFcorrespondingFtoFtheFradiationFwithFwavelengthFinFtheFintervalFáDFofFthatFintervalFtoFpointFtotheFphysicalFmeasurementFprocessFbehindäFSuchFfractionsFmustFbeFadditiveFsoFthatFtheFintegralFyieldsFtheFoverallFquantityáFeägäFradiaquantitiesFareFcalledFspectralFquantitiesFandFareFdenotedFbyFsubscript äFOnFtheFotherFhandáFsomeFmultidimensionalFquantitiesFlikeFradiantFintensityFeáIáFirradianceFeáExyáFradianceFeáááLxyáFetcäáFareFquantitiesFthatFareFstrictlyFdefinedFasFvaluesFofFaFderivativeFatFaFcertainFpointáFaFcertainFdirectionForFatFaFcertainFpointFandFdirectionFinFspaceäFHenceáFtheFmostFfundamentalFdefinitionFaccordingFtoFISOFFzFrFrFrFræFtFwouldFbeFeägäFinFcaseFofFtheFmostFcomplexFtermFòatFaFgivenFpointFFsFsáxyFofFaFrealForFimaginaryFsurfaceáFinFaFgivenFdirectionFFsFsááFFsFsFsFsFtFteeeááááááácosácosxxyyxyLxyAxyA¶¶¶¶¶¶FFWWwhereFeáááxyFrepresentsFtheFradiantFfluxFtransmittedFthroughFanFareaFAxáFyxFsáFyFsFsFsááFandFFisFtheFangleFbetweenFtheFnormalFFsFsáAxyFtoFthatFareaFatFtheFgivenFpointFandFtheFgivenFdirectionFFsFsáóäToFeaseFtheFuseFofFtheFtableFinFClauseFFuáFtheFsimplifiedFdefiniusedFwhichFassumeFthatFfractionsFofFquantitiesFareFalwaysFisotropicFandFuniformFandFcontinuousäFInFthisFcaseáFtheFgivenFdefinitionsFareFequivalentFtoFtheFfundamentalFapproachFgivenFaboveäFInsteadFofFfrequencyFváFotherFreferenceFquantitiesFofFlightFmayFbeFusedãFangularFfrequencyFFtpáFwavelengthFinFaFmediumFFrcnáFwavelengthFinFvacuumFFrFrcáFwavenumberFinFmediumFáFwavenumberFinFvacuumFFrFrcnáFetcäFAsFanFexampleáFtheFrefractiveFindexFmayFbegivenFasFnkSIST ISO/FDIS 80000-7:2019
ISO/FDIS 80000-7:2019(E) viFSpectralFquantitiesFcorrespondingFtoFdifferentFreferenceFquantitiesFareFrelatedáFeägäFvvdqqvdvqdqvdvqdqdFthusFFrFrFrqqqcqcnqncpFFromFtheFtheoreticalFpointFofFviewáFtheFfrequencyFvFisFtheFmoreFfundamentalFreferenceFquantityáFkeepingFitsFvalueFwhenFaFlightFbeamFpassesFthroughFmediaFwithFdifferentFrefractiveFindexáFnäFForFhistoricalFreasonsáFtheFwavelengtháFáFisFstillFmostlyFusedFasFaFreferenceFquantityFbeingFtheFmostFaccuratelyFmeasuredFquantityFinFtheFpastäFInFthisFrespectáFspectralFquantieáLáFhaveFtheFmeaningFofFspectralFòdensitiesóFcorrespondingFtoFtheFrespectiveFintegratedFquantitiesFeLeeáLL¶¶0.2 UnitsFInFphotometryFandFradiometryáFtheFunitFsteradianFisFretainedFforFconvenienceäF0.3 Photopic quantitiesFFofFtheFspectralFluminousFefficiencyFfunctionFVFväFTheseFvaluesFwereFadoptedFbyFtheFInternationalFCommitteeFforFWeightsFandFMeasures0.4 Scotopic quantitiesFòStandardFvaluesFofFluminousFefficiencyFfunctionFF5VFforFscotopicFvisionFwereForiginallyFadoptedFbyFCIEFinFFsF{FwFsäFTheyFwereFlaterFadoptedFbyFtheFCIPMäóFnitionFwouldFreadãFFFòF´forFscotopicFvisionFµFmaximumFvalueFofFtheFspectralFluminousFefficacyFforFscotopicFvisionóFInFtheFRemarkFitFwouldFreadãFòTheFvalueFisFcalculatedFbyFFsF5FsmcdFxFzFulmWFsFyFrFrlmWF5KVwhereFF5VFisFtheFspectralFluminousFefficiencyFinFtermsFofFwavelengthFFforFscotopicFvisionFandF…†kSIST ISO/FDIS 80000-7:2019
ISO/FDIS 80000-7:2019(E)
vii0.5 Mesopic quantities FvisionFintermediateFbetweenFphotopicFheFsameFmannerFasFtheFphotopicFonesFòStandardFvaluesFofFspectralFluminousFefficiencyFfunctionsF‡•VFforFmesopicFvisionFdependFonFtheFFusedFadaptationFlevelFmFandFwereForiginallyFrecommendedFbyFCIEFinFFtFrFsFräFTheyFareFadoptedFbyFtheFFsnitionFwouldFreadãFòF´forFmesopicFvisionFµFadaptationFlevelFmFdependentFmaximumFvalueFofFtheFspectralFluminousFefficacyFforFmesopicFvisionóFInFtheFRemarkFitFwouldFreadãFòTheFvalueFisFcalculatedFbyFFsmámesâmesâcdFxFzFulmWmmKVwhereFmesâmVFisFtheFspectralFluminousFefficiencyFforFmesopicFvisionFatFanFadaptationFlevelFmandF…†kSIST ISO/FDIS 80000-7:2019
kSIST ISO/FDIS 80000-7:2019
FINAL DRAFT INTERNATIONAL STANDARD ISO/FDIS 80000-7:2019(E) 1Quantities and units — Part 7: Light and radiation 1 Scope ThisFdocumentFgivesFnamesáFsymbolsáFdefinitionsFandFunitsFforFquantitiesFusedFforFlightFandFopticalFradiationFinFtheFwavelengthFrangeFofFapproximatelyFFsFnmFtoFFsFmmäFWhereFappropriateáFconversionFfactorsFareFalsoFgivenäF2 Normative references ThereFareFnoFnormativeFreferencesFinFthisFdocumentäF3 Terms and definitions NamesáFsymbolsáFdefinitionsFandFunitsFforFquantitiesFusedFinFlightFandFopticalFradiationFinFtheFwavelengthFrangeFofFapproximatelyFFsFnmFtoFFsFmmFareFgivenFinFTableFFsäFISOFandFIECFmaintainFterminologicalFdatabasesFforFuseFinFstandardizationFatFtheFfollowingFaddressesãFatformãFavailableFatFFInFtheFfieldFofFlightáFtheFCIEFmaintainsFtheFElectronicFinternationalFlightingFvocabularyáFavailableFatFFkSIST ISO/FDIS 80000-7:2019
Table 1 — Quantities and units used in light and optical radiation in the wavelength range of approximately 1 nm to 1 mm Item No. Quantity Unit Remarks NameSymbolDefinitionFyæFsäFsFspeedFofFlightFinFaFmediumFc phaseFspeedFofFanFelectromagneticFwaveFatFaFgivenFpointFinFaFmediumFmFsF«FsFSeeFalsoFISOFFzFrFrFrFræFuäFTheFvalueFofFtheFspeedFofFlightFinFaFmediumFcanFdependFonFtheFfrequencyáFpolarizationáFandFdirectionäFForFtheFdefinitionFofFtheFspeedFofFelectromagneticFwavesFinFvacuumáFcFráFseeFISOFFzFrFrFrFræFsäFFyæFsäFtFrefractiveFindexFn quotientFofFspeedFofFlightFinFvacuumFandFspeedFofFlightFinFaFmFsFTheFvalueFofFtheFrefractiveFindexFcanFdependFonFtheFfrequencyáFpolarizationáFandFdirectionäFTheFrefractiveFindexFisFexpressedFbyFnFF±FcFrcáFwhereFcFrFisFtheFspeedFofFlightFinFvacuumFandFcFisFtheFspeedFofFlightFinFtheFmediumäFForFaFmediumFwithFabsorptionáFtheFcomplexFrefractiveFindexFnFisFdefinedFbyFnFF±FnFFªFikFwhereFkFisFspectralFabsorptionFindexFandFiFisFimaginaryFunitäFTheFrefractivityFisFexpressedFbyFnFF«FsáFwhereFnFisFrefractiveFindexäFISO/FDIS 80000-7:2019(E) 2 kSIST ISO/FDIS 80000-7:2019
Item No. Quantity Unit Remarks NameSymbolDefinitionFyæFtäFsFradiantFenergyFF´electromagnetismFµFQeáFWáFUFQreceivedFinFformFofFelectromagneticFwavesFJFkgFmFtFsF«FtFRadiantFenergyFcanFbeFexpressedFbyFtheFtimeFintegralFofFeáFoverFaFgivenFdurationFtFeedtQtDFRadiantFenergyFisFexpressedFeitherFasFaFfunctionFofFáFasFaFfunctionFofFfrequencyFváForFasFaFfunctionFofFwavenumberáFTheFcorrespondingFphotometricFquantityFisFòluminousFondingFquantityFforFphotonsFFyæFtäFtFspectralFradiantFenergyFQeááFWáFUFQspectralFdensityFofFradiantFenergyáFexpressedFbyFeeáddQQwhereFQetermsFofFwavelengthF kgFmFsF«FtFFsáFFtFtFseeádQQFFyæFuäFsFradiantFenergyFdensityFw evolumetricFdensityFofFradiantFenergyáFexpressedFbyFeddQwVwhereFQeelementaryFthreeædimensionalFdomainFandFVFFuFkgFmF«FsFsF«FtFRadiantFenergyFdensityFwithinFaFPlanckianFradiatorFisFgivenFbyFFvFrFvwTcwhereFFisFtheFStefanæBoltzmannFconstantcFrFisFspeedFofFlightFinFvacTFisFISO/FDIS 80000-7:2019(E)
3kSIST ISO/FDIS 80000-7:2019
Item No. Quantity Unit Remarks NameSymbolDefinitionFyæFuäFtFspectralFradiantFenergyFdensityFinFtermsFofFwavelengthFwFchangeFofFradiantFenergyFdensityFwithFwavelengtháFexpressedFbyFddwwFuFnmFkgFmF«FtFsF«FtFSpectralFradiantFenergyFdensityFwithinFaFPlanckianFradiatorFisFgivenFbyFwhcFrfThFisFtheFPlanckFconstantFcFrFisFspeedFofFlightFinFvTFisFthermodynamicFtemperFwFsFsFtáexpFsfTcTForFtheFradiationFconstantFcFtFinFfTFyæFuäFuFspectralFradiantFenergyFdensityFinFtermsFofFwavenumberF wáFchangeFofFradiantFenergyFdensityFwithFwavenumberáFexpressedFbyFddwwwhereFwFasFaFfunctionFofFwavenumberFFFtFkgFsF«FtFFyæFväFsFradiantFfluxáFradiantFpowerFeáFPeFáFPchangeFinFradiantFenergyFwithFtimeáFexpressedFbyFeeddQtFwhereFQeFisFtheFradiantFemittedáFtransferredForFreceivedFandFtFisFtimeFWFkgFmFtFsF«FuFTheFcorrespondingFphotometricFquantityFisFòluminousFfluxóFFyæFväFtFspectralFradiantFfluxáFspectralFradiantFpowerFeáFáFPeáFáFPspectralFdensityFofFradiantFfluxáFexpressedFbyFeeáddFFwhereFeofFwavelengthF kgFmFsF«FuFFsáFFtFtFseeádFFFISO/FDIS 80000-7:2019(E)
kSIST ISO/FDIS 80000-7:2019
Item No. Quantity Unit Remarks NameSymbolDefinitionFyæFwäFsFradiantFintensityFIeFIdensityFofFradiantFfluxFwithFrespectFtoFsolidFangularFmeasureFinFaFspecifiedFdirectionáFexpressedFbyFeeddIFWwhereFeemittedFinFaFspecifiedFdirectionáFandFFisFtheFcontainingFthatFdirectionFkgFmFtFsF«FuFsrF«FsFTheFdefinitionFholdsFstrictlyFonlyFforFaFpointFsourceäFTheFdistributionFofFtheFradiantFintensitiesFasFaFfunctionFofFtheFdirectionFofFemissionáFeägäFgivenFbyFtheFpolarFanglesFááFisusedFtoFdetermineFtheFradiantFáFofFaFsourceãFeeásinddIWFFTheFcorrespondingFphotometricFquantityFisFòluminousFcorrespondingFquantityFforFFyæFwäFtFspectralFradiantFintensityFIeáFIspectralFdensityFofFradiantFintensityáFexpressedFbyFeeáddIIwhereFIetermsFofFwavelengthF kgFmFsF«FuFsrF«FsFFsáFFtFtFseeádIIFFyæFxäFsFradianceFLeFLdensityFofFradiantFintensityFwithFrespectFtoFprojectedFareaFinFaFspecifiedFdirectionFatFaFspecifiedFpointFonFaFrealForFimaginaryFsurfaceáFexpressedFbyFeedFsdcosILAwhereFIeAFisFFisFtheFangleFbetweenFtheFnormalFtoFtheFsurfaceFatFtheFspecifiedFpointFandFtheFspecifiedFdirectionFFtkgFsF«FuFsrF«FsFSeeFalsoFFräFsäFForFPlanckianFradiationáF4eLTpwhereFTFisFthermodynamicFtemperFisFtheFStefanæBoltzmaTheFcorrespondingFphotometricFqFISO/FDIS 80000-7:2019(E)
kSIST ISO/FDIS 80000-7:2019
Item No. Quantity Unit Remarks NameSymbolDefinitionFyæFxäFtFspectralFradianceFLeáFL densityFofFradianceFwithFrespectFtoFwavelengtháFexpressedFbyFeeáddLLwhereFLewavelengthF FmFtkgFmF«FsFsF«FuFsrF«FsFForFPlanckianFradiationáFFFteáFráFvcLhcfTpFwhereFcradiationFofFaFwavFinFaFgivenFmediumáFwavelengtháFcFrhFisFFwFsFsFtáexpFsfTcTwhereFtheFradiationFconstantFcFtFF±FhckäFFsáFFtFtFseeádLLFISO/FDIS 80000-7:2019(E)
kSIST ISO/FDIS 80000-7:2019
Item No. Quantity Unit Remarks NameSymbolDefinitionFyæFyäFsFirradianceFEeFEdensityFofFincidentFradiantFfluxFwithFrespectFtoFareaFatFaFpointFonFaFrealForFimaginaryFsurfaceáFexpressedFbyFeeddEAFwhereFeAFisFfluxFisFincidentFFtFkgFsF«FuFTheFcorrespondingFphotometricFquantityFisFòilluminanceóFTheFquantityFòsphericalFirradianceóFisFdefinedFbyFtheFmeanFvalueFofFirradianceFonFtheFouterFcurvedFsurfaceFofFaFveryFsmallFItFcanFbeFexpressedFbyFeáFreFvdELpWwhereFLeFisFItFcanFbeFexpressedFbyFtheFquotiæinfinitelyFsmallFsphereFcentredFatFtheFspecifiedFpointFandFtheFricalFcrossæsectionFofFthatFsphereäFSphericalFirradianceFisFalsoFcalledFòfluenceFrateóForFòradiantFfluenceFrateóäFTheFcorrespondingFphotometricFquantityFtoFsphericalFirradianceFisFcalledFòsphericalFilluminanceóäFFyæFyäFtFspectralFirradianceFEeáFEdensityFofFirradianceFwithFrespectFtoFwavelengtháFexpressedFbyFeeáddEEwhereFEeofFwavelengthF FtFnmFkgFmF«FsFsF«FuFFsáFFtFtFseeádEEFFISO/FDIS 80000-7:2019(E)
kSIST ISO/FDIS 80000-7:2019
Item No. Quantity Unit Remarks NameSymbolDefinitionFyæFzäFsFradiantFexitanceFDEPRECATEDãFradiantFemittanceFMeFMdensityFofFexitingFradiantFfluxFwithFrespectFtoFareaFatFaFpointFonFaFrealForFimaginaryFsurfaceáFexpressedFbyFeeddMAFwhereFeAFisFradiantFfluxFleavesFFtFkgFsF«FuFForFPlanckianFradiationáFMeFF±FTFvFwhereFTFisFthermodynamicFFisFtheFStefanæBoltzmannFTheFcorrespondingFphotometricFquantityFisFòluminousFcorrespondingFquantityFforFFyæFzäFtFspectralFradiantFexitanceFMeáFMdensityFofFradiantFexitanceFwithFrespectFtoFwavelengtháFexpressedFbyFeeáddMMwhereFMetermsFofFwavelengthF WFmF«FtFnmF«FsFkgFmF«FsFsF«FuFFsáFFtFtFseeádMMFFyæF{äFsFradiantFexposureFHeFHdensityFofFincidentFradiantFenergyFwithFrespectFtoFareaFatFaFpointFonFaFrealForFimaginaryFsurfaceáFexpressedFbyFeeddQHAwhereFQeAFisFtheFareaFonFwhichFtheFradiantFenergyFisFFtFkgFsF«FtFTheFcorrespondingFphotometricFquantityFisFòluminousFcorrespondingFquantityFforFFyæF{äFtFspectralFradiantFexposureFHeáFHdensityFofFradiantFexposureFwithFrespectFtoFwavelengtháFexpressedFbyFeeáddHHwhereFHetermsFofFwavelengthF FtkgFmF«FsFsF«FtFFsáFFtFtFseeádHHFISO/FDIS 80000-7:2019(E)
kSIST ISO/FDIS 80000-7:2019
Item No. Quantity Unit Remarks NameSymbolDefinitionFyæFsFräFsFluminousFefficiencyFF´specifiedFphotometricFconditionFµFV byFtheFspectralFluminoaFspecifiedFphotometricFconditionFFsFLuminousFefficiencyFforFphotopicFvisionFisFexpressedFbyFeáFrmeáFrddVKVKFFwhereFeáFVluminousFefficiencyáFFisFwavelengtháFKFisFluminousFefficacyFofFKmFisFmaximumFluminousFefficacyFForFscotopicFandFmesopicFvisionFseeFFräFvFandFFräFwäFSymbolsFforFdifferentFphotometricFconditionsãFVáFF´forFphotopicFvisionFµâFVB"áFF´forFscotopicFvisionFµâFVmesâmáFF´forFmesopicFvisionFµâFVFsFráFF´forFtheFCIEFFsFrF¹FphotopicFphotometricFobserverFµâFVMáFF´forFtheFCIEFFsF{FzFzFmodifiedFFtF¹FspectralFluminousFefficiencyFfunctionFforFphotopicFvisionFµäFFyæFsFräFtFspectralFluminousFefficiencyFF´specifiedFphotometricFconditionFµFVwavelengthFmFandFthatFatFwavelengthFáFsuchFthatFbothFproduceFequallyFintenseFluminousFsensationsFforFaFspecifiedFphotometricFconditionFandFmFisFchosenFsoFthatFtheFmaximumFvalueFofFthisFquotientFisFequalFtoFFsFFsFTheFspectralFluminousFefficiencyFofFtheFhumanFeyeFdependsFonFaFnumberFofFfactorsáFparticularlyFtheFstateFofFvisualFadaptationFandFtheFsizeFandFpositionFofFtheFsourceFinFtheFvisualFfieldäFTheFphotometricFconditionFshouldFbeFspecifiedFphotopicFvisionFisFassumedFandFtheFsymbolFVSymbolsFforFdifferentFphotometricFconditionsãFVVVmesâmVFsFrphotopicFphotometricFobserverFµâFVMmodifiedFFtF¹FspectralFluminousFefficiencyFfunctionFforFphotopicFvisionFµäFFISO/FDIS 80000-7:2019(E)
kSIST ISO/FDIS 80000-7:2019
Item No. Quantity Unit Remarks NameSymbolDefinitionFyæFsFsäFsFluminousFefficacyFofFradiationFF´specifiedFphotometricFconditionFµFK quotientFofFlumispecifiedFphotometricFconditionFkgF«FsFmF«FtFsFuFcdFsrFLuminousFefficacyFofFradiationFforFphotopicFvisionFisFexpressedFbyFveKFFwhereFveFisFradiantFfluxFSymbolsFforFdifferentFphotometricFconditionsãFKáFF´forFphotopicFvisionFµâFKB"áFF´forFscotopicFvisionFµâFKmesâmáFF´forFmesopicFvisionFµâFKFsFráFF´forFtheFCIEFFsFrF¹FphotopicFphotometricFobserverFµâFKMáFF´forFtheFCIEFFsF{FzFzFmodifiedFFtF¹FspectralFluminousFefficiencyFfunctionFforFphotopicFvisionFµäFFyæFsFsäFtFspectralFluminousFefficacyFF´specifiedFphotometricFconditionFµFKconditionFkgF«FsFmF«FtFsFuFcdFsrFSpectralFluminousFefficacyFforFphotopicFvisionFisFexpressedFbyFKKmFVwhereFKmFisFmaximumFluminousFeVFisFwavelengthäFSymbolsFforFdifferentFphotometricFconditionsãFKKKmesâmKFsFrphotopicFphotometricFobserverFµâFKMmodifiedFFtF¹FspectralFluminousFefficiencyFfunctionFforFphotopicFvisionFµäFISO/FDIS 80000-7:2019(E)
kSIST ISO/FDIS 80000-7:2019
Item No. Quantity Unit Remarks NameSymbolDefinitionFyæFsFsäFuFmaximumFluminousFefficacyFF´specifiedFphotometricFconditionFµFKmFmaximumFvalueFofFspectralFluminousFefficacyFforFaFspecifiedFphotometricFconditionFkgF«FsFmF«FtFsFuFcdFsrFTheFvalueFofFmaximumFluminousFefficacyFforFphotopicFvisionFisFcalculatedFbyFFsmcdFxFzFucdsrWKVFFFsFxFzFulmWwhereFVFefficiencyFforFphotopicFvisionFandFcdFisFtheFwavelengthFinFairFcorrespondingFtoFtheFFsFtFHzFspecifiedFinFtheFdefinitionFofFtheFSIFunitFcandelaäFSymbolsFforFdifferentFphotometricFconditionsãFKmáFF´forFphotopicFvisionFµâFKF5máFF´forFscotopicFvisionFµâFKmámesâmáFF´forFmesopicFvisionFµâFKmáFsFráFF´forFtheFCIEFFsFrF¹FphotopicFphotometricFobserverFµâFKmáMáFF´forFtheFCIEFFsF{FzFzFmodifiedFFtF¹FspectralFluminousFefficiencyFfunctionFforFphotopicFvisionFµäFFyæFsFsäFvFluminousFefficacyFofFaFsourceFvFquotientFofFtheFluminousFfluxFemittedFandFtheFpowerFconsumedFbyFtheFsourceáFexpressedFbyFvvPFwhereFvPFsourceFkgF«FsFmF«FtFsFuFcdFsrFFISO/FDIS 80000-7:2019(E)
kSIST ISO/FDIS 80000-7:2019
Item No. Quantity Unit Remarks NameSymbolDefinitionFyæFsFtFluminousFenergyFDEPRECATEDãFquantityFofFlightFQvFQ energyFofFelectromagneticFwavesFweightedFbyFtheFspectralFluminousFefficiencyFmultipliedFbyFitsFmaximumFluminousFefficacyFlmFsFsFcdFsrFLuminousFenergyFforFphotopicFvisionFisFexpressedFbyFvmeáFrdQKQVwhereFQeáwavelengthF áFVKmFisFmaximumFluminousFLuminousFenergyFcanFbeFemittedáFtransferredForFreceivedäFLuminousFenergyFcanFbeFexpressedFbyFtheFtimeFintegralFofFtheFváFoverFaFgivenFdurationFt FvvdtQtDFTheFcorrespondingFradiometricFquantityFisFòradiantFenergyóFngFquantityFforFphotonsFisFISO/FDIS 80000-7:2019(E) 2 kSIST ISO/FDIS 80000-7:2019
Item No. Quantity Unit Remarks NameSymbolDefinitionFyæFsFuFluminousFfluxFvFchangeFinFluminousFenergyFwithFtimeáFexpressedFbyFvvddQtFwhereFQvemittedáFtransferredForFreceivedFandFtFisFtimeFlmFcdFsrFLuminousFfluxFisFaFquantityFderivedFfromFtheFradiantFfluxFeáFbyFevaluatingFtheFradiationFaccordingFtoFitsFLuminousFfluxFcanFbeFderivedFfromFtheFspectralFradiantFfluxFdistributionFbyFvmeáFrdKVFFwhereFKmFisFmaximumFluminousFeeáVFisFwavelengthäFTheFcorrespondingFradiometricFquantityFisFòradiantFfluxóFngFquantityFforFphotonsFisFFISO/FDIS 80000-7:2019(E)
3kSIST ISO/FDIS 80000-7:2019
Item No. Quantity Unit Remarks NameSymbolDefinitionFyæFsFvFluminousFintensityFIvFIdensityFofFluminousFfluxFwithFrespectFtoFsolidFangularFmeasureFinFaFspecifiedFdirectionáFexpressedFbyFvvddIFWwhereFvemittedFinFaFspecifiedFdirectionáFandFFisFtheFcontainingFthatFdirectionFcdFTheFdefinitionFholdsFstrictlyFonlyFforFaFpointFsourceäFTheFdistributionFofFtheFluminousFintensitiesFasFaFfunctionFofFtheFdirectionFofFemissionáFeägäFgivenFbyFtheFpolarFanglesFááisFusedFtoFdetermineFtheFluminFofFaFsourceãFvvásinddIWFFLuminousFintensityFcanFbeFderivedFfromFtheFspectralFradiantFintensityFdistributionFbyFvmeáFrdIKIVwhereFKmFisFmaximumFluminousFeIeá VTheFcorrespondingFradiometricFquantityFisFòradiantFintensityóFngFquantityFforFphotonsFisFISO/FDIS 80000-7:2019(E)
kSIST ISO/FDIS 80000-7:2019
Item No. Quantity Unit Remarks NameSymbolDefinitionFyæFsFwFluminanceFLvFLdensityFofFluminousFintensityFwithFrespectFtoFprojectedFareaFinFaFspecifiedFdirectionFatFaFspecifiedFpointFonFaFrealForFimaginaryFsurfaceáFexpressedFbyFvvdFsdcosILAwhereFIvAFFisFtheFangleFbetweenFtheFnormalFtoFtheFsurfaceFatFtheFspecifiedFpointFandFtheFspecifiedFdirectionFcdFmF«FtFLuminanceFcanFbeFderivedFfromFtheFspectralFradianceFdistributionFbyFvmeáFrdLKLVwhereFKmFisFmaximumFluminousFeLeá VIntegralFlimitsFcanFbeFconfinedFdependingFonFtheFspectralFsensitivityFofFtheFdetectorsFusedFasFaFsensoräFFISO/FDIS 80000-7:2019(E)
kSIST ISO/FDIS 80000-7:2019
Item No. Quantity Unit Remarks NameSymbolDefinitionFyæFsFxFilluminanceFEvFEdensityFofFincidentFluminousFfluxFwithFrespectFtoFareaFatFaFpointFonFaFrealForFimaginaryFsurfaceáFexpressedFbyFvvddEAFwhereFvAFluminousFfluxFisFincidentFlxFmF«FtFcdFsrFIlluminanceFcanFbeFderivedFfromFtheFspectralFirradianceFdistributionFbyFvmeáFrdEKEVwhereFKmFisFmaximumFluminousFeEeá VIntegralFlimitsFcanFbeFconfinedFdependingFonFtheFspectralFsensitivityFofFtheFdetectorsFusedFasFaFsensoräFTheFcorrespondingFradiometricFqTheFquantityFòsphericalFilluminanceóFisFdefinedFbyFtheFmeanFvalueFofFilluminanceFonFtheFouterFcurvedFsurfaceFofFaFveryFItFcanFbeFexpressedFbyFváFrvFvdELpWwhereFFisFsolidFangularFmeasLvFisFItFcanFbeFexpressedFbyFtheFquotiFonFtheFouterFsurfaceFofFanFinfinitelyFsmallFsphereFcentredFatFtheFgivenFpointáFandFtheFareaFcrossæsectionFofFthatFsphereäFISO/FDIS 80000-7:2019(E)
kSIST ISO/FDIS 80000-7:2019
Item No. Quantity Unit Remarks NameSymbolDefinitionFyæFsFyFluminousFexitanceFMvFMdensityFofFexitingFluminousFfluxFwithFrespectFtoFareaFatFaFpointFonFaFrealForFimaginaryFsurfaceáFexpressedFbyFvvddMAFwhereFvAFluminousFfluxFleavesFFtFmF«FtFcdFsrFLuminousFexitanceFcanFbeFderivedFfromFtheFspectralFradiantFexitanceFdistributionFbyFvmeáFrdMKMVwhereFKmFisFmaximumFluminousFeMeáisFtheFspectralFradiantFexitan VIntegralFlimitsFcanFbeFconfinedFdependingFonFtheFspectralFsensitivityFofFtheFdetectorsFusedFasFaFsensoräFTheFcorrespondingFradiometricFquantityFisFòradiantFexitanceóFngFquantityFforFphotonsFisFFyæFsFzFluminousFexposureFDEPRECATEDãFquantityFofFilluminationFDEPRECATEDãFlightFexposureFHvFHdensityFofFincidentFluminousFenergyFwithFrespectFtoFareaFatFaFpointFonFaFrealForFimaginaryFsurfaceáFexpressedFbyFvvddQHAwhereFQvAFisFtheFareaFonFwhichFtheFluminousFenergyFisFlxFsFmF«FtFcdFsrFLuminousFexposureFcanFbeFderivedFfromFtheFspectralFradiantFexposureFdistributionFbyFvmeáFrdHKHVwhereFKmFisFmaximumFluminousFeHeáisFtheFspectralFradiantFexposu VIntegralFlimitsFcanFbeFconfinedFdependingFonFtheFspectralFsensitivityFofFtheFdetectorsFusedFasFaFsensoräFTheFcorrespondingFradiometricFquantityFisFòradiantFexposureóFngFquantityFforFphotonsFisFFISO/FDIS 80000-7:2019(E)
kSIST ISO/FDIS 80000-7:2019
Item No. Quantity Unit Remarks NameSymbolDefinitionFyæFsF{äFsFphotonFnumberáFnumberFofFphotonsFNpFquotientFofFradiantFenergyFandFphotonFenergyáFexpressedFbyFepQNhwhereFQehFisFtheFPlanckFconstantvFisFcorrespondingFelectromagneticFwaveFFsFPhotonFnumberFcanFalsoFbeFexpressedFbyFtheFtimeFintegralFofFptáFppdtNtDFFyæFsF{äFtFphotonFenergyFQpFQproductFofFtheFPlanckFconstantFandFfrequencyáFexpressedFbyF’QhFwhereFhFisFtheFPlanckFconandFvcorrespondingFelectromagneticFwaveFJFkgFmFtFsF«FtFPhotonFenergyFcanFbeFemittedáFtransferredForFreceivedäFForFmonochromaticFradiationáFphotonFenergyFmayFbeFTheFcorrespondingFradiometricFquantityFisFòradiantFenergyóFngFphotometricFquantityFisFFyæFtFrFphotonFfluxFpFrateFofFphotonFnumberFperFtimeFintervaláFexpressedFbyFppddNtFwhereFNptFisFsF«FsFPhotonFfluxFpeáFofFmonochromaticFradiationáFbyFephFFwhereFhFisFtheFPlanckFconstFisFtheFelectromagneticFwaveäFTheFcorrespondingFradiometricFquantityFisFòradiantFfluxóFngFphotometricFquantityFisFISO/FDIS 80000-7:2019(E)
kSIST ISO/FDIS 80000-7:2019
Item No. Quantity Unit Remarks NameSymbolDefinitionFyæFtFsFphotonFintensityFIpFIdensityFofFphotonFfluxFwithFrespectFtoFsolidFangularFmeasureFinFaFspecifiedFdirectionáFexpressedFbyFppddIFWwhereFpemittedFinFtheFgivenFdirectionáFandFFisFtheFcontainingFthatFdirectionFsF«FsFsrF«FsFTheFdistributionFofFtheFphotonFintensitiesFasFaFfunctionFofFtheFdirectionFofFemissionáFeägäFgivenFbyFtheFpolarFanglesFááFisusedFtoFdetermineFtheFphotonFofFaFsourceãFppásinddIWFFTheFcorrespondingFradiometricFquantityFisFòradiantFintensityóFngFphotometricFquantityFisFFyæFtFtFphotonFradianceFLpFLdensityFofFphotonFintensityFwithFrespectFtoFprojectedFareaFinFaFspecifiedFdirectionFatFaFspecifiedFpointFonFaFrealForFimaginaryFsurfaceáFexpressedFbyFppdFsdcosILAwhereFIpAFisFFtheFangleFbetweenFtheFnormalFtoFtheFsurfaceFatFtheFspecifiedFpointFandFtheFspecifiedFdirectionFmF«FtFsF«FsFsrF«FshotometricFquantityFisFFyæFtFuFphotonFirradianceFEpFEdensityFofFincidentFphotonFfluxFwithFrespectFtoFareaFatFaFpointFonFaFrealForFimaginaryFsurfaceáFexpressedFbyFppddEAFwhereFpAFisFtheFarefluxFisFincidentFmF«FtFsF«FsFTheFcorrespondingFradiometricFqhotometricFquantityFisFFISO/FDIS 80000-7:2019(E)
kSIST ISO/FDIS 80000-7:2019
Item No. Quantity Unit Remarks NameSymbolDefinitionFyæFtFvFphotonFexitanceFMpFMdensityFofFexitingFphotonFfluxFwithFrespectFtoFareaFatFaFpointFonFaFrealForFimaginaryFsurfaceáFexpressedFbyFppddMAFwhereFpAFisFtheFaphotonFfluxFleavesFmF«FtFsF«FsFTheFcorrespondingFradiometricFquantityFisFòradiantFexitanceóFngFphotometricFquantityFisFFyæFtFwFphotonFexposureFHpFHdensityFofFincidentFphotonFnumberFwithFrespectFtoFareaFatFaFpointFonFaFrealForFimaginaryFsurfaceáFexpressedFbyFppddNHAwhereFNpandFAphotonsFareFincidentFmF«FtFTheFcorrespondingFradiometricFquantityFisFòradiantFexposureóFngFphotometricFquantityFisFISO/FDIS 80000-7:2019(E)
kSIST ISO/FDIS 80000-7:2019
Item No. Quantity Unit Remarks NameSymbolDefinitionFyæFtFxäFsFtristimulusFvaluesFforFtheFCIEFFsF{FuFsFstandardFcolorimetricFobserverFXáFYáFZFamountsFofFtheFthreeFreferenceFcolourFstimuliFinFtheFCIEFFsF{FuFsFstandardFcolorimetricFsystemáFrequiredFtoFmatchFtheFcolourFofFtheFstimulusFconsideredFseeFRemarkFForFaFgivenFcolourFstimulusFdescribedFbyFtheFcolourFstimulusFfunctionFFrdXkxFFrdYkyFFrdZkzFwhereFxáFyáFzFareFtheFCIEFcolouræmatchingForFsourcesáFkFmayFbeFchosenFasFkFF±FKmFwhereFKmFisFtheFmaximumFluminousFe
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.