Environmental Engineering (EE) - Power supply interface at the input to telecommunications equipment - Part 2: Operated by direct current (dc)

The present document contains requirements for:
- the output performance of the direct current (dc) power equipment at the interface "A";
- the input of the telecommunications equipment connected to interface "A" powered by dc.
The dc voltage at interface "A" may be derived from the AC primary supply. The dc supply may incorporate a backup battery. If any other equipment e.g. datacom equipment, are connected to interface "A" in parallel to telecommunications equipment, all requirements addressed in clause 4 of the present document must be fulfilled. The present document aims at providing compatibility between the power supply equipment and the power consuming telecommunications equipment, and also between different system blocks connected to the same power supply. NOTE 1: The present document is applicable only to -48 Vdc power supply interfaces. However, during a transitional period, other dc voltages may be used in existing installations. Annex A gives guidance on working in conjunction with existing -60 Vdc supply systems. The power supply interface, interface "A", is a physical point to which all the requirements are related (see figure 1). This point is situated between the power supply system(s) and the power consuming telecommunications equipment.
NOTE 2: Interface "A" is located at the power terminals of the telecommunications equipment. Subject to the installation preconditions this point may be located at any other point between the power supply system and the telecommunications equipment by mutual agreement of the relevant parties. The requirements at interface "A" apply to:
- the output of the power supply equipment or power supply installation of telecommunications centres;
- the power supply input of telecommunications equipment installed at telecommunication centres;
- telecommunications equipment, installed in customers' premises, whose dc interface "A" is also used by equipment requiring a supply to this specification.
NOTE 3: Normally there is more than one load unit connected to interface "A". In these cases, interface "A" will undergo further restrictions with respect to noise limits or other disturbances specified in clause 4.8. NOTE 4: Disturbances on the power supply interface "A" relating to the continuous wave phenomena below 20 kHz are covered within the present document. NOTE 5: An example of a configuration in which interface "A" is identified is given in annex D.

Okoljski inženiring (EE) - Napajalni vmesnik na vhodu v telekomunikacijsko opremo - 2. del: Obratovanje z enosmerno napetostjo (dc)

General Information

Status
Published
Publication Date
04-Nov-2007
Technical Committee
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
17-Oct-2007
Due Date
22-Dec-2007
Completion Date
05-Nov-2007

Buy Standard

Standard
SIST EN 300 132-2 V2.2.1:2007
English language
33 pages
sale 10% off
Preview
sale 10% off
Preview

e-Library read for
1 day

Standards Content (sample)

2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.Okoljski inženiring (EE) - Napajalni vmesnik na vhodu v telekomunikacijsko opremo - 2. del: Obratovanje z enosmerno napetostjo (dc)Environmental Engineering (EE) - Power supply interface at the input to telecommunications equipment - Part 2: Operated by direct current (dc)33.050.01Telekomunikacijska terminalska oprema na splošnoTelecommunication terminal equipment in general19.040Preskušanje v zvezi z okoljemEnvironmental testingICS:Ta slovenski standard je istoveten z:EN 300 132-2 Version 2.2.1SIST EN 300 132-2 V2.2.1:2007en01-december-2007SIST EN 300 132-2 V2.2.1:2007SLOVENSKI

STANDARD
SIST EN 300 132-2 V2.2.1:2007

ETSI EN 300 132-2 V2.2.1 (2007-05)European Standard (Telecommunications series) Environmental Engineering (EE);Power supply interface at the input totelecommunications equipment;Part 2: Operated by direct current (dc)

SIST EN 300 132-2 V2.2.1:2007
ETSI ETSI EN 300 132-2 V2.2.1 (2007-05) 2

Reference REN/EE-02008[3] Keywords interface, power supply ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00
Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2007. All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members. TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members. 3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. SIST EN 300 132-2 V2.2.1:2007

ETSI ETSI EN 300 132-2 V2.2.1 (2007-05) 3

Contents Intellectual Property Rights................................................................................................................................5 Foreword.............................................................................................................................................................5 1 Scope........................................................................................................................................................6 2 References................................................................................................................................................7 3 Definitions, symbols and abbreviations...................................................................................................8 3.1 Definitions..........................................................................................................................................................8 3.2 Symbols..............................................................................................................................................................9 3.3 Abbreviations.....................................................................................................................................................9 4 Requirements............................................................................................................................................9 4.1 Nominal voltage.................................................................................................................................................9 4.2 Normal service voltage range at interface "A"...................................................................................................9 4.3 Abnormal service voltage range at interface "A".............................................................................................10 4.3.1 Abnormal service voltage under steady-state conditions............................................................................10 4.3.2 Recovery from steady state abnormal voltage............................................................................................10 4.3.3 Voltage transients.......................................................................................................................................10 4.3.4 Recovery from voltage transients...............................................................................................................11 4.4 Voltage changes due to the regulation of the power supply.............................................................................11 4.4.1 Test conditions............................................................................................................................................11 4.4.2 Performance criteria....................................................................................................................................11 4.5 Supply protection at interface "A"....................................................................................................................12 4.6 Maximum current drain following abnormal service.......................................................................................12 4.7 Inrush Current on connection of interface "A".................................................................................................12 4.7.1 Limits..........................................................................................................................................................12 4.7.2 Measurements.............................................................................................................................................13 4.8 Conducted immunity requirements of the telecommunications equipment at interface "A"............................13 4.8.1 Immunity to narrowband noise...................................................................................................................14 4.9 Conducted emissions requirements of the telecommunications equipment at interface "A"............................15 4.9.1 Emissions of narrow-band noise.................................................................................................................15 5 Earthing and bonding.............................................................................................................................16 6 Electrical safety requirements................................................................................................................17 7 EMC requirements.................................................................................................................................17 Annex A (informative): -60 Vdc systems................................................................................................18 Annex B (informative): Guide for measuring inrush current and for transferring the recorded pulses onto the limit chart.............................................................19 B.1 Measurement..........................................................................................................................................19 B.2 Pulse waveform transformation..............................................................................................................19 B.3 Measurement of inrush current with filter capacitor current pulses.......................................................22 Annex C (informative): Test arrangements for the injection of electrical noise at interface "A"..................................................................................................................25 Annex D (informative): Identification of interface "A"......................................................................26 Annex E (informative): Wideband noise..............................................................................................27 E.1 Emission of wideband noise...................................................................................................................27 E.1.1 Assessment of wideband noise.........................................................................................................................27 E.2 How to calculate wideband emission.....................................................................................................27 SIST EN 300 132-2 V2.2.1:2007

ETSI ETSI EN 300 132-2 V2.2.1 (2007-05) 4

Annex F (informative): Protection dimensioning................................................................................31 Annex G (informative): Bibliography...................................................................................................32 History..............................................................................................................................................................33

SIST EN 300 132-2 V2.2.1:2007
ETSI ETSI EN 300 132-2 V2.2.1 (2007-05) 5

Intellectual Property Rights IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp). Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document. Foreword This European Standard (Telecommunications series) has been produced by ETSI Technical Committee Environmental Engineering (EE). The present document concerns the requirements for the interface between telecommunications equipment and its power supply, and includes requirements relating to its stability and measurement. Various other references and detailed measurement and test arrangements are contained in informative annexes. The present document is part 2 of a multi-part deliverable covering Environmental Engineering (EE); Power supply interface at the input to telecommunications equipment, as identified below: Part 1: "Operated by alternating current (ac) derived from direct current (dc) sources"; Part 2: "Operated by direct current (dc)"; Part 3: "Operated by rectified current source, alternating current source or direct current source up to 400 V".

National transposition dates Date of adoption of this EN: 18 May 2007 Date of latest announcement of this EN (doa): 31 August 2007 Date of latest publication of new National Standard or endorsement of this EN (dop/e):

29 February 2008 Date of withdrawal of any conflicting National Standard (dow): 29 February 2008

SIST EN 300 132-2 V2.2.1:2007
ETSI ETSI EN 300 132-2 V2.2.1 (2007-05) 6

1 Scope The present document contains requirements for: - the output performance of the direct current (dc) power equipment at the interface "A"; - the input of the telecommunications equipment connected to interface "A" powered by dc. The dc voltage at interface "A" may be derived from the AC primary supply. The dc supply may incorporate a backup battery. If any other equipment e.g. datacom equipment, are connected to interface "A" in parallel to telecommunications equipment, all requirements addressed in clause 4 of the present document must be fulfilled. The present document aims at providing compatibility between the power supply equipment and the power consuming telecommunications equipment, and also between different system blocks connected to the same power supply. NOTE 1: The present document is applicable only to -48 Vdc power supply interfaces. However, during a transitional period, other dc voltages may be used in existing installations. Annex A gives guidance on working in conjunction with existing -60 Vdc supply systems. The power supply interface, interface "A", is a physical point to which all the requirements are related (see figure 1). This point is situated between the power supply system(s) and the power consuming telecommunications equipment. NOTE 2: Interface "A" is located at the power terminals of the telecommunications equipment. Subject to the installation preconditions this point may be located at any other point between the power supply system and the telecommunications equipment by mutual agreement of the relevant parties. The requirements at interface "A" apply to: - the output of the power supply equipment or power supply installation of telecommunications centres; - the power supply input of telecommunications equipment installed at telecommunication centres; - telecommunications equipment, installed in customers' premises, whose dc interface "A" is also used by equipment requiring a supply to this specification. NOTE 3: Normally there is more than one load unit connected to interface "A". In these cases, interface "A" will undergo further restrictions with respect to noise limits or other disturbances specified in clause 4.8. NOTE 4: Disturbances on the power supply interface "A" relating to the continuous wave phenomena below 20 kHz are covered within the present document. NOTE 5: An example of a configuration in which interface "A" is identified is given in annex D. SIST EN 300 132-2 V2.2.1:2007

ETSI ETSI EN 300 132-2 V2.2.1 (2007-05) 7

Interface "A"telecommunicationsequipmentSystem blockDC power supply conductors Figure 1: Identification of interface "A" The purpose of the present document is: - to use a power supply system with the same characteristics for all telecommunications equipment defined in the area of application; - to facilitate inter working of different (types of) load units; - to facilitate the standardization of telecommunications equipment; - to facilitate the installation, operation and maintenance in the same network of equipment and telecommunications systems from different origins. 2 References The following documents contain provisions which, through reference in this text, constitute provisions of the present document. • References are either specific (identified by date of publication and/or edition number or version number) or non-specific. • For a specific reference, subsequent revisions do not apply. • For a non-specific reference, the latest version applies. Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference. NOTE: While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee their long term validity. [1] IEC 60269-1: "Low-voltage fuses - Part 1: General requirements". [2] CENELEC EN 60934: "Circuit-breakers for equipment (CBE)". [3] ETSI EN 300 253: "Environmental Engineering (EE); Earthing and bonding of telecommunication equipment in telecommunication centres". [4] ITU-T Recommendation Q.551: "Transmission characteristics of digital exchanges". [5] ITU-T Recommendation Q.552: "Transmission characteristics at 2-wire analogue interfaces of digital exchanges". SIST EN 300 132-2 V2.2.1:2007

ETSI ETSI EN 300 132-2 V2.2.1 (2007-05) 8

[6] ITU-T Recommendation Q.553: "Transmission characteristics at 4-wire analogue interfaces of digital exchanges". [7] ITU-T Recommendation Q.554: "Transmission characteristics at digital interfaces of digital exchanges". [8] ITU-T Recommendation O.41: "Psophometer for use on telephone-type circuits". [9] CENELEC EN 61000-4-5: "Electromagnetic compatibility (EMC) - Part 4-5: Testing and measurement techniques - Surge immunity test". 3 Definitions, symbols and abbreviations 3.1 Definitions For the purposes of the present document, the following terms and definitions apply: abnormal voltage range: range of steady-state voltage over which the equipment will not be expected to maintain normal service but will survive undamaged customer premises: any location which is the sole responsibility of the customer fully equipped equipment: generally there are several maximum configurations because different boards can be used in the same slots NOTE: The fully-equipped equipment configuration shall be the configuration that corresponds to the maximum power consumption measured at -48 Vdc e.g. not in standby mode. interface "A": terminals at which the power supply is connected to the system block NOTE 1: See also figure 1. NOTE 2: This is a functional definition and not an exact depiction of the physical location. load unit: power-consuming equipment, that is part of a system block maximum continuous input current: maximum continuous input current, stated by the manufacturer, for a fully-equipped equipment under test connected to interface "A", at nominal voltage (accordance clauses 4.6 and 4.7.1 of the present document) nominal voltage: nominal value of the voltage that designates the type of supply normal service: service mode where telecommunications equipment operates within its specification normal service voltage range: range of steady-state voltages over which the equipment will maintain normal service power supply: power source to which telecommunications equipment is intended to be connected system block: functional group of equipment depending for its operation and performance on its connection to the same power supply NOTE: A system block may consist of equipment or a functional group of equipment. Different examples of configurations at interface "A" are given in annex D. telecommunication centre: location where telecommunications equipment is installed and which is the sole responsibility of the operator SIST EN 300 132-2 V2.2.1:2007

ETSI ETSI EN 300 132-2 V2.2.1 (2007-05) 9

3.2 Symbols For the purposes of the present document, the following symbols apply: It instantaneous surge current (see clause 4.7.1) Im maximum continuous input current L inductance of inductive element of LISN R resistance of resistive element of LISN t time Zc capacitive impedance of immunity measurement circuit Zm resistive impedance of immunity measurement circuit 3.3 Abbreviations For the purposes of the present document, the following abbreviations apply: CDN Coupling/Decoupling Networks dc direct current NOTE: Also when used as a suffix to units of measurement. EMC ElectroMagnetic Compatibility EUT Equipment Under Test LISN Line Impedance Stabilization Network RF Radio Frequency rms root mean square NOTE: Also when used as a suffix to units of measurement. 4 Requirements 4.1 Nominal voltage The nominal value of the voltage at interface "A" shall be -48 Vdc (positive conductor is connected to earth). NOTE 1: In most cases the voltage of interface "A" will be complemented by a 24 cell lead-acid battery. NOTE 2: During a transitional period, other dc voltages may be used in existing installations. Annex A gives guidance on merging equipment with existing -60 Vdc supply systems. 4.2 Normal service voltage range at interface "A" The normal service voltage range for the -48 Vdc nominal supply at interface "A" shall be -40,5 Vdc to -57,0 Vdc. NOTE 1: The minimum voltage is based on the voltage drop in the distribution network and a battery cell end of discharge voltage. NOTE 2: The voltages specified are measured at interface "A". It should be noted that if interface "A" is at any point other than the telecommunications equipment interface there will be a voltage drop between interface "A" and the equipment terminals. NOTE 3: When the voltage is in the range -40,5 Vdc to -44,0 Vdc it is recognized that there may be a slight degradation of service performance. SIST EN 300 132-2 V2.2.1:2007

ETSI ETSI EN 300 132-2 V2.2.1 (2007-05) 10 4.3 Abnormal service voltage range at interface "A" 4.3.1 Abnormal service voltage under steady-state conditions Telecommunications equipment operated at -48 Vdc shall not suffer any damage when subjected to the following voltage ranges: 0,0 Vdc to -40,5 Vdc and -57,0 Vdc to -60,0 Vdc

4.3.2 Recovery from steady state abnormal voltage Following the restoration of the supply to the normal voltage range, the power conversion and management systems on the load side of interface "A" shall automatically restore service. The telecommunications equipment shall then resume operation according to its specifications. The abnormal service voltage shall not lead to the disconnection of the power supply e.g. by causing circuit breakers, fuses or other such devices to operate. NOTE: It is acceptable that the system may restart when the voltage is -40,5 V or greater within the nominal service voltage range and/or after a time delay. 4.3.3 Voltage transients Voltage transients may occur at interface "A" when faults occur in the power distribution system. These transients are characterized by a voltage drop in the range: 0 Vdc to 40,5 Vdc, followed by an overvoltage often in excess of the maximum steady state abnormal service voltage range and dependent upon the power distribution up to interface "A" and the equipment connected to interface "A".

The performance of telecommunication equipment against this abnormal overvoltage shall be verified using the combination wave generator defined in the basic standard EN 61000-4-5 [9]. This generator has the pulse shape of 1,2µs-rise time/50µs-duration in open circuit and 8µs-rise time/20µs-duration in short circuit. The voltage transient wave generator test circuit is shown in figure 2. Telecommunication

equipment
EUTInterface "A"Wave GeneratorCDN+-d.c. power sourceCDNR

Figure 2: Voltage transient generator wave test circuit SIST EN 300 132-2 V2.2.1:2007

ETSI ETSI EN 300 132-2 V2.2.1 (2007-05) 11 The test has to be performed applying an overvoltage of 500V (positive polarity, reference of the generator shall be connected to the positive pole of battery) at the interface "A" of the telecommunication equipment with 2 Ohm impedance of the test generator. The test has to be performed in the following two battery configuration: • positive of battery connected to ground; • positive of battery not connected to ground. Telecommunications equipment operated at a nominal voltage shall not be damaged when subjected to these transients. Telecommunication equipment with battery input redundancies (e.g. battery "B1" and battery "B2") shall be tested applying the overvoltage at each battery input at a time.

NOTE: TR 100 283 (see bibliography) provides guidance for the protection of telecommunications equipment from the transients.

4.3.4 Recovery from voltage transients After the occurrence of a voltage transient, as described in clause 4.3.3, telecommunications equipment shall continue to function within its operational specification without requiring manual intervention. The abnormal service shall not lead to the disconnection of power supply units e.g. by causing circuit breakers, fuses and other such devices to operate. NOTE 1: In sensitive equipment, momentary and temporary interruption of the service may occur as a result of such transients at interface "A". Lengthening of the interruption to service (equipment is not functioning as intended) due to the recovery of software shall be taken in account. More detailed information about the service interruption shall be provided by the manufacturer on the request of the operator. NOTE 2: To prevent system malfunctioning additional arrangements concerning the power supply system may be necessary.

For example: - Dual feeding system. - High Ohmic distribution system. - Independent power distribution. 4.4 Voltage changes due to the regulation of the power supply Telecommunication equipment may be subjected to a voltage change at interface "A" as a result of regulation of the voltage by the power supply system e.g. end cell switching. This test applies to the telecommunication equipment connected to interface "A". The test can also be applied separately to each subpart of the equipment connected to the same interface "A".

4.4.1 Test conditions Telecommunication equipment shall be subjected to a single maximum transition rate of the voltage at interface "A" with an amplitude of 6 V ±10 % for both the fall and rise time of the voltage and a change rate within the range 3 V/ms to 7 V/ms. It is assumed that the voltage at interface "A" remains within the normal service voltage range during the test. 4.4.2 Performance criteria During and after the occurrence of such a transition voltage, the telecommunication equipment shall fulfil the following performance criteria. The tested part of the telecommunication equipment shall operate according to the specification and no loss of data or false alarm shall occur. SIST EN 300 132-2 V2.2.1:2007

ETSI ETSI EN 300 132-2 V2.2.1 (2007-05) 12 4.5 Supply protection at interface "A" The supply at interface "A" shall be protected by circuit breakers, fuses or other such devices. The energy content of the inrush current shall also be taken into account when specifying the power supply system up to interface "A". 4.6 Maximum current drain following abnormal service The maximum current drain at any voltage in the normal and abnormal voltage range at interface "A" lasting for longer than 1 second shall not exceed 1,5 times the maximum continuous current drain at nominal working voltage of -48 Vdc. NOTE 1: The current should not exceed this level at any time, also when the equipment is feed by a nearly empty battery, not only during restoration. This is mandatory to protect fuses. NOTE 2: For shorter times see Inrush Current Graph (see figure 3). 4.7 Inrush Current on connection of interface "A" 4.7.1 Limits Refer to the test configuration of figure 4. The ratio of the instantaneous inrush current It to maximum continuous current Im at interface "A", when the switch is closed at nominal voltage -48Vdc, shall not exceed the limits shown in figure 3. The parameters are defined as follows: - It inrush current (magnitude of instantaneous value); - Im maximum continuous input current for a fully-equipped equipment under test connected to interface "A",

at nominal voltage. Inrush Current @ Nominal Voltage051015202530354045500.11.010.0100.01,000.0t [ms]It/Im Figure 3: Maximum inrush current characteristics for telecommunications equipment at nominal voltage and maximum load SIST EN 300 132-2 V2.2.1:2007

ETSI ETSI EN 300 132-2 V2.2.1 (2007-05) 13 NOTE 1: This graph is a combined graph for both fuses and (Hydraulic) Magnetic Circuit Breakers. Fuses according IEC 60269-1 [1] (gG type), Magnetic Circuit Breakers according EN 60934 [2]. NOTE 2: See also annexes B and F. 4.7.2 Measurements The circuit for measuring the surge current drawn by the equipment shall be as shown in figure 4. The test circuit is designed to operate with a single switch as shown. NOTE: Small magnitude current pulses for charging RF filter capacitors should not be considered as the starting point of the inrush measurement. These pulses are not part of the inrush pulse but are before the inrush current pulse. Annex C gives guidance on taking these measurements. d.c. Power SourceRLLISNRecording DeviceInterface "A"TelecommunicationsequipmentEUT-+HLHVVRmµµ2010)48(@I1≤≤≤ NOTE 1: Resistance R includes the resistance of inductor L.

NOTE 2: The LISN could be the connecting cable (EUT to power supply), providing that the length has an inductance of 10 µH to 20 µH and an equivalent resistance. NOTE 3: The intention of the LISN is to simulate a power network over which a voltage drop not greater than 1 V will appear in case of nominal current. NOTE 4: While carrying out the surge current test, the voltage of the dc Power Source at the input of the LISN, as shown in figure 4, shall fall by no more than 2 V due to current limitation or internal impedance of the dc Power Source.

Figure 4: Inrush current test circuit for dc interfaces 4.8 Conducted immunity requirements of the telecommunications equipment at interface "A" NOTE: Annex C gives an example of a test arrangement for the injection of noise at interface "A". SIST EN 300 132-2 V2.2.1:2007

ETSI ETSI EN 300 132-2 V2.2.1 (2007-05) 14 4.8.1 Immunity to narrowband noise The telecommunications equipment shall meet its specification when the level of narrowband noise at interface "A" does not exceed the limits shown in figure 5. The values shown refer to the maximum bandwidths as given in table 1. Table 1 Frequency range Resolution bandwidth 25 Hz to 10 kHz 10 Hz > 10 kHz to 20 kHz 200 Hz or 300 Hz

10 100 1 000 10 000 f (Hz) dBm (1 mW in 50 Ω) mV -40 -30 -20 -10 0 2,24 7,07 22,4 70,7 224 -13 50 20 000 25

Figure 5: Immunity level of narrow-band noise at interface "A" The recommended method of measurement is with a spectrum analyser having the bandwidths shown in table 1 for the relevant frequency ranges. The measuring circuit is shown in figure 6. SIST EN 300 132-2 V2.2.1:2007

ETSI ETSI EN 300 132-2 V2.2.1 (2007-05) 15 d.c. Power Source
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.