SIST EN 15714-5:2022
(Main)Industrial valves - Actuators - Part 5: Pneumatic linear actuators for industrial valves - Basic requirements
Industrial valves - Actuators - Part 5: Pneumatic linear actuators for industrial valves - Basic requirements
This document provides basic requirements for piston type pneumatic linear actuators for industrial valve, both double acting and single acting, used for on-off and modulating control duties.
It includes criteria, method and guidelines for design, qualification, corrosion protection, control and testing.
It does not apply to diaphragm actuators and to pneumatic actuators which are integral parts of control valves.
Other requirements, or conditions of use, different from those indicated in this document, are subject to negotiations, between the purchaser and the manufacturer/supplier, prior to order.
Industriearmaturen - Antriebe - Teil 5: Pneumatische Antriebe – Grundanforderungen
Dieses Dokument enthält Grundanforderungen an pneumatische von Kolben angetriebene Linearantriebe für Industriearmaturen, die sowohl einfach als auch in beide Richtungen wirken und für Auf-Zu-Einschaltdauer und modulierende Steuerungsfunktionen verwendet werden.
Es enthält Kriterien, Verfahren und Leitlinien für Konstruktion, Qualifizierung, Korrosionsschutz, Kontrolle und Prüfung.
Sie gilt nicht für Membran-Stellantriebe und pneumatische Stellantriebe, die feste Bestandteile von Regelventilen sind.
Andere Anforderungen oder Anwendungsbedingungen als die, die in diesem Dokument angegebenen sind, werden vor Auftragserteilung zwischen dem Käufer und dem Hersteller/Lieferanten verhandelt.
Robinetterie industrielle - Actionneurs - Partie 5 : Actionneurs linéaires pneumatiques - Prescriptions de base
Le présent document définit les exigences de base pour les actionneurs linéaires pneumatiques de type piston d’appareil de robinetterie industrielle, à double et à simple effet, utilisés pour les fonctions tout ou rien et les fonctions de modulation des fonctions de régulation.
Il comprend des critères, une méthode et des lignes directrices pour la conception, la qualification, la protection contre la corrosion, le contrôle et les essais.
Il ne s’applique pas aux actionneurs à membrane et aux actionneurs pneumatiques qui font partie intégrante des robinets de régulation.
Les exigences ou conditions relatives à l’utilisation, autres que celles déjà mentionnées dans le présent document, doivent être convenues entre l’acheteur et le fabricant/fournisseur avant la commande.
Industrijski ventili - Pogoni - 5. del: Pnevmatični linearni pogoni za industrijske ventile - Osnovne zahteve
Ta dokument podaja osnovne zahteve za batne pnevmatične linearne pogone za industrijske ventile z dvosmernim in enosmernim delovanjem, ki se uporabljajo za vklopno-izklopne in modulacijsko krmilne naloge.
Vključuje merila, metodo in smernice za načrtovanje, kvalifikacijo, zaščito pred korozijo, krmiljenje in preskušanje.
Ne uporablja se za membranske in pnevmatične pogone, ki so sestavni deli regulacijskih ventilov.
O drugih zahtevah ali pogojih uporabe, ki niso navedeni v tem dokumentu, se kupec in proizvajalec/dobavitelj dogovorita pred naročilom.
General Information
Standards Content (Sample)
SLOVENSKI STANDARD
SIST EN 15714-5:2022
01-julij-2022
Industrijski ventili - Pogoni - 5. del: Pnevmatični linearni pogoni za industrijske
ventile - Osnovne zahteve
Industrial valves - Actuators - Part 5: Pneumatic linear actuators for industrial valves -
Basic requirements
Industriearmaturen - Antriebe - Teil 5: Pneumatische Antriebe – Grundanforderungen
Robinetterie industrielle - Actionneurs - Partie 5 : Actionneurs linéaires pneumatiques -
Prescriptions de base
Ta slovenski standard je istoveten z: EN 15714-5:2022
ICS:
23.060.20 Zapirni ventili (kroglasti in Ball and plug valves
pipe)
SIST EN 15714-5:2022 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
---------------------- Page: 1 ----------------------
SIST EN 15714-5:2022
---------------------- Page: 2 ----------------------
SIST EN 15714-5:2022
EN 15714-5
EUROPEAN STANDARD
NORME EUROPÉENNE
May 2022
EUROPÄISCHE NORM
ICS 23.060.20
English Version
Industrial valves - Actuators - Part 5: Pneumatic linear
actuators for industrial valves - Basic requirements
Robinetterie industrielle - Actionneurs - Partie 5 : Industriearmaturen - Antriebe - Teil 5: Pneumatische
Actionneurs linéaires pneumatiques - Prescriptions de Antriebe - Grundanforderungen
base
This European Standard was approved by CEN on 20 April 2022.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and
United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2022 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 15714-5:2022 E
worldwide for CEN national Members.
---------------------- Page: 3 ----------------------
SIST EN 15714-5:2022
EN 15714-5:2022 (E)
Contents Page
European foreword . 4
1 Scope . 5
2 Normative references . 5
3 Terms and definitions . 5
4 Classification/designation . 7
4.1 Duty classification . 7
4.1.1 General. 7
4.1.2 On-off duty . 7
4.1.3 Modulating duty . 7
4.2 Action . 8
4.2.1 Double acting (DA) . 8
4.2.2 Single acting (SA) . 8
5 Motive energy . 8
5.1 Operating medium. 8
5.2 Quality . 8
5.3 Pressure . 8
6 Actuator performance data . 9
6.1 Minimum moving pressure . 9
6.2 Operating time . 9
6.3 Displacement volume . 9
6.4 Dimensions and performances for double acting version . 9
6.5 Dimensions and performances for single acting version . 11
7 Basic design requirements . 12
7.1 Safety requirements . 12
7.2 Linear actuator attachment . 12
7.3 Nominal stroke . 13
7.4 Endurance of linear actuators . 13
7.5 Leakage . 14
7.6 Environmental conditions . 15
7.6.1 Ambient temperature. 15
7.6.2 Enclosure protection . 15
7.6.3 Corrosion protection . 15
7.7 Pressure connections . 17
7.7.1 General. 17
7.7.2 Remotely mounted pilot valves . 17
7.7.3 Direct mounted pilot valves . 18
7.8 Structural safety factors . 19
8 Optional equipment . 20
8.1 Ancillaries . 20
8.2 Manual operation device . 20
8.3 Mechanical end stop adjustment . 20
8.4 Position indication . 21
8.5 Bracket . 21
8.6 Anti-rotation device . 21
2
---------------------- Page: 4 ----------------------
SIST EN 15714-5:2022
EN 15714-5:2022 (E)
9 Conformity assessment . 21
9.1 General . 21
9.2 Type tests . 21
9.3 Control of production process . 22
10 Marking . 24
10.1 Mandatory marking . 24
10.2 Optional marking . 24
11 Documentation . 25
12 Linear actuator selection guidelines . 25
Annex A (normative) Endurance test procedure . 26
Annex B (informative) Actuator selection guidelines . 28
Bibliography . 31
3
---------------------- Page: 5 ----------------------
SIST EN 15714-5:2022
EN 15714-5:2022 (E)
European foreword
This document (EN 15714-5:2022) has been prepared by Technical Committee CEN/TC 69 “Industrial
valves”, the secretariat of which is held by AFNOR.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by November 2022, and conflicting national standards shall
be withdrawn at the latest by November 2022.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
Any feedback and questions on this document should be directed to the users’ national standards body.
A complete listing of these bodies can be found on the CEN website.
According to the CEN-CENELEC Internal Regulations, the national standards organisations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia,
Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland,
Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North
Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United
Kingdom.
4
---------------------- Page: 6 ----------------------
SIST EN 15714-5:2022
EN 15714-5:2022 (E)
1 Scope
This document provides basic requirements for piston type pneumatic linear actuators for industrial
valve, both double acting and single acting, used for on-off and modulating control duties.
It includes criteria, method and guidelines for design, qualification, corrosion protection, control and
testing.
It does not apply to diaphragm actuators and to pneumatic actuators which are integral parts of control
valves.
Other requirements, or conditions of use, different from those indicated in this document, are subject to
agreement, between the purchaser and the manufacturer/supplier, prior to order.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
EN ISO 286-2, Geometrical product specifications (GPS) - ISO code system for tolerances on linear sizes -
Part 2: Tables of standard tolerance classes and limit deviations for holes and shafts (ISO 286-2)
EN ISO 5210:2017, Industrial valves - Multi-turn valve actuator attachments (ISO 5210:2017)
EN 12570, Industrial valves - Method for sizing the operating element
EN 15714-1, Industrial valves - Actuators - Part 1: Terminology and definitions
EN 60529, Degrees of protection provided by enclosures (IP Code)
ISO 5599-2, Pneumatic fluid power — Five-port directional control valves — Part 2: Mounting interface
surfaces with optional electrical connector
ISO 8573-1:2010, Compressed air — Part 1: Contaminants and purity classes
3 Terms and definitions
For the purposes of this document, the terms and definitions given in EN 15714-1 and the following apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https://www.iso.org/obp
— IEC Electropedia: available at https://www.electropedia.org/
3.1
stroke
single and complete movement from one end of travel to the other
3.2
end stop
mechanical part, designed to stop the actuator drive train at an end position
Note 1 to entry: End stop can be fixed or adjustable.
5
---------------------- Page: 7 ----------------------
SIST EN 15714-5:2022
EN 15714-5:2022 (E)
3.3
output thrust
minimum guaranteed output thrust capability of the actuator, in both directions, at specified supply
pressures conditions as provided by the manufacturer/supplier
Note 1 to entry: Where the output thrust varies with the stroke, in a linear or nonlinear relationship with pressure,
tabulated data and/or thrust versus stroke diagram shall be provided at significant pressure values for each
direction of movement.
3.3.1
rated thrust
characterizing figure, indicated by the actuator manufacturer/supplier, used to define the maximum
actuator operating thrust
Note 1 to entry: The rated thrust corresponds to the maximum thrust value developed by the actuator when
powered with maximum allowable pressure.
3.3.2
nominal thrust
3.3.2.1
double acting version (4.2.1)
minimum guaranteed output thrust of the actuator, at any point of the stroke, with nominal supply
pressure 0,55 MPa (5,5 bar)
3.3.2.2
single acting version (4.2.2)
guaranteed output thrust of the actuator with pneumatic nominal supply 0,55 MPa (5,5 bar) at the
beginning of the stroke in the direction to compress the spring
3.3.3
start thrust
actuator output thrust at the beginning of the stroke in the direction of movement
3.3.4
maximum operating thrust
MOT
for double acting version, output thrust of the actuator when the pressure of the power supply
corresponds to the maximum allowable pressure; for single acting version the maximum output thrust
between the thrust at the beginning of the stroke when the pressure of the power supply corresponds to
the maximum allowable pressure and the thrust generated by the spring at the end of specified
compression stroke
Note 1 to entry: The maximum thrust value shall be indicated by the manufacturer/supplier; the value shall be not
lower than 1,45 times the nominal thrust.
6
---------------------- Page: 8 ----------------------
SIST EN 15714-5:2022
EN 15714-5:2022 (E)
3.4
single acting version
3.4.1
air starting thrust
AST
output thrust, at defined pressure value, at the beginning of the stroke in opposition to the spring
3.4.2
air ending thrust
AET
output thrust, at defined pressure value, at the end of the stroke when spring is at its maximum
compression
3.4.3
air running thrust
ART
any output thrust value between AST and AET at defined pressure value
3.4.4
spring ending thrust
SET
output thrust generated by the spring at the end of its stroke with no air in the cylinder
3.4.5
spring starting thrust
SST
output thrust generated by the spring at its maximum compression with no air in the cylinder
3.4.6
spring running thrust
SRT
any output thrust value between SST and SET
4 Classification/designation
4.1 Duty classification
4.1.1 General
According to their intended function, two versions of linear valve actuators are defined by this document:
on-off duty and modulating duty.
4.1.2 On-off duty
The actuator shall drive the valve through its entire travel from the fully open position to the fully closed
position or vice-versa.
4.1.3 Modulating duty
The actuator shall continuously drive the valve to any position between fully open and fully closed or
vice-versa.
7
---------------------- Page: 9 ----------------------
SIST EN 15714-5:2022
EN 15714-5:2022 (E)
4.2 Action
4.2.1 Double acting (DA)
A double acting actuator requires the supply of motive energy to operate in both travel directions.
4.2.2 Single acting (SA)
A single acting actuator requires external power to operate the valve in one direction only, the return
stroke being powered by an alternative form of stored energy (fail-safe actuators).
For the purpose of this document, the stored energy shall be supplied by a mechanical spring.
5 Motive energy
5.1 Operating medium
The operating medium shall be compressed air, unless otherwise specified.
Other compressed gases may be used, on agreement between the manufacturer/supplier and purchaser,
ensuring they are compatible with all the parts which they are in contact with, including the lubricants.
5.2 Quality
Humidity of the operating medium shall be Class 2 according to ISO 8573-1:2010, Table 2.
For ambient temperature conditions different from the standard stated at 7.6.1, the dew point shall be at
least 10 °C below the minimum operating ambient temperature.
It is recommended that the content of particles per cubic meter in the operating medium shall not exceed
Class 5 according to ISO 8573-1:2010, Table 1; particles up to a maximum 40 µm size are acceptable in
the operating medium provided that a right analysis of the behaviour of the ancillaries (8.1), when
mounted on the actuator, is done.
5.3 Pressure
The manufacturer/supplier shall indicate the actuator’s pressure limits.
Unless otherwise specified the following values shall be considered within the scope of this document:
a) nominal supply pressure: 0,55 MPa (5,5 bar);
b) maximum allowable pressure shall be at least 0,8 MPa (8 bar);
c) design pressure for pressurized parts at least 1,1 times the maximum allowable pressure;
d) the minimum test pressure for pressurized parts shall be 1,50 times the design pressure.
For sizing of the double acting actuator at different pressures with different loads, Figure B.1 can be used
as a guidance.
8
---------------------- Page: 10 ----------------------
SIST EN 15714-5:2022
EN 15714-5:2022 (E)
6 Actuator performance data
6.1 Minimum moving pressure
For double acting actuators, the minimum moving pressure, at no load condition and ambient
temperature, shall be made available by the manufacturer/supplier upon request.
For single acting actuators, the minimum starting and release pressure in contrast to the spring at the
beginning and ending of the nominal stroke, at no load condition and ambient temperature, shall be made
available by manufacturer/supplier upon request.
6.2 Operating time
The actuator manufacturer/supplier shall state the minimum operating time in both directions, without
external load, at nominal pressure and without any significant external restriction on supply flow rate
and exhaust.
6.3 Displacement volume
Internal actuator displaced volumes for each direction, including the dead volumes, for the maximum
stroke without any external limitation.
Displacement volume should be expressed in litres.
6.4 Dimensions and performances for double acting version
Dimension of cylinders and performances data of double acting actuator shall be in accordance with
Table 1.
9
---------------------- Page: 11 ----------------------
SIST EN 15714-5:2022
EN 15714-5:2022 (E)
Table 1 — Dimensions and data of double acting actuator
c
Standard Minimum Rated thrust Flange type Nominal Minimum
d
nominal nominal EN ISO 5210 thrust based stroke
“X”
b
diameter of thrust on
a
cylinder EN ISO 5210
mm kN kN kN mm
80 2,6 4,0 F05 ≤ 10 20
100 4,1 6,0 F05 ≤ 10 20
125 6,3 10,0 F05 ≤ 10 20
160 10,4 16,0 F07 ≤ 20 40
200 16,2 24,0 F10 ≤ 40 60
250 25,4 37,0 F10 ≤ 40 60
300 37,3 55,0 F12 ≤ 70 60
400 66,4 97,0 F14 ≤ 100 80
500 103,7 150,0 F16 ≤ 150 100
600 149,3 218,0 F30 ≤ 325 140
700 203,2 296,0 F30 ≤ 350 140
900 335,9 489,0 F35 ≤ 700 160
1 100 501,8 730,0 F35 ≤ 700 160
a
Intermediate diameters are permissible and may be used upon agreement between purchaser and
manufacturer/supplier.
b
Minimum nominal thrust is based on nominal pressure 0,55 MPa (5,5 bar) and includes friction factor.
Different operating pressure sizing can be referred to as in Clause B.3 (Figure B.1).
c
Maximum operating thrust (MOT) at maximum allowable pressure 0,80 MPa (8,0 bar); different rated thrust
can be defined at higher maximum allowable pressure upon agreement between purchaser and
manufacturer/supplier.
d
Different flange type may be used upon agreement between purchaser and manufacturer/supplier.
10
---------------------- Page: 12 ----------------------
SIST EN 15714-5:2022
EN 15714-5:2022 (E)
6.5 Dimensions and performances for single acting version
Dimension of cylinders and performances data of single acting actuator shall be in accordance with
Table 2 based on nominal pressure of 0,55 MPa (5,5 bar). Other pressure values and spring thrusts are
subject to agreement between purchaser and manufacturer/supplier.
Table 2 — Dimensions and data of single acting actuator
Standard Minimum Spring Rated Flange type Nominal Minimum
c d
nominal nominal ending thrust EN ISO 5210 thrust based stroke
b
internal thrust thrust (SET) on
“X”
diameter of EN ISO 5210
a
cylinder
mm kN kN kN kN mm
125 4,1 2,2 7,0 F05 ≤ 10 20
160 6,7 3,7 11,5 F05 ≤ 20 40
180 8,5 4,7 14,5 F07 ≤ 20 40
200 10,4 5,8 18,0 F07 ≤ 20 40
250 16,4 9,0 28,0 F10 ≤ 40 60
300 23,0 13,5 40,0 F10 ≤ 40 60
400 42,8 23,5 73,0 F12 ≤ 70 60
500 66,7 37,0 114,0 F14 ≤ 100 80
600 96,3 53,0 164,0 F16 ≤ 150 100
700 131,2 72,0 224,0 F25 ≤ 200 120
800 171,4 94,0 292,0 F30 ≤ 350 140
900 215,9 120,0 370,0 F30 ≤ 350 140
1 200 370,0 230,0 640,0 F35 ≤ 700 160
a
Intermediate diameters are permissible and may be used upon agreement between purchaser and
manufacturer/supplier.
b
Minimum nominal thrust is based on nominal pressure 0,55 MPa (5,5 bar) and includes friction factor. Different
operating pressure sizing can be referred to as in Clause B.3 (Figure B.1).
c
Air starting thrust (AST) at maximum allowable pressure 0,80 MPa (8,0 bar); different rated thrust can be defined at
higher maximum allowable pressure upon agreement between purchaser and manufacturer/supplier.
d
Different flange type may be used upon agreement between purchaser and manufacturer/supplier.
NOTE For air and spring thrust specific definitions refer to 3.4.
11
---------------------- Page: 13 ----------------------
SIST EN 15714-5:2022
EN 15714-5:2022 (E)
7 Basic design requirements
7.1 Safety requirements
Actuators shall be designed to take into account the technical principles and specifications for safety.
The design of spring return actuators shall permit the safe assembly/disassembly, when complying with
the manufacturer/supplier’s instructions.
Provisions shall be taken to avoid that the pressure within the spring enclosure exceeds 0,05 MPa
(0,50 bar) during the actuator operation if the spring is not located in a pressurized enclosure.
7.2 Linear actuator attachment
Dimensions of attachment flange shall be according to EN ISO 5210:2017, Clause 5, Figure 2 and Table 2,
7.6 and Table 8.
Dimensions of output shaft shall be based on EN ISO 5210:2017, 7.6 with specific additional dimensions
according to Figure 1 and Table 3.
A flat attach for fork wrench SW shall be provided as optional.
Figure 1 — Dimensions of output drive
12
---------------------- Page: 14 ----------------------
SIST EN 15714-5:2022
EN 15714-5:2022 (E)
Table 3 — Data and dimensions of output drive
Flange type EN ISO 5210 rated thrust sw
a
EN ISO 5210
kN mm
F05 10 13
F07 20 17
F10 40 21
F12 70 27
F14 100 36
F16 150 46
F25 200 50
F30 325 55
F35 700 80
a
Different flange and/or coupling type may be used upon agreement between
purchaser and manufacturer/supplier.
The material of the output drive (Table 3) component shall be clearly indicated in the
manufacturer’s/supplier’s documentation.
7.3 Nominal stroke
Length of the stroke (3.1) of linear actuator shall be defined by the manufacturer/supplier or based on
agreement between the manufacturer/supplier and purchaser or valve manufacturer.
For linear actuators, without adjustable end stops (3.2), the standard tolerance on defined length of
stroke shall be H15 according to EN ISO 286-2.
For linear actuators, with adjustable mechanical end stops (8.3) in one or both directions, the adjustment
range referred to the defined length of stroke shall be stated by the manufacturer/supplier but at least
not less than ± 3 % of adjustment for each end where adjustable stroke is provided.
Different values of tolerances or percentages on end-stops adjustment shall be agreed between the
purchaser and the manufacturer/supplier.
7.4 Endurance of linear actuators
The actuator shall be designed to have an endurance, without maintenance, in accordance with values
given in Table 4; minimum endurance shall be demonstrated by a suitable endurance test performed in
accordance with the procedure detailed in Annex A.
For double acting actuators the endurance test shall be performed at a load, along the complete stroke,
at least equal to the nominal thrust at supply pressure 0,55 MPa (5,5 bar) as shown in Table 1.
For single acting actuators the endurance test shall be performed at a nominal thrust, at starting condition
(AST), generated by the supply pressure 0,55 MPa (5,5 bar) as shown in Table 2.
Stroke length, stroking time and number of cycles for the endurance test shall be selected from Table 4
considering the EN ISO 5210 range where the rated thrust (3.3.1) of the actuator under test falls.
13
---------------------- Page: 15 ----------------------
SIST EN 15714-5:2022
EN 15714-5:2022 (E)
a
Table 4 — Endurance testing parameters
Rated thrust Minimum test Maximum stroking time Minimum number
b a c
for tabulated stroke length
reference range stroke length of cycles
kN mm s
≤ 10 20 3 100 000
> 10 to ≤ 20 40 5 60 000
> 20 to ≤ 40 60 7 40 000
> 40 to ≤ 70 60 14 20 000
> 70 to ≤ 100 80 18 15 000
> 100 to ≤ 150 100 22 10 000
> 150 to ≤ 200 120 30 5 000
> 200 to ≤ 325 140 45 2 500
> 325 to ≤ 700 160 60 1 000
a
Different testing parameters are acceptable subject to agreement between the purchaser and the
manufacturer/supplier.
b
Range of values based on EN ISO 5210.
c
One cycle consists of one minimum stroke in each direction (i.e. one stroke to extend + one stroke to retract).
The number of cycles is based on On-Off duty version. For modulating control duty version, the number of
cycles, the minimum test stroke length and the moving speed for the endurance test are agreed between th
...
SLOVENSKI STANDARD
oSIST prEN 15714-5:2019
01-julij-2019
Industrijski ventili - Pogoni - 5. del: Pnevmatični linearni pogoni za industrijske
ventile - Osnovne zahteve
Industrial valves - Actuators - Part 5: Pneumatic linear actuators for industrial valves —
Basic requirements
Industriearmaturen - Antriebe - Teil 5: Pneumatische und hydraulische Antriebe -
Grundanforderungen
Robinetterie industrielle - Actionneurs - Partie 5 : Actionneurs linéaires pneumatiques -
Prescriptions de base
Ta slovenski standard je istoveten z: prEN 15714-5
ICS:
23.060.20 Zapirni ventili (kroglasti in Ball and plug valves
pipe)
oSIST prEN 15714-5:2019 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
---------------------- Page: 1 ----------------------
oSIST prEN 15714-5:2019
---------------------- Page: 2 ----------------------
oSIST prEN 15714-5:2019
DRAFT
EUROPEAN STANDARD
prEN 15714-5
NORME EUROPÉENNE
EUROPÄISCHE NORM
May 2019
ICS 23.060.20
English Version
Industrial valves - Actuators - Part 5: Pneumatic linear
actuators for industrial valves - Basic requirements
Robinetterie industrielle - Actionneurs - Partie 5 : Industriearmaturen - Antriebe - Teil 5: Pneumatische
Actionneurs linéaires pneumatiques - Prescriptions de und hydraulische Antriebe - Grundanforderungen
base
This draft European Standard is submitted to CEN members for enquiry. It has been drawn up by the Technical Committee
CEN/TC 69.
If this draft becomes a European Standard, CEN members are bound to comply with the CEN/CENELEC Internal Regulations
which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
This draft European Standard was established by CEN in three official versions (English, French, German). A version in any other
language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC
Management Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and United Kingdom.
Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are
aware and to provide supporting documentation.
Warning : This document is not a European Standard. It is distributed for review and comments. It is subject to change without
notice and shall not be referred to as a European Standard.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2019 CEN All rights of exploitation in any form and by any means reserved Ref. No. prEN 15714-5:2019 E
worldwide for CEN national Members.
---------------------- Page: 3 ----------------------
oSIST prEN 15714-5:2019
prEN 15714-5:2019 (E)
Contents Page
European foreword . 4
1 Scope . 5
2 Normative references . 5
3 Terms and definitions . 5
4 Classification/Designation . 7
4.1 Duty classification . 7
4.2 Action . 7
4.3 Motive energy . 7
4.4 Actuator performance data . 8
5 Basic design requirements . 10
5.1 Actuator attachment . 10
5.2 Nominal stroke . 11
5.3 Endurance . 12
5.4 Leakage . 13
5.5 Environmental conditions . 14
5.6 Pressure connections . 15
5.7 Structural safety factors . 17
5.8 Safety requirements . 17
5.9 Ancillaries support . 18
6 Optional equipment . 18
6.1 Ancillaries . 18
6.2 Manual operation device . 18
6.3 Mechanical end stop adjustment . 18
6.4 Local position indicator . 19
6.5 Bracket . 19
6.6 Anti-rotation device . 19
7 Factory Compliance . 19
7.1 General . 19
7.2 Type tests . 19
7.3 Control of production process and quality system . 20
8 Marking . 21
8.1 Mandatory marking. 21
8.2 Optional marking . 22
9 Documentation . 22
10 Linear actuator selection guidelines . 22
Annex A (normative) Endurance test procedure . 23
A.1 General . 23
A.2 Test equipment . 23
A.3 Test conditions . 23
A.4 Test procedure . 23
A.5 Acceptance criteria . 23
2
---------------------- Page: 4 ----------------------
oSIST prEN 15714-5:2019
prEN 15714-5:2019 (E)
Annex B (informative) Actuator selection guidelines . 25
B.1 General . 25
B.2 Selection parameters . 25
B.2.1 General . 25
B.2.2 Valve questions . 25
B.2.3 Actuator questions . 25
B.2.4 Ancillary questions . 26
B.2.5 Environmental conditions . 26
B.3 Actuator selection. 26
Bibliography . 27
3
---------------------- Page: 5 ----------------------
oSIST prEN 15714-5:2019
prEN 15714-5:2019 (E)
European foreword
This document (prEN 15714-5:2019) has been prepared by Technical Committee CEN/TC 69 “Industrial
valves”, the secretariat of which is held by AFNOR.
This document is currently submitted to the CEN Enquiry.
4
---------------------- Page: 6 ----------------------
oSIST prEN 15714-5:2019
prEN 15714-5:2019 (E)
1 Scope
This document provides basic requirements for piston type pneumatic linear actuators for industrial
valve, both double acting and single acting, used for on-off and modulating control duties.
It includes criteria, method and guidelines for design, qualification, corrosion protection, control and
testing.
It does not apply to diaphragm actuators and to pneumatic actuators which are integral parts of control
valves.
Other requirements, or conditions of use, different from those indicated in this document, are subject to
negotiations, between the purchaser and the manufacturer/supplier, prior to order.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
EN ISO 5210:2017, Industrial valves - Multi-turn valve actuator attachments (ISO 5210:2017)
EN 12570, Industrial valves - Method for sizing the operating element
EN 60529, Degrees of protection provided by enclosures (IP Code)
ISO 5599-2, Pneumatic fluid power — Five-port directional control valves — Part 2: Mounting interface
surfaces with optional electrical connector
3 Terms and definitions
For the purposes of this document the terms and definitions given in EN 15714-1 and the following apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
• IEC Electropedia: available at http://www.electropedia.org/
• ISO Online browsing platform: available at http://www.iso.org/obp
3.1
stroke
single and complete movement from one end of travel to the other
3.2
output thrust
minimum guaranteed output thrust capability of the actuator, in both directions, at specified supply
pressures conditions as provided by the manufacturer/supplier
Note 1 to entry: Where the output thrust varies along the stroke, in a linear or nonlinear relationship with pressure,
tabulated data and/or thrust versus stroke diagram shall be provided at significant pressure values for each
direction of movement.
3.2.1 Nominal thrust
3.2.1.1
double acting version
minimum guaranteed output thrust of the actuator, at any point of the stroke, with nominal supply 5,5 bar
5
---------------------- Page: 7 ----------------------
oSIST prEN 15714-5:2019
prEN 15714-5:2019 (E)
3.2.1.2
single acting version
guaranteed output thrust of the actuator with pneumatic nominal supply 5,5 bar at the beginning of the
stroke in the direction to compress the spring
3.2.2
start thrust
actuator output thrust at the beginning of the stroke in the direction of movement
3.2.3
maximum thrust
for double acting version, output thrust of the actuator when the pressure of the power supply
corresponds to the maximum allowable pressure; for single acting version, maximum output thrust
between the thrust at the beginning of the stroke when the pressure of the power supply corresponds to
the maximum allowable pressure and the thrust generated by the spring at the end of specified
compression stroke
Note 1 to entry: The maximum thrust value shall be indicated by the manufacturer/supplier. The value shall be not
lower than 1,45 times the nominal thrust.
3.3 Single acting version
3.3.1
Air Starting Thrust
AST
output thrust, at defined pressure value, at the beginning of the stroke in opposition to the spring
3.3.2
Air Ending Thrust
AET
output thrust, at defined pressure value, at the end of the stroke when spring is at its maximum
compression
3.3.3
Air Running Thrust
ART
any output thrust value between AST and AET at defined pressure value
3.3.4
Spring Ending Thrust
SET
output thrust generated by the spring at the end of its stroke with no air in the cylinder
3.3.5
Spring Starting Thrust
SST
output thrust generated by the spring at its maximum compression with no air in the cylinder
3.3.6
Spring Running Thrust
SRT
any output thrust value between SST and SET
6
---------------------- Page: 8 ----------------------
oSIST prEN 15714-5:2019
prEN 15714-5:2019 (E)
3.4
operating time
moving times for the guaranteed stroke in each direction of movement
Note 1 to entry: Requested values shall be defined between the purchaser and the actuator manufacturer/supplier
considering the ancillaries (6.1) mounted on the actuator, the supply flow rate and the presence or not of external
load.
3.5
displacement volume
internal actuator displaced volumes (in liter) for each direction, including the dead volumes, for the
maximum stroke without any external limitation
4 Classification/Designation
4.1 Duty classification
4.1.1 General
According to their intended function, two versions of linear valve actuators are defined by this Standard:
on-off duty and modulating duty.
4.1.2 On-off duty
The actuator is required to drive the valve through its entire travel from the fully open position to the
fully closed position or vice-versa.
4.1.3 Modulating duty
The actuator is required to continuously drive the valve to any position between fully open and fully
closed.
4.2 Action
4.2.1 Double Acting (DA)
This actuator requires the supply of motive energy to operate in both travel directions.
4.2.2 Single Acting (SA)
This actuator requires external power to operate the valve in one direction only, the return stroke being
powered by an alternative form of stored energy (Fail Safe actuators).
For the purpose of this document, the stored energy shall be supplied by a mechanical spring.
4.3 Motive energy
4.3.1 Operating medium
The operating medium shall be compressed instrument air, unless otherwise specified.
Other compressed gases may be used, on agreement between the purchaser and manufacturer/supplier,
ensuring they are compatible with all the parts in contact with the fluid including the lubricants.
4.3.2 Quality
Humidity of the operating medium shall be Class 2 according to ISO 8573-1:2010, Table 2.
For ambient temperature conditions different from the standard stated at 5.5.1, the dew point shall be at
least 10 °C below the minimum operating ambient temperature.
7
---------------------- Page: 9 ----------------------
oSIST prEN 15714-5:2019
prEN 15714-5:2019 (E)
It is recommended that the content of particles per cubic meter in the operating medium shall not exceed
Class 5 according to ISO 8573-1:2010, Table 1.
Particles up to a maximum 40 µm size are acceptable in the operating medium provided that a right
analysis of the behaviour of the ancillaries (6.1), when mounted on the actuator, is done.
4.3.3 Pressure general information
As a general information the manufacturer/supplier shall indicate, for each actuator model, the pressure
limits including the maximum allowable pressure or the minimum moving pressure (for double acting
actuators) and design pressure.
The minimum moving pressure for a single acting actuator is the minimum pressure required at ambient
temperature to complete the specified stroke (3.1), starting from not pressurized conditions, without
external load.
4.3.4 Pressure values
Nominal supply pressure, to define the reference data, shall be 5,50 bar.
The maximum allowable pressure shall be at least 8 bar, unless otherwise specified.
Design pressure shall be at least 1,10 times the maximum allowable pressure.
The recommended minimum design pressure is 10 bar. The design pressure value shall be used to
determine the structural resistance of the pressure retaining parts of the actuator.
4.3.5 Structural test pressure
The minimum structural test pressure value for pressurized parts shall be 1,43 times the design pressure
for steel enclosures and a minimum of 2,00 times the design pressure for cast steel, spheroidal cast iron
and cast aluminium enclosures.
Duration time under test pressure shall be at least 60 s after pressure stabilization.
No external leakage or permanent deformations are accepted after this test.
Specific procedure to carry out this test, including the percentage of tested units for mass production,
shall be established by the manufacturer/supplier.
4.4 Actuator performance data
4.4.1 Double acting version
Data and dimensions of double acting actuator shall be in accordance with Table 1.
8
---------------------- Page: 10 ----------------------
oSIST prEN 15714-5:2019
prEN 15714-5:2019 (E)
Table 1 — Data and dimensions of double acting actuator
Actual nominal
Preferred
Thrust rating Flange type
ISO 5210 Minimum
a
nominal internal
thrust
b c
nominal Thrust stroke
(MOT) ISO 5210
cylinder diameter
“X”
mm kN kN kN mm
80 2,7 4 F05 ≤ 10 20
100 4,1 6 F05 ≤ 10 20
125 6,5 10 F05 ≤ 10 20
160 10,6 16 F07 ≤ 20 40
200 16,6 25 F10 ≤ 40 60
250 26,0 38 F10 ≤ 40 60
300 36,6 53 F12 ≤ 70 60
400 66,5 95 F14 ≤ 100 80
500 101,5 148 F16 ≤ 150 100
600 146,0 215 F25 ≤ 200 120
700 199,0 290 F30 ≤ 350 140
900 329,0 480 F35 ≤ 700 160
1 100 495,0 715 F35 ≤ 700 160
a
Actual nominal thrust, piston side, is based on 5,5 bar nominal pressure and includes friction factor.
b
Maximum operating thrust (MOT) at maximum allowable pressure = 8 bar.
c
Different flange type may be used upon agreement between purchaser and manufacturer/supplier.
4.4.2 Single acting version
Data and dimensions of single acting actuator shall be in accordance with Table 2.
9
---------------------- Page: 11 ----------------------
oSIST prEN 15714-5:2019
prEN 15714-5:2019 (E)
Table 2 — Data and dimensions of single acting actuator
Actual Nominal Preferred Thrust Flange
Preferred ISO 5210
Minimum
a Spring Ending rating type
nominal internal Nominal
Thrust (AST)
stroke
b c d
cylinder diameter Thrust
“X” Thrust (SET) (MOT) ISO 5210
mm kN kN kN kN mm
125 4,1 2,4 7 F05 ≤ 10 20
160 5,2 5,4 10 F05 ≤ 10 20
180 8,0 5,4 14 F07 ≤ 20 40
200 10,0 6,6 18 F07 ≤ 20 40
250 16,0 10,0 28 F10 ≤ 40 60
300 19,0 18,5 36 F10 ≤ 40 60
400 40,0 26,3 70 F12 ≤ 70 60
500 55,0 47,0 100 F14 ≤ 100 80
600 88,0 58,0 150 F16 ≤ 150 100
700 100,0 99,0 200 F25 ≤ 200 120
800 130,0 130,0 250 F30 ≤ 350 140
900 194,0 135,0 345 F30 ≤ 350 140
1 250 350,0 284,0 640 F35 ≤ 700 160
a
Actual nominal thrust is based on 5,5 bar nominal pressure (AST) and includes friction factor.
b
Recommended ratio between SST and SET = 1,25 at minimum stroke.
c
Maximum operating thrust (MOT) at maximum allowable pressure = 8 bar.
d
Different flange type may be used upon agreement between purchaser and manufacturer/supplier.
5 Basic design requirements
5.1 Actuator attachment
Dimensions of attachment flange shall be according to EN ISO 5210:2017, 7.6 and Table 8.
Dimensions of output shaft shall be according to Figure 1 and Table 3, with optional flat attach for fork
wrench SW.
10
---------------------- Page: 12 ----------------------
oSIST prEN 15714-5:2019
prEN 15714-5:2019 (E)
Figure 1 — Dimensions of output drive
Table 3 — Data and dimensions of output drive
a
Flange type
l l d d
Thrust rating sw
2 4 8 13
EN ISO 5210
kN mm mm mm mm mm
F05 ≤ 10 20 45 M12 × 1,25 15 13
F07 ≤ 20 25 50 M16 × 1,5 20 17
F10 ≤ 40 30 55 M20 × 1,5 25 21
F12 ≤ 70 35 65 M24 × 1,5 30 27
F14 ≤ 100 55 80 M36 × 3 40 36
F16 ≤ 150 65 90 M42 × 3 50 46
F25 ≤ 200 75 100 M48 × 3 55 50
F30 ≤ 350 90 120 M56 × 4 60 55
F35 ≤ 700 120 150 M80 × 4 90 80
a
Different flange and/or coupling type may be used upon agreement between purchaser and
manufacturer/supplier.
The material of the output drive (Table 3) component shall be clearly indicated in the
manufacturer’s/supplier’s documentation.
5.2 Nominal stroke
Linear actuator shall provide an output stem movement, stroke (3.1) defined by the
manufacturer/supplier in a tabulated form or based on agreement between the manufacturer/supplier
and purchaser or valve manufacturer.
The stroke can be limited, around the defined end values, by means of adjustable mechanical end stops
in one or both directions of movement (6.3).
11
---------------------- Page: 13 ----------------------
oSIST prEN 15714-5:2019
prEN 15714-5:2019 (E)
Linear actuators with adjustable mechanical end stops (6.3) shall allow the defined stroke with a ± 3 %
of adjustment referred to the set stroke.
Linear actuators without adjustable mechanical end-stops shall be designed to provide the defined
nominal stroke value with a tolerance H15 according to ISO 286-1.
Different values of tolerances or percentages on end-stops adjustment shall be agreed between the
purchaser and the manufacturer/supplier.
5.3 Endurance
5.3.1 General
The actuator shall be designed to have an endurance, without maintenance, in accordance with the values
given in Table 4 for double acting actuators and Table 5 for single acting actuators.
Conformity to the endurance requirements shall be proved by a test carried out according to Annex A.
Table 4 — Endurance testing parameters for double acting actuators
Reference Nominal Minimum stroke Maximum stroking time for Minimum number
a b b b, c
Thrust range length for testing tabulated stroke length of cycles
kN mm s
≤ 10 30 3 100 000
> 10 to ≤ 20 40 5 60 000
> 20 to ≤ 40 60 7 40 000
> 40 to ≤ 70 100 14 20 000
> 70 to ≤ 100 120 18 15 000
> 100 to ≤ 150 140 22 10 000
> 150 to ≤ 200 160 30 5 000
> 200 to ≤ 350 200 45 2 500
> 350 to ≤ 700 250 60 1 000
a
Range of values based on EN ISO 5210.
b
Different testing parameters are acceptable subjected to agreement between the purchaser and the
manufacturer/supplier.
c
One cycle consists of one minimum stroke in each direction (i.e. stroke to open + stroke to close).
12
---------------------- Page: 14 ----------------------
oSIST prEN 15714-5:2019
prEN 15714-5:2019 (E)
Table 5 — Endurance testing parameters for single acting actuators
Reference Nominal Minimum stroke length Maximum stroking time Minimum number
a b b, c b, c
Thrust range for spring compression for the full cycle of cycles
kN mm s
≤ 10 30 6 100 000
> 10 to ≤ 20 40 10 60 000
> 20 to ≤ 40 60 15 40 000
> 40 to ≤ 70 100 30 20 000
> 70 to ≤ 100 120 35 15 000
> 100 to ≤ 150 140 45 10 000
> 150 to ≤ 200 160 60 5 000
> 200 to ≤ 350 200 90 2 500
a
Range of values based on ISO 5210.
b
Different testing parameters are acceptable subjected to agreement between the purchaser and the
manufacturer/supplier.
c
One cycle consists of one minimum stroke in each direction (i.e. stroke to open with air + stroke to close with
spring).
5.3.2 Double acting version
Endurance test for the double acting version shall be based on a load of 100 % of the actual nominal thrust
as defined in Table 1 for the stroke parameters defined in Table 4.
5.3.3 Single acting version
Endurance test for single acting versions shall be based on a first stroke, under a pressure equal to 5,5 bar,
to move the actuator from spring released position (SET) up to the maximum spring load (SST) defined
for the specific model submitted to the endurance test. The return stroke to complete the cycle is obtained
by the spring action exhausting the air from the cylinder.
Stroke length for testing shall not be lower than the values specified in Table 5 for each range selected on
the basis of the actual nominal thrust (AST) at 5,5 bar as defined in Table 2.
5.4 Leakage
A leakage detection test shall be carried out on the whole pressure retaining parts of the actuator
including the ancillaries if any.
The test pressure value shall be at 1,1 times the maximum allowable pressure, with a minimum 5,5 bar.
The minimum duration shall be:
a) 30 s for cylinder volumes up to and including 10 l;
b) 60 s for cylinder volumes up to and including 100 l;
c) 120 s for cylinder volumes above 100 l.
The actuator and associated ancillaries shall have no visible external leakage for the duration of the test.
13
---------------------- Page: 15 ----------------------
oSIST prEN 15714-5:2019
prEN 15714-5:2019 (E)
Specific procedure to carry out this test, including the percentage of tested units for mass production,
shall be established by the manufacturer/supplier.
5.5 Environmental conditions
5.5.1 Ambient temperature
The actuator shall be designed for operation at an ambient temperature range between −20 °C and
+60 °C, unless otherwise agreed between the manufacturer/supplier and purchaser.
5.5.2 Enclosure protection
The non-pressurized compartments of the actuator shall have a degree of protection at least IP 65
according to EN 60529 (excluding the exhaust port).
5.5.3 Corrosion protection
Actuators shall be protected against external corrosion by proper surface treatment and/or special
material selection. The actuator manufacturer's technical documentation shall specify the corrosion
protection category according to Table 6.
Table 6 — Environmental corrosion categories
Typical environments
Corrosion category
Exterior Interior
Unheated buildings where
Atmospheres with low level of
C2 (low) condensation could occur, e.g.
pollution. Mostly rural areas.
depots, sport halls.
Urban and industrial Production rooms with high
atmospheres, moderate sulphur humidity and some air pollution,
C3 (medium)
dioxide pollution. Coastal areas e.g. food- processing plants,
with low salinity. laundries, breweries.
Industrial areas and coastal areas Chemical plants, swimming pools,
C4 (high)
with moderate salinity. coastal shipyards.
Industrial areas with high Buildings or areas with almost
C5-I (very high — industrial) humidity and aggressive permanent condensation and
atmosphere. with high pollution.
Buildings or areas with almost
Coastal and offshore areas with
C5-M (very high — marine) permanent condensation and
high salinity.
with high poll
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.