ASTM C1512-10(2020)
(Test Method)Standard Test Method for Characterizing the Effect of Exposure to Environmental Cycling on Thermal Performance of Insulation Products
Standard Test Method for Characterizing the Effect of Exposure to Environmental Cycling on Thermal Performance of Insulation Products
SIGNIFICANCE AND USE
5.1 Exposing a specimen to conditions of one-directional environmental cycling can increase its moisture content until a decrease in material properties occurs (at a specific number of cycles). Such a test could be inappropriate due to the number of cycles required to cause a decrease in material properties since product performance issues often arise only after many years of exposure. The use of a preconditioning procedure is not intended to duplicate expected field performance. Rather the purpose is to increase the moisture content of test materials prior to subjecting to them to environmental cycling.
5.2 The most important aspect of the preconditioning procedure is non-uniform moisture distribution in the specimen. The heat flow is one directional causing moisture flow towards the cold side resulting in zones of dry material on the warm side and high moisture content on the cold side. (Whether the high moisture content zone is located right at the cold surface of the specimen or at some distance from this surface depends upon temperature oscillation and ability of the cold surface to dry outwards). Because the preconditioning procedure involves thermal gradient, this preconditioning procedure results in a distribution of moisture content that may occur under field exposure conditions. However, the resulting moisture content may differ significantly from that which may be demonstrated in typical product applications.
5.3 The preconditioning results in accumulation of moisture in the thermal insulation resulting from the simultaneous exposure to a difference in temperature and water vapor pressure. This test method is not intended to duplicate field exposure. It is intended to provide comparative ratings. As excessive accumulation of moisture in a construction system may adversely affect its performance, the designer should consider the potential for moisture accumulation and the possible effects of this moisture on the system performance.
SCOPE
1.1 This test method is applicable to preformed or field manufactured thermal insulation products, such as board stock foams, rigid fibrous and composite materials manufactured with or without protective facings. See Note 1. This test method is not applicable to high temperature, reflective or loose fill insulation.
Note 1: If the product is manufactured with a facer, test product with facer in place.
1.2 This test method involves two stages: preconditioning and environmental cycling. During the first stage, 25 mm (1 in.) thick specimens are used to separate two environments. Each of these environments has a constant but different temperature and humidity level. During the environmental cycling stage, specimens also divide two environments namely constant room temperature/humidity on one side and cycling temperature/ambient relative humidity on the other side.
1.3 This test method measures the ability of the product to maintain thermal performance and critical physical attributes after being subjected to standardized exposure conditions. A comparison is made between material properties for reference specimens stored in the laboratory for the test period and specimens subjected to the two-stage test method. To eliminate the effect of moisture from the comparison, the material properties of the latter test specimens are determined after they have been dried to constant weight. The average value determined for each of the two sets of specimens is used for comparison.
1.4 Different properties can be measured to assess the effect of environmental factors on thermal insulation. This test method requires that thermal resistance be determined based upon an average for three specimens measured after completing the test. Secondary elements of this test method include visual observations such as cracking, delamination or other surface defects, as well as the change in moisture content after each of the two stages of exposure prescribed by th...
General Information
Relations
Standards Content (Sample)
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the
Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
Designation: C1512 − 10 (Reapproved 2020)
Standard Test Method for
Characterizing the Effect of Exposure to Environmental
1
Cycling on Thermal Performance of Insulation Products
This standard is issued under the fixed designation C1512; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.
1. Scope surface defects, as well as the change in moisture content after
each of the two stages of exposure prescribed by the test
1.1 This test method is applicable to preformed or field
method.
manufactured thermal insulation products, such as board stock
1.5 Characterization of the tested material is an essential
foams, rigid fibrous and composite materials manufactured
with or without protective facings. See Note 1. This test element of this test method. Material properties used for
method is not applicable to high temperature, reflective or characterization will include either compressive resistance or
loose fill insulation. tensile strength values. The compressive resistance or tensile
strength is measured on two sets of specimens, one set
NOTE 1—If the product is manufactured with a facer, test product with
conditioned as defined in 1.2 and a set of reference test
facer in place.
specimenstakenfromthesamematerialbatchandstoredinthe
1.2 This test method involves two stages: preconditioning
laboratory for the whole test period. For comparison, an
and environmental cycling. During the first stage, 25 mm (1
average value is determined for each of the two sets of
in.) thick specimens are used to separate two environments.
specimens.
Each of these environments has a constant but different
1.6 The values stated in SI units are to be regarded as
temperature and humidity level. During the environmental
standard. No other units of measurement are included in this
cycling stage, specimens also divide two environments namely
standard.
constant room temperature/humidity on one side and cycling
temperature/ambient relative humidity on the other side.
1.7 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
1.3 This test method measures the ability of the product to
responsibility of the user of this standard to establish appro-
maintain thermal performance and critical physical attributes
priate safety, health, and environmental practices and deter-
after being subjected to standardized exposure conditions. A
mine the applicability of regulatory limitations prior to use.
comparison is made between material properties for reference
1.8 This international standard was developed in accor-
specimens stored in the laboratory for the test period and
dance with internationally recognized principles on standard-
specimens subjected to the two-stage test method.To eliminate
ization established in the Decision on Principles for the
the effect of moisture from the comparison, the material
Development of International Standards, Guides and Recom-
properties of the latter test specimens are determined after they
mendations issued by the World Trade Organization Technical
have been dried to constant weight. The average value deter-
Barriers to Trade (TBT) Committee.
mined for each of the two sets of specimens is used for
comparison.
2. Referenced Documents
1.4 Different properties can be measured to assess the effect
2
2.1 ASTM Standards:
of environmental factors on thermal insulation. This test
C165 Test Method for Measuring Compressive Properties of
method requires that thermal resistance be determined based
Thermal Insulations
upon an average for three specimens measured after complet-
C168 Terminology Relating to Thermal Insulation
ing the test. Secondary elements of this test method include
C177 Test Method for Steady-State Heat Flux Measure-
visual observations such as cracking, delamination or other
ments and Thermal Transmission Properties by Means of
the Guarded-Hot-Plate Apparatus
1
ThistestmethodisunderthejurisdictionofASTMCommitteeC16onThermal
Insulation and is the direct responsibility of Subcommittee C16.33 on Insulation
2
Finishes and Moisture. For referenced ASTM standards, visit the ASTM website, www.astm.org, or
Current edition approved June 15, 2020. Published July 2020. Originally contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
ε1
approved in 2001. Last previous edition approved in 2015 as C1512 – 10 (2015) . Standards volume information, refer to the standard’s Document Summary page o
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.