ASTM D524-15(2019)
(Test Method)Standard Test Method for Ramsbottom Carbon Residue of Petroleum Products
Standard Test Method for Ramsbottom Carbon Residue of Petroleum Products
SIGNIFICANCE AND USE
5.1 The carbon residue value of burner fuel serves as a rough approximation of the tendency of the fuel to form deposits in vaporizing pot-type and sleeve-type burners. Similarly, provided alkyl nitrates are absent (or if present, provided the test is performed on the base fuel without additive) the carbon residue of diesel fuel correlates approximately with combustion chamber deposits.
5.2 The carbon residue value of motor oil, while at one time regarded as indicative of the amount of carbonaceous deposits a motor oil would form in the combustion chamber of an engine, is now considered to be of doubtful significance due to the presence of additives in many oils. For example, an ash-forming detergent additive can increase the carbon residue value of an oil yet will generally reduce its tendency to form deposits.
5.3 The carbon residue value of gas oil is useful as a guide in the manufacture of gas from gas oil, while carbon residue values of crude oil residuum, cylinder and bright stocks, are useful in the manufacture of lubricants.
SCOPE
1.1 This test method covers the determination of the amount of carbon residue (Note 1) left after evaporation and pyrolysis of an oil, and it is intended to provide some indication of relative coke-forming propensity. This test method is generally applicable to relatively nonvolatile petroleum products which partially decompose on distillation at atmospheric pressure. This test method also covers the determination of carbon residue on 10 % (V/V) distillation residues (see Section 10). Petroleum products containing ash-forming constituents as determined by Test Method D482, will have an erroneously high carbon residue, depending upon the amount of ash formed (Notes 2 and 3).
Note 1: The term carbon residue is used throughout this test method to designate the carbonaceous residue formed during evaporation and pyrolysis of a petroleum product. The residue is not composed entirely of carbon, but is a coke which can be further changed by pyrolysis. The term carbon residue is continued in this test method only in deference to its wide common usage.
Note 2: Values obtained by this test method are not numerically the same as those obtained by Test Method D189, or Test Method D4530. Approximate correlations have been derived (see Fig. X2.1) but need not apply to all materials which can be tested because the carbon residue test is applicable to a wide variety of petroleum products. The Ramsbottom Carbon Residue test method is limited to those samples that are mobile below 90 °C.
Note 3: In diesel fuel, the presence of alkyl nitrates such as amyl nitrate, hexyl nitrate, or octyl nitrate, causes a higher carbon residue value than observed in untreated fuel, which can lead to erroneous conclusions as to the coke-forming propensity of the fuel. The presence of alkyl nitrate in the fuel can be detected by Test Method D4046.
Note 4: The test procedure in Section 10 is being modified to allow the use of a 100 mL volume automated distillation apparatus. No precision data is available for the procedure at this time, but a round robin is being planned to develop precision data. The 250 mL volume bulb distillation method described in Section 10 for determining carbon residue on a 10 % distillation residue is considered the referee test.
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.3 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use Caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users...
General Information
Relations
Standards Content (Sample)
This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the
Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
Designation: D524 − 15 (Reapproved 2019)
Designation: 14/94
Standard Test Method for
1
Ramsbottom Carbon Residue of Petroleum Products
This standard is issued under the fixed designation D524; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.
This standard has been approved for use by agencies of the U.S. Department of Defense.
1. Scope 1.2 The values stated in SI units are to be regarded as
standard. No other units of measurement are included in this
1.1 Thistestmethodcoversthedeterminationoftheamount
standard.
of carbon residue (Note 1) left after evaporation and pyrolysis
of an oil, and it is intended to provide some indication of 1.3 WARNING—Mercury has been designated by many
relative coke-forming propensity. This test method is generally regulatory agencies as a hazardous substance that can cause
applicable to relatively nonvolatile petroleum products which serious medical issues. Mercury, or its vapor, has been dem-
partially decompose on distillation at atmospheric pressure. onstrated to be hazardous to health and corrosive to materials.
This test method also covers the determination of carbon Use Caution when handling mercury and mercury-containing
residue on 10 % (V/V) distillation residues (see Section 10). products. See the applicable product Safety Data Sheet (SDS)
Petroleum products containing ash-forming constituents as for additional information. The potential exists that selling
determined by Test Method D482, will have an erroneously mercury or mercury-containing products, or both, is prohibited
highcarbonresidue,dependingupontheamountofashformed by local or national law. Users must determine legality of sales
(Notes 2 and 3). in their location.
1.4 This standard does not purport to address all of the
NOTE 1—The term carbon residue is used throughout this test method
to designate the carbonaceous residue formed during evaporation and safety concerns, if any, associated with its use. It is the
pyrolysis of a petroleum product. The residue is not composed entirely of
responsibility of the user of this standard to establish appro-
carbon, but is a coke which can be further changed by pyrolysis.The term
priate safety, health, and environmental practices and deter-
carbon residue is continued in this test method only in deference to its
mine the applicability of regulatory limitations prior to use.
wide common usage.
1.5 This international standard was developed in accor-
NOTE 2—Values obtained by this test method are not numerically the
same as those obtained by Test Method D189, or Test Method D4530.
dance with internationally recognized principles on standard-
Approximate correlations have been derived (see Fig. X2.1) but need not
ization established in the Decision on Principles for the
apply to all materials which can be tested because the carbon residue test
Development of International Standards, Guides and Recom-
is applicable to a wide variety of petroleum products. The Ramsbottom
mendations issued by the World Trade Organization Technical
Carbon Residue test method is limited to those samples that are mobile
Barriers to Trade (TBT) Committee.
below 90 °C.
NOTE 3—In diesel fuel, the presence of alkyl nitrates such as amyl
nitrate, hexyl nitrate, or octyl nitrate, causes a higher carbon residue value 2. Referenced Documents
than observed in untreated fuel, which can lead to erroneous conclusions
2
2.1 ASTM Standards:
astothecoke-formingpropensityofthefuel.Thepresenceofalkylnitrate
D86 Test Method for Distillation of Petroleum Products and
in the fuel can be detected by Test Method D4046.
NOTE 4—The test procedure in Section 10 is being modified to allow
Liquid Fuels at Atmospheric Pressure
theuseofa100 mLvolumeautomateddistillationapparatus.Noprecision
D189 Test Method for Conradson Carbon Residue of Petro-
data is available for the procedure at this time, but a round robin is being
leum Products
planned to develop precision data. The 250 mL volume bulb distillation
D482 Test Method for Ash from Petroleum Products
method described in Section 10 for determining carbon residue on a 10 %
distillation residue is considered the referee test. D4046 Test Method for Alkyl Nitrate in Diesel Fuels by
3
Spectrophotometry (Withdrawn 2019)
1
This test method is under the jurisdiction of ASTM Committee D02 on
2
Petroleum Products, Liquid Fuels, and Lubricants and is the direct responsibility of For referenced ASTM standards, visit the ASTM
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.