SIST EN 12504-4:2004
(Main)Testing concrete - Part 4: Determination of ultrasonic pulse velocity
Testing concrete - Part 4: Determination of ultrasonic pulse velocity
This European Standard specifies a method for the determination of the velocity of propagation of pulses of ultrasonic longitudinal waves in concrete, for a number of applications.
Prüfung von Beton in Bauwerken - Teil 4: Bestimmung der Ultraschallgeschwindigkeit
Dieses Dokument legt ein Verfahren zur Bestimmung der Ausbreitungsgeschwindigkeit von Ultraschall-Longitudinalwellen aus der Laufzeit von Schallimpulse in Festbeton für eine Anzahl von Anwendungs-fällen fest
Essais pour béton dans les structures - Partie 4: Determination de la vitesse de propagation du son
Le présent document spécifie une méthode de détermination de la vitesse de propagation des ondes ultrasoniques longitudinales dans le béton durci utilisé pour un certain nombre d'applications.
Preskušanje betona – 4. del: Določevanje hitrosti prehoda ultrazvoka
General Information
Relations
Standards Content (Sample)
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.RNDPrüfung von Beton in Bauwerken - Teil 4: Bestimmung der UltraschallgeschwindigkeitEssais pour béton dans les structures - Partie 4: Determination de la vitesse de propagation du sonTesting concrete - Part 4: Determination of ultrasonic pulse velocity91.100.30Beton in betonski izdelkiConcrete and concrete productsICS:Ta slovenski standard je istoveten z:EN 12504-4:2004SIST EN 12504-4:2004en01-december-2004SIST EN 12504-4:2004SLOVENSKI
STANDARD
SIST EN 12504-4:2004
EUROPEAN STANDARDNORME EUROPÉENNEEUROPÄISCHE NORMEN 12504-4August 2004ICS 91.100.30English versionTesting concrete - Part 4: Determination of ultrasonic pulsevelocityEssais pour béton dans les structures - Partie 4:Determination de la vitesse de propagation du sonPrüfung von Beton - Teil 4: Bestimmung derUltraschallgeschwindigkeitThis European Standard was approved by CEN on 26 February 2004.CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this EuropeanStandard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such nationalstandards may be obtained on application to the Central Secretariat or to any CEN member.This European Standard exists in three official versions (English, French, German). A version in any other language made by translationunder the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the officialversions.CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France,Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia,Slovenia, Spain, Sweden, Switzerland and United Kingdom.EUROPEAN COMMITTEE FOR STANDARDIZATIONCOMITÉ EUROPÉEN DE NORMALISATIONEUROPÄISCHES KOMITEE FÜR NORMUNGManagement Centre: rue de Stassart, 36
B-1050 Brussels© 2004 CENAll rights of exploitation in any form and by any means reservedworldwide for CEN national Members.Ref. No. EN 12504-4:2004: ESIST EN 12504-4:2004
EN 12504-4:2004 (E) 2 Contents page Foreword.3 1 Scope.4 2 Normative references.4 3 Terms and definitions.4 4 Method.4 5 Apparatus.4 5.1 General.4 5.2 Performance requirements.5 5.3 Transducers.5 5.4 Apparatus for determination of arrival time of the pulse.5 6 Procedures.5 6.1 Determination of Pulse Velocity.5 7 Expression of result.7 8 Test report.7 9 Precision.8 Annex A (informative)
Determination of pulse velocity — indirect transmission.9 Annex B (informative)
Factors influencing pulse velocity measurements.10 B.1 General.10 B.2 Moisture content.10 B.3 Temperature of the concrete.10 B.4 Path length.10 B.5 Shape and size of specimen.10 B.6 Effect of reinforcing bars.11 B.7 Cracks and voids.11 Annex C (informative)
Correlation of pulse velocity and strength.12 C.1 General.12 C.2 Correlation using moulded specimens.12 C.3 Correlation by tests on cores.12 C.4 Correlation with the strength of precast units.13 Bibliography.14
SIST EN 12504-4:2004
EN 12504-4:2004 (E) 3 Foreword This document (EN 12504-4:2004) has been prepared by Technical Committee CEN/TC 104 “Concrete and related products”, the secretariat of which is held by DIN. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by February 2005, and conflicting national standards shall be withdrawn at the latest by February 2005. A draft standard was submitted in 1998 to CEN enquiry as prEN 13296. It was one of a series of individually numbered test methods for fresh or hardened concrete. For convenience it has now been decided to combine these separate draft standards into three new standards with separate Parts for each method, as follows: Testing fresh concrete (EN 12350) Testing hardened concrete (EN 12390) Testing concrete in structures (EN 12504) This series, EN 12504, includes the following Parts where the brackets give the numbers under which particular test methods were submitted to CEN enquiry: EN 12504, Testing concrete in structures Part 1: Cored specimens — Testing, examining and testing in compression (former prEN 12504:1996) Part 2: Non-destructive testing — Determination of rebound number (former prEN 12398:1996) Part 3: Determination of pull-out force (former prEN 12399:1996) Part 4: Determination of ultrasonic pulse velocity (former prEN 12396:1998) This European Standard is based on ISO/DIS 8047 "Concrete hardened — Determination of ultrasonic pulse velocity".
It is recognised that the ultrasonic pulse velocity determined using this standard is a convention in as much that the path length over which the pulse travels may not strictly be known. The measurement of pulse velocity can be used for the determination of the uniformity of concrete, the presence of cracks or voids, changes in properties with time and in the determination of dynamic physical properties. These subjects were considered to be outside the scope of this standard, but some information is given in Annex B and more information can be found in the technical literature. The measurement may also be used to estimate the strength of in-situ concrete elements or specimens. However, it is not intended as an alternative to the direct measurement of the compressive strength of concrete.
According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
SIST EN 12504-4:2004
EN 12504-4:2004 (E) 4 1 Scope This document specifies a method for the determination of the velocity of propagation of pulses of ultrasonic longitudinal waves in hardened concrete, which is used for a number of applications. 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. EN 206-1:2000, Concrete — Part 1: Specification, performance, production and conformity.
3 Terms and definitions For the purposes of this document, the terms and definitions given in EN 206-1:2000 and the following apply. 3.1 transit time time taken for an ultrasonic pulse to travel from the transmitting transducer to the receiving transducer, passing through the interposed concrete 3.2 onset leading edge of the pulse detected by the measuring apparatus 3.3 rise time time for the leading edge of the first pulse to rise from 10 % to 90 % of its maximum amplitude 4 Principle A pulse of longitudinal vibrations is produced by an electro-acoustical transducer held in contact with one surface of the concrete under test. After traversing a known path length in the concrete, the pulse of vibrations is converted into an electrical signal by a second transducer and electronic timing circuits enable the transit time of the pulse to be measured. 5 Apparatus 5.1 General The apparatus consists of an electrical pulse generator, a pair of transducers, an amplifier and an electronic timing device for measuring the time interval elapsing between the onset of a pulse generated at the transmitting transducer and the onset of its arrival at the receiving transducer. A calibration bar is provided to provide a datum for the velocity measurement. Two forms of the electronic timing apparatus are available: a) an oscilloscope on which the first front of the pulse is displayed in relation to a suitable time scale. b) an interval timer with a direct reading digital display. SIST EN 12504-4:2004
EN 12504-4:2004 (E) 5 NOTE An oscilloscope provides the facility for monitoring the wave form of the pulse, which can be advantageous in complex testing situations or in automatic system measurements. 5.2 Performance requirements The apparatus shall conform to the following performance requirements: F It shall be capable of measuring transit times in the calibration bar to a limit deviation of ± 0,1 µs and an accuracy of 2 %. F The electronic excitation pulse applied to the transmitting transducer shall have a rise time of not greater than one-quarter of its natural period. This is to ensure a sharp pulse onset. F The pulse repetition frequency shall be low enough to ensure that the onset of the received signal is free from interference by reverberations. The apparatus shall be used within the operating conditions stated by the manufacturer. 5.3 Transducers The natural frequency of the transducers should normally be within the range 20 kHz to 150 kHz. NOTE Frequencies as low as 10 kHz and as high as 200 kHz can sometimes be used. High frequency pulses have a well defined onset, but, as they pass through the concrete, they become attenuated more rapidly than pulses of lower frequency. It is therefore preferable to use high frequency transducers (60 kHz to 200 kHz) for short path lengths (down to 50 mm) and low frequency transducers (10 kHz to 40 kHz) for long path lengths (up to a maximum of 15 m). Transducers with a frequency of 40 kHz to 60 kHz are found to be useful for most applications. 5.4 Apparatus for determination of arrival time of the pulse The apparatus shall be capable of determining the time of arrival of the first front of the pulse with the lowest possible threshold, even though this may be of small amplitude compared with that of the first half wave of the pulse. 6 Procedures 6.1 Determination of Pulse Velocity 6.1.1 Factors influencing pulse velocity measurements In order to provide a measurement of pulse velocity which is reproducible, it is necessary to take into account various factors which can influence the measurements. These are set out in Annex B. 6.1.2 Transducer arrangement Although the direction in which the maximum energy is propagated is at right angles to the face of the transmitting transducer, it is possible to detect pulses which have travelled through the concrete in some other direction. It is therefore possible to make measurements of pulse velocity by placing the two transducers on opposite faces (direct transmission), or on adjacent faces (semi-direct transmission), or the same face (indirect or surface transmission) (see Figure 1) of a concrete structure or specimen. NOTE 1 Where it is necessary to place the transducers on opposite faces but not directly opposite each other such arrangement shall be regarded as a semi-direct transmission (see Figure 1.b) NOTE 2 The indirect transmission arrangement is the least sensitive and should be used, when only one face of the concrete is accessible, or when the quality of the surface concrete relative to the overall quality is of interest. NOTE 3 The semi-direct transmission arrangement is used when the direct arrangement cannot be used, for example at the corners of structures.
SIST EN 12504-4:2004
EN 12504-4:2004 (E) 6
Key R is the receiver transducer T is the transmitter transducer Figure 1 — Transducer positioning 6.1.3 Path length measurement For direct transmission, the path length is the shortest distance between the transducers. The accuracy of measurement of the path length shall be recorded to an accuracy of ± 1 %.
For semi-direct transmission, it is generally found to be sufficiently a
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.