SIST EN 61643-312:2013
(Main)Components for low-voltage surge protective devices - Part 312: Selection and applications principles for gas discharge tubes
Components for low-voltage surge protective devices - Part 312: Selection and applications principles for gas discharge tubes
This part of IEC 61643 is applicable to gas discharge tubes (GDT) used for overvoltage protection in telecommunications, signalling and low-voltage power distribution networks with nominal system voltages up to 1 000 V (r.m.s.) a.c. and 1 500 V d.c. They are defined as a gap, or several gaps with two or three metal electrodes hermetically sealed so that gas mixture and pressure are under control. They are designed to protect apparatus or personnel, or both, from high transient voltages. This standard provides information about the characteristics and circuit applications of GDTs having two or three electrodes. This standard does not specify requirements applicable to complete surge protective devices, nor does it specify total requirements for GDTs employed within electronic devices, where precise coordination between GDT performance and surge protective device withstand capability is highly critical. This part of IEC 61643 - does not deal with mountings and their effect on GDT characteristics. Characteristics given apply solely to GDTs mounted in the ways described for the tests; - does not deal with mechanical dimensions; - does not deal with quality assurance requirements; - may not be sufficient for GDTs used on high-frequency (>30 MHz); - does not deal with electrostatic voltages; - does not deal with hybrid overvoltage protection components or composite GDT devices.
Bauelemente für Überspannungsschutzgeräte für Niederspannung - Teil 312: Auswahl- und Anwendungsprinzipien für Gasentladungsableiter
Composants pour parafoudres basse tension - Partie 312: Principes de choix et d'application pour les tubes à décharge
La CEI 61643-312:2013 est applicable aux tubes à décharge de gaz (TDG) utilisés pour la protection contre les surtensions des réseaux de télécommunications, de signaux et de distribution basse tension, dont les tensions nominales de réseau sont inférieures ou égales à 1 000 V (valeurs efficaces) c.a. et 1 500 V c.c. Ils sont définis comme un éclateur ou des éclateurs avec deux ou trois électrodes métalliques hermétiquement scellées de sorte que le mélange et la pression de gaz soient sous contrôle. Ils sont conçus pour protéger des matériels ou des personnes, ou les deux, contre des surtensions transitoires élevées. La présente norme fournit des informations relatives aux caractéristiques et aux applications des circuits des TDG comportant deux ou trois électrodes. La présente norme ne traite pas des exigences applicables aux parafoudres complets, ni de la totalité des exigences relatives aux TDG utilisés dans les dispositifs électroniques, où une coordination précise entre les performances des TDG et la résistance des parafoudres aux surtensions est primordiale. Mots clés: tubes à décharge de gaz (TDG), protection contre les surtensions des réseaux de télécommunications, de signaux et de distribution basse tension, tensions nominales de réseau sont inférieures ou égales à 1 000 V (valeurs efficaces) c.a. et 1 500 V c.c.
Sestavni deli za nizkonapetostne naprave za zaščito pred prenapetostnimi udari - 312. del: Izbira in načini uporabe plinskih odvodnikov (IEC 61643-312:2013 + corrigendum Jul. 2013)
Ta del standarda IEC 61643 se uporablja za s plinom polnjene cevi, ki se uporabljajo za prenapetostno zaščito pri telekomunikacijah, signaliziranju in nizkonapetostnih razdelilnih omrežjih z nazivnimi sistemskimi napetostmi do 1000 V (efektivne izmenične napetosti) izmenične napetosti in 1500 V enosmerne napetosti. Določene so kot reža ali več rež z dvema ali tremi nepredušno zatesnjenimi kovinskimi elektrodami, tako sta zmes plinov in tlak pod nadzorom. Zasnovane so tako, da ščitijo aparat ali osebje ali oboje pred visokimi tranzientnimi napetostmi. Ta standard zagotavlja informacije o lastnostih in uporabah tokokroga s plinom polnjenih cevi z dvema ali tremi elektrodami. Ta standard ne določa zahtev, ki se uporabljajo za celotne prenapetostne zaščitne naprave, niti ne določa skupnih zahtev za s plinom polnjene cevi, ki se uporabljajo znotraj elektronskih naprav, kjer je natančna koordinacija med delovanjem s plinom polnjenih cevi in odpornostjo prenapetostne zaščitne naprave izjemno kritična. Ta del standarda IEC 61643 – ne obravnava elementov za pritrditev in njihovega vpliva na značilnosti s plinom polnjenih cevi. Navedene značilnosti se uporabljajo izključno za s plinom polnjene cevi, ki so pritrjene na načine, opisane za preskuse; – ne obravnava mehanskih dimenzij; – ne obravnava zahtev za zagotavljanje kakovosti; – morda ne zadostuje za s plinom polnjene cevi, ki se uporabljajo pri visoki frekvenci (>30 MHz); – ne obravnava elektrostatičnih napetosti; –ne obravnava komponent hibridne prenapetostne zaščite ali sestavljenih naprav s cevmi, polnjenimi s plinom.
General Information
Relations
Standards Content (Sample)
SLOVENSKI STANDARD
SIST EN 61643-312:2013
01-oktober-2013
1DGRPHãþD
SIST EN 61643-311:2005
6HVWDYQLGHOL]DQL]NRQDSHWRVWQHQDSUDYH]D]DãþLWRSUHGSUHQDSHWRVWQLPLXGDUL
GHO,]ELUDLQQDþLQLXSRUDEHSOLQVNLKRGYRGQLNRY,(&
FRUULJHQGXP-XO
Components for low-voltage surge protective devices - Part 312: Selection and
applications principles for gas discharge tubes
Composants pour parafoudres basse tension - Partie 312: Principes de choix et
d'application pour les tubes à décharge
Ta slovenski standard je istoveten z: EN 61643-312:2013
ICS:
29.120.50 9DURYDONHLQGUXJD Fuses and other overcurrent
PHGWRNRYQD]DãþLWD protection devices
29.240.10 Transformatorske postaje. Substations. Surge arresters
Prenapetostni odvodniki
SIST EN 61643-312:2013 en
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
---------------------- Page: 1 ----------------------
SIST EN 61643-312:2013
---------------------- Page: 2 ----------------------
SIST EN 61643-312:2013
EUROPEAN STANDARD
EN 61643-312
NORME EUROPÉENNE
August 2013
EUROPÄISCHE NORM
ICS 31.100; 33.040.99 Supersedes EN 61643-311:2001 (partially)
English version
Components for low-voltage surge protective devices -
Part 312: Selection and application principles for gas discharge tubes
(IEC 61643-312:2013 + corrigendum Jul. 2013)
Composants pour parafoudres basse Bauelemente für
tension - Überspannungsschutzgeräte für
Partie 312: Principes de choix et Niederspannung -
d'application pour les tubes à décharge de Teil 312: Auswahl- und
gaz Anwendungsprinzipien für
(CEI 61643-312:2013 Gasentladungsableiter
+ corrigendum Jul. 2013) (IEC 61643-312:2013
+ corrigendum Jul. 2013)
This European Standard was approved by CENELEC on 2013-05-27. CENELEC members are bound to comply
with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard
the status of a national standard without any alteration.
Up-to-date lists and bibliographical references concerning such national standards may be obtained on
application to the CEN-CENELEC Management Centre or to any CENELEC member.
This European Standard exists in three official versions (English, French, German). A version in any other
language made by translation under the responsibility of a CENELEC member into its own language and notified
to the CEN-CENELEC Management Centre has the same status as the official versions.
CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus,
the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany,
Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland,
Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.
CENELEC
European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
Management Centre: Avenue Marnix 17, B - 1000 Brussels
© 2013 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.
Ref. No. EN 61643-312:2013 E
---------------------- Page: 3 ----------------------
SIST EN 61643-312:2013
EN 61643-312:2013 - 2 -
Foreword
The text of document 37B/114/FDIS, future edition 1 of IEC 61643-312, prepared by SC 37B, "Specific
components for surge arresters and surge protective devices", of IEC/TC 37, "Surge arresters" was
submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 61643-312:2013.
The following dates are fixed:
• latest date by which the document has (dop) 2014-02-27
to be implemented at national level by
publication of an identical national
standard or by endorsement
(dow) 2016-05-27
• latest date by which the national
standards conflicting with the
document have to be withdrawn
This document partially supersedes EN 61643-311:2001.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent
rights.
Endorsement notice
The text of the International Standard IEC 61643-312:2013 + corrigendum July 2013 was approved by
CENELEC as a European Standard without any modification.
In the official version, for Bibliography, the following notes have to be added for the standards indicated:
IEC 60364-5-51:2001 NOTE Harmonised as HD 60364-5-51:2006 (modified).
IEC 60068-2-1 NOTE Harmonised as EN 60068-2-1.
IEC 60068-2-20 NOTE Harmonised as EN 60068-2-20.
IEC 60068-2-21 NOTE Harmonised as EN 60068-2-21.
IEC 60721-3-3 NOTE Harmonised as EN 60721-3-3.
IEC 61643-11 NOTE Harmonised as EN 61643-11.
IEC 61643-21 NOTE Harmonised as EN 61643-21.
---------------------- Page: 4 ----------------------
SIST EN 61643-312:2013
- 3 - EN 61643-312:2013
Annex ZA
(normative)
Normative references to international publications
with their corresponding European publications
The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.
NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD
applies.
Publication Year Title EN/HD Year
IEC 60068-2-1 - Environmental testing - EN 60068-2-1 -
Part 2-1: Tests - Test A: Cold
IEC 60068-2-20 - Environmental testing - EN 60068-2-20 -
Part 2-20: Tests - Test T: Test methods for
solderability and resistance to soldering heat
of devices with leads
IEC 60068-2-21 - Environmental testing - EN 60068-2-21 -
Part 2-21: Tests - Test U: Robustness of
terminations and integral mounting devices
IEC 61643-311 - Components for low-voltage surge protective EN 61643-311 -
devices -
Part 311: Performance requirements and test
circuits and methods for gas discharge tubes
(GDT)
---------------------- Page: 5 ----------------------
SIST EN 61643-312:2013
---------------------- Page: 6 ----------------------
SIST EN 61643-312:2013
IEC 61643-312
®
Edition 1.0 2013-04
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Components for low-voltage surge protective devices –
Part 312: Selection and application principles for gas discharge tubes
Composants pour parafoudres basse tension –
Partie 312: Principes de choix et d’application pour les tubes à décharge de gaz
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
PRICE CODE
INTERNATIONALE
CODE PRIX S
ICS 31.100; 33.040.99 ISBN 978-2-83220-740-6
Warning! Make sure that you obtained this publication from an authorized distributor.
Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.
® Registered trademark of the International Electrotechnical Commission
Marque déposée de la Commission Electrotechnique Internationale
---------------------- Page: 7 ----------------------
SIST EN 61643-312:2013
– 2 – 61643-312 © IEC:2013
CONTENTS
FOREWORD . 4
1 Scope . 6
2 Normative references . 6
3 Terms, definitions and symbols . 6
3.1 Terms and definitions . 6
3.2 Symbols . 10
4 Service conditions . 10
4.1 General . 10
4.2 Low temperature . 10
4.3 Air pressure and altitude . 10
4.4 Ambient temperature . 10
4.5 Relative humidity . 11
5 Mechanical requirements and materials . 11
5.1 General . 11
5.2 Robustness of terminations . 11
5.3 Solderability . 11
5.4 Radiation . 11
5.5 Marking . 11
6 General . 11
7 Construction . 12
7.1 Design . 12
7.2 Description . 12
7.3 Fail-short (failsafe) . 13
8 Function . 14
8.1 Protection principle . 14
8.2 Operating mode . 14
8.3 Response behaviour . 14
8.3.1 Static response behavior . 14
8.3.2 Dynamic response behavior . 14
8.4 Fail-short (failsafe) . 15
9 Applications . 16
9.1 Protective circuits . 16
9.1.1 General . 16
9.1.2 2-point (signal line) protection . 16
9.1.3 3-point protection . 17
9.1.4 5-point protection . 18
9.2 Telephone/fax/modem protection . 19
9.3 Cable TV/coaxial cable protection . 19
9.4 AC line protection . 20
Bibliography . 21
Figure 1 – Voltage and current characteristics of a GDT . 8
Figure 2 – Symbol for a two-electrode GDT . 10
Figure 3 – Symbol for a three-electrode GDT . 10
Figure 4 – Example of a two-electrode GDT . 12
---------------------- Page: 8 ----------------------
SIST EN 61643-312:2013
61643-312 © IEC:2013 – 3 –
Figure 5 – Example of a three-electrode GDT . 12
Figure 6 – Failsafe construction of a three-electrode GDT using a solder pill as
sensitive spacer . 13
Figure 7 – Failsafe construction of a three-electrode GDT, using a plastic foil as
sensitive spacer . 13
Figure 8 – Typical response behaviour of a 230 V GDT . 15
Figure 9 – Spark-over voltages versus response time . 15
Figure 10 – Current through the GDT versus response time of fail-short (failsafe) . 16
Figure 11 – 2-point (Signal line) protection . 17
Figure 12 – 3-point protection using two-electrode GDTs . 17
Figure 13 – 3-point protection using three-electrode GDTs . 17
Figure 14 – 3-point protection using two-electrode GDTs with fail-short . 18
Figure 15 – 3-point protection using three-electrode GDTs with fail-short . 18
Figure 16 – 5-point protection using two-electrode GDTs . 18
Figure 17 – 5-point protection using three-electrode GDTs . 18
Figure 18 – 5-point protection using two-electrode GDTs with fail-short . 19
Figure 19 – 5-point protection using three-electrode GDTs with fail-short . 19
Figure 20 – Telephone/fax/modem protection using two-electrode GDTs . 19
Figure 21 – Telephone/fax/modem protection using three-electrode GDTs . 19
Figure 22 – Cable TV/ coaxial cable protection . 20
Figure 23 – AC line protection . 20
---------------------- Page: 9 ----------------------
SIST EN 61643-312:2013
– 4 – 61643-312 © IEC:2013
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
COMPONENTS FOR LOW-VOLTAGE SURGE PROTECTIVE DEVICES –
Part 312: Selection and application principles for gas discharge tubes
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.
International Standard IEC 61643-312 has been prepared by subcommittee 37B: Specific
components for surge arresters and surge protective devices, of IEC technical committee 37:
Surge arresters.
The text of this standard is based on the following documents:
FDIS Report on voting
37B/114/FDIS 37B/120/RVD
Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above Table.
This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
A list of all parts of IEC 61643 series, under the general title Components for low-voltage
surge protective devices can be found on the IEC website.
---------------------- Page: 10 ----------------------
SIST EN 61643-312:2013
61643-312 © IEC:2013 – 5 –
The committee has decided that the contents of this publication will remain unchanged until
the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data
related to the specific publication. At this date, the publication will be
• reconfirmed,
• withdrawn,
• replaced by a revised edition, or
• amended.
The contents of the corrigendum of July 2013 have been included in this copy.
---------------------- Page: 11 ----------------------
SIST EN 61643-312:2013
– 6 – 61643-312 © IEC:2013
COMPONENTS FOR LOW-VOLTAGE SURGE PROTECTIVE DEVICES –
Part 312: Selection and application principles for gas discharge tubes
1 Scope
This part of IEC 61643 is applicable to gas discharge tubes (GDT) used for overvoltage
protection in telecommunications, signalling and low-voltage power distribution networks with
nominal system voltages up to 1 000 V (r.m.s.) a.c. and 1 500 V d.c. They are defined as a
gap, or several gaps with two or three metal electrodes hermetically sealed so that gas
mixture and pressure are under control. They are designed to protect apparatus or personnel,
or both, from high transient voltages. This standard provides information about the
characteristics and circuit applications of GDTs having two or three electrodes. This standard
does not specify requirements applicable to complete surge protective devices, nor does it
specify total requirements for GDTs employed within electronic devices, where precise
coordination between GDT performance and surge protective device withstand capability is
highly critical.
This part of IEC 61643
– does not deal with mountings and their effect on GDT characteristics. Characteristics
given apply solely to GDTs mounted in the ways described for the tests;
– does not deal with mechanical dimensions;
– does not deal with quality assurance requirements;
– may not be sufficient for GDTs used on high-frequency (>30 MHz);
– does not deal with electrostatic voltages;
– does not deal with hybrid overvoltage protection components or composite GDT devices.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any
amendments) applies.
IEC 60068-2-1, Environmental testing – Part 2-1: Tests – Test A: Cold
IEC 60068-2-20, Environmental testing – Part 2-20: Tests – Test T: Test methods for
solderability and resistance to soldering heat of devices with leads
IEC 60068-2-21, Environmental testing – Part 2-21: Tests – Test U: Robustness of
terminations and integral mounting devices
IEC 61643-311, Components for low-voltage surge protective devices – Part 311:
Specification for gas discharge tubes (GDT)
3 Terms, definitions and symbols
3.1 Terms and definitions
For the purposes of this document, the following terms and definitions apply:
---------------------- Page: 12 ----------------------
SIST EN 61643-312:2013
61643-312 © IEC:2013 – 7 –
3.1.1
arc current
current that flows after sparkover when the circuit impedance allows a current to flow that
exceeds the glow-to-arc transition current
3.1.2
arc voltage
arc mode voltage
voltage drop across the GDT during arc current flow
Note 1 to entry: See Figure 1a, region A.
3.1.3
arc-to-glow transition current
current required for the GDT to pass from the arc mode into the glow mode
3.1.4
current turn-off time
time required for the GDT to restore itself to a non-conducting state following a period of
conduction.
Note 1 to entry: This applies only to a condition where the GDT is exposed to a continuous d.c. potential (see d.c.
holdover).
3.1.5
d.c. sparkover voltage
d.c. breakdown voltage
voltage at which the GDT transitions from a high-impedance off to a conduction state when a
slowly rising d.c. voltage up to 2 kV/s is applied
Note 1 to entry: The rate of rise for d.c. sparkover voltage measurements is usually equal or less 2 000 V/s.
3.1.6
d.c. holdover
state in which a GDT continues to conduct after it is subjected to an impulse sufficient to
cause breakdown
Note 1 to entry: In applications where a d.c. voltage exists on a line. Factors that affect the time required to
recover from the conducting state (current turn-off time) include the d.c. voltage and the d.c. current
3.1.7
d.c. holdover voltage
maximum d.c. voltage across the terminals of a gas discharge tube under which it may be
expected to clear and to return to the high-impedance state after the passage of a surge,
under specified circuit conditions
3.1.8
discharge current
current that flows through a GDT after sparkover occurs
Note 1 to entry: In the event that the current passing through the GDT is alternating current, it will be r.m.s. value.
In instances where the current passing through the GDT is an impulse current, the value will be the peak value.
3.1.9
discharge voltage
residual voltage of an arrester
peak value of voltage that appears across the terminals of a GDT during the passage of GDT
discharge current
---------------------- Page: 13 ----------------------
SIST EN 61643-312:2013
– 8 – 61643-312 © IEC:2013
3.1.10
discharge voltage current characteristic
V/I characteristic
variation of peak values of discharge voltage with respect to GDT discharge current
Figure 1c Figure 1a
v
v
V
s
G
V
g
V
e
A
V
a
i
t
A
G
Figure 1b
i
t
IEC 527/13
Legend
V spark-over voltage V arc voltage G glow mode range
s a
V glow voltage V extinction voltage A arc mode range
gl e
Figure 1a – Voltage at a GDT as a function of time when limiting a sinusoidal voltage
Figure 1b – Current at a GDT as a function of time when limiting a sinusoidal voltage
Figure 1c – V/I characteristic of a GDT obtained by combining the graphs of voltage and current
Figure 1 – Voltage and current characteristics of a GDT
3.1.11
extinction voltage
voltage at which discharge (current flow) ceases
3.1.12
fail-short
failsafe
thermally-activated external shorting mechanism
---------------------- Page: 14 ----------------------
SIST EN 61643-312:2013
61643-312 © IEC:2013 – 9 –
3.1.13
follow (on) current
current that the GDT conducts from a connected power source after sparkover
Note 1 to entry: The GDT is expected to extinguish after sparkover to avoid overheating
3.1.14
gas discharge tube
GDT
gap, or several gaps with two or three metal electrodes hermetically sealed so that gas
mixture and pressure are under control, designed to protect apparatus or personnel, or both,
from high transient voltages
3.1.15
glow current
glow mode current
current that flows after breakdown when the circuit impedance limits the follow current to a
value less than the glow-to-arc transition current
Note 1 to entry: See Figure 1a region G.
3.1.16
glow-to-arc transition current
current required for the GDT to pass from the glow mode into the arc mode
Note 1 to entry: See Figure 1a region G.
3.1.17
glow voltage
glow mode voltage
peak value of voltage drop across the GDT when a glow current is flowing
Note 1 to entry: See Figure 1a, region G.
3.1.18
impulse sparkover voltage
highest value of voltage attained by an impulse of a designated voltage rate-of-rise and
polarity applied across the terminals of a GDT prior to the flow of the discharge current
3.1.19
nominal d.c. sparkover voltage
voltage specified by the manufacturer to indicate the target value of sparkover voltages of a
particular type of GDT products
Note 1 to entry: The nominal value is generally a rounded number such as: 75 V, 90 V, 150 V, 200 V, 230 V,
250 V, 300 V, 350 V, 420 V, 500 V, 600 V, 800 V, 1 000 V, 1 200 V, 1 400 V, 1 800 V, 2 100 V, 2 700 V, 3 000 V,
3 600 V, 4 000 V et 4 500 V
Note 2 to entry: Values in between should be agreed jointly between the manufacturer and the user.
3.1.20
sparkover
breakdown
abrupt transition of the gap resistance from practically infinite value to a relatively low value
---------------------- Page: 15 ----------------------
SIST EN 61643-312:2013
– 10 – 61643-312 © IEC:2013
3.2 Symbols
A
A
C
C B
IEC 528/13 IEC 529/13
Figure 2 – Symbol for a two-electrode GDT Figure 3 – Symbol for
a three-electrode GDT
Figures 2 and 3 show the symbols for two- and three-electrode GDTs.
4 Service conditions
4.1 General
The basic GDT is relatively insensitive to temperature, air pressure and humidity. GDTs fitted
with a fail-short mechanism have a lower high temperature rating due to the thermal nature of
the fail-short. Manufacturer’s guidelines shall be followed when soldering fail-short
mechanism GDTs to avoid premature operation of the shorting mechanism. For reference,
standardised values and ranges of temperature, air pressure and humidity are given in
Subclauses 4.2 to 4.5.
4.2 Low temperature
GDT shall be capable of withstanding IEC 60068-2-1, test Aa –40 °C, duration 2 h, without
damage. While at –40 °C, the GDT shall meet the d.c. and impulse sparkover requirements of
Table 1.
4.3 Air pressure and altitude
Air pressure is 80 kPa to 106 kPa.
These values represent an altitude of +2 000 m to –500 m respectively.
4.4 Ambient temperature
For the purposes of Subclause 4.4, the ambient temperature is the temperature of the air or
other media, in the immediate vicinity of the component.
operating range (GDTs without failsafe): –40 °C to +90 °C
operating range (GDTs with failsafe): –40 °C to +70 °C
NOTE This corresponds to class 3K7 in IEC 60721-3-3.
storage range (GDTs without failsafe): –40 °C to +90 °C
storage range (GDTs with failsafe): –40 °C to +40 °C
---------------------- Page: 16 ----------------------
SIST EN 61643-312:2013
61643-312 © IEC:2013 – 11 –
4.5 Relative humidity
In this clause the relative humidity is expressed as a percentage, being the ratio of actual
partial vapour pressure to the saturation va
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.