prEN 15199-4
(Main)Petroleum products - Determination of boiling range distribution by gas chromatography method - Part 4: Light fractions of crude oil
Petroleum products - Determination of boiling range distribution by gas chromatography method - Part 4: Light fractions of crude oil
This document specifies a method for the determination of the boiling range distribution of petroleum products by capillary gas chromatography using flame ionization detection. This document is applicable to stabilized crude oils and for the boiling range distribution and the recovery up to and including n‑nonane. A stabilized crude oil is defined as having a Reid Vapour Pressure equivalent to or less than 82,7 kPa as determined by IP 481 [3].
Annex C specifies an algorithm for merging the boiling point distribution results obtained using this method with the results obtained with EN 15199-3. This will result in a boiling range distribution and recovery up to C120.
NOTE 1 There is no specific precision statement for the combined results obtained after merging the results of EN 15199 3 and EN 15199 4.
This document is applicable to the precision of the boiling range distribution up to n‑nonane. For the precision of the boiling range distribution from n‑nonane through C120, see EN 15199 3.
NOTE 2 For the purposes of this document, the terms “% (m/m)” and “% (V/V)” are used to represent respectively the mass fraction, ω, and the volume fraction, φ.
Mineralölerzeugnisse - Gaschromatographische Bestimmung des Siedeverlaufes - Teil 4: Leichte Fraktionen des Rohöls
Produits pétroliers - Détermination de la répartition dans l'intervalle de distillation par méthode de chromatographie en phase gazeuse - Partie 4 : Fractions légères du pétrole brut
Naftni proizvodi - Določanje porazdelitve območja vrelišč z metodo plinske kromatografije - 4. del: Lahke frakcije surovega olja
General Information
Relations
Standards Content (Sample)
SLOVENSKI STANDARD
01-september-2025
Naftni proizvodi - Določanje porazdelitve območja vrelišč z metodo plinske
kromatografije - 4. del: Lahke frakcije surovega olja
Petroleum products - Determination of boiling range distribution by gas chromatography
method - Part 4: Light fractions of crude oil
Mineralölerzeugnisse - Gaschromatographische Bestimmung des Siedeverlaufes - Teil
4: Leichte Fraktionen des Rohöls
Produits pétroliers - Détermination de la répartition dans l'intervalle de distillation par
méthode de chromatographie en phase gazeuse - Partie 4 : Fractions légères du pétrole
brut
Ta slovenski standard je istoveten z: prEN 15199-4
ICS:
71.040.50 Fizikalnokemijske analitske Physicochemical methods of
metode analysis
75.080 Naftni proizvodi na splošno Petroleum products in
general
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
DRAFT
EUROPEAN STANDARD
NORME EUROPÉENNE
EUROPÄISCHE NORM
August 2025
ICS 75.080 Will supersede EN 15199-4:2021
English Version
Petroleum products - Determination of boiling range
distribution by gas chromatography method - Part 4: Light
fractions of crude oil
Produits pétroliers - Détermination de la répartition Mineralölerzeugnisse - Gaschromatographische
dans l'intervalle de distillation par méthode de Bestimmung des Siedeverlaufes - Teil 4: Leichte
chromatographie en phase gazeuse - Partie 4 : Fraktionen des Rohöls
Fractions légères du pétrole brut
This draft European Standard is submitted to CEN members for enquiry. It has been drawn up by the Technical Committee
CEN/TC 19.
If this draft becomes a European Standard, CEN members are bound to comply with the CEN/CENELEC Internal Regulations
which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
This draft European Standard was established by CEN in three official versions (English, French, German). A version in any other
language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC
Management Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and
United Kingdom.
Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are
aware and to provide supporting documentation.
Warning : This document is not a European Standard. It is distributed for review and comments. It is subject to change without
notice and shall not be referred to as a European Standard.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2025 CEN All rights of exploitation in any form and by any means reserved Ref. No. prEN 15199-4:2025 E
worldwide for CEN national Members.
Contents Page
European foreword . 3
1 Scope . 4
2 Normative references . 4
3 Terms and definitions . 4
4 Principle . 4
5 Reagents and materials . 5
6 Apparatus . 5
7 Sampling and sample handling . 8
8 Calculation of response factors . 8
9 Procedure . 9
9.1 Sample preparation . 9
9.2 Determination of backflush time . 9
9.2.1 Initial work . 9
9.2.2 Analytical column . 9
9.2.3 Accelerated analytical column . 10
9.3 Sample analysis . 10
9.3.1 Initial work . 10
9.3.2 Calculation of individual components results . 10
9.3.3 Boiling point distribution of fraction up to and including nonane . 11
10 Reporting . 11
11 Precision . 11
11.1 General. 11
11.2 Repeatability, r . 12
11.3 Reproducibility, R . 12
12 Test report . 12
Annex A (informative) Analysis assistance . 13
Annex B (informative) Apparatus configuration . 18
Annex C (informative) Algorithm for merging boiling point distribution results of EN 15199-3
and EN 15199-4 . 20
Bibliography . 28
European foreword
This document (prEN 15199-4:2025) has been prepared by Technical Committee CEN/TC 19 “Gaseous
and liquid fuels, lubricants and related products of petroleum, synthetic and biological origin”, the
secretariat of which is held by NEN.
This document will supersede EN 15199-4:2021.
EN 15199-4:2021:
— The figures under Annex A have been corrected, complemented and improved for better assisting
the user.
EN 15199 consists of the following parts, under the general title Petroleum products — Determination of
boiling range distribution by gas chromatography method:
— Part 1: Middle distillates and lubricating base oils
— Part 2: Heavy distillates and residual fuels
— Part 3: Crude oil
— Part 4: Light fractions of crude oil
EN 15199-4 is compatible with IP 601 [1] and ASTM D7900 [2].
1 Scope
This document specifies a method for the determination of the boiling range distribution of petroleum
products by capillary gas chromatography using flame ionization detection. This document is applicable
to stabilized crude oils and for the boiling range distribution and the recovery up to and including n-
nonane. A stabilized crude oil is defined as having a Reid Vapour Pressure equivalent to or less than
82,7 kPa as determined by IP 481 [3].
Annex C specifies an algorithm for merging the boiling point distribution results obtained using this
method with the results obtained with EN 15199-3. This will result in a boiling range distribution and
recovery up to C120.
This precision presented in this document is applicable to the boiling range distribution up to n-nonane.
For the precision of the boiling range distribution from n-nonane through C120, see EN 15199-3.
NOTE 1 There is no specific precision statement for the combined results obtained after merging the results of
EN 15199-3 and EN 15199-4.
NOTE 2 For the purposes of this document, the terms “% (m/m)” and “% (V/V)” are used to represent
respectively the mass fraction, ω, and the volume fraction, φ.
WARNING — The use of this document can involve hazardous materials, operations and equipment. This
document does not purport to address all of the safety problems associated with its use. It is the
responsibility of the user of this document to take appropriate measures to ensure safety and health of
personnel prior to application of the document and fulfil statutory and regulatory requirements for this
purpose.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
EN ISO 3170, Hydrocarbon Liquids - Manual Sampling (ISO 3170)
EN ISO 3171, Petroleum liquids - Automatic pipeline sampling (ISO 3171)
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— IEC Electropedia: available at https://www.electropedia.org/
— ISO Online browsing platform: available at https://www.iso.org/obp
3.1
recovery
combined mass percentages of all light hydrocarbon identified in the chromatogram (except the internal
standard peak) of the sample up to and including n-nonane
4 Principle
An amount of internal standard is quantitatively added to an aliquot of the stabilized crude oil. A portion
of this mixture is injected into a pre-column in series via a splitter with a capillary analytical column.
When the n-nonane has quantitatively passed to the analytical column, the pre-column is back-flushed to
vent the higher boiling components. The individual components are identified by comparison with
reference chromatograms and a database of hydrocarbon compounds (see Annex A). The boiling point
distribution and recovery up to and including n-nonane (n-C9) is calculated.
5 Reagents and materials
5.1 Stationary phase for columns, with a bonded polydimethylsiloxane (PDMS) stationary phase for
both the pre-column and the analytical capillary column.
5.2 Compressed gases
5.2.1 Carrier gas, helium or hydrogen of at least 99,995 % (V/V) purity or higher is required. Any
oxygen present shall be removed by a suitable chemical filter.
CAUTION — If hydrogen is used as carrier gas, follow the safety instructions from the GC instrument
manufacturer.
5.2.2 Combustion gases, hydrogen and clean air for the flame ionization detector, and suitable filters
shall be used to ensure adequate gas cleanliness.
5.3 Internal standard (I.S.), having a baseline resolution from any adjacent eluting peaks (Hexene-1
or 3,3-dimethyl-1-butene (99 % pure) have been found to be suitable).
5.4 Valve switching mixture, a qualitative mixture of approximately 1 % (m/m) of each normal alkane
from pentane to decane.
5.5 Carbon disulfide (CS ), purity 99,7 % (V/V) minimum.
WARNING — Extremely flammable and toxic by inhalation.
6 Apparatus
6.1 Analytical balance capable of weighing to the nearest 0,1 mg.
6.2 Gas chromatograph.
The typical operational characteristics of the gas chromatograph are described in Table 1.
Two different pre-column configurations are possible.
The first configuration (A) employs a 1 metre column contained in a temperature-controlled valve box,
separately controlled. The valve box in this configuration is isothermal (see Annex B).
The second configuration (B) is a short pre-column (a packed injection port liner), that fits into the
injection port. The injection port will be temperature programmed (see Annex B).
6.3 Flame ionization detector (FID) with sufficient sensitivity to detect 1 % mass n-heptane with a
peak height of at least 10 % full-scale deflection under the conditions given in the method.
When operating at this sensitivity level, detector stability shall be such that a baseline drift of not more
than 1 % per hour is obtained. The detector shall be connected to the column carefully to avoid any cold
spots. The detector shall be capable of operating at a temperature equivalent to the maximum column
temperature used.
Table 1 —Typical
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.