2019-03-06 AJC: No xml file to be provided; document 300+ pages long.

  • Technical specification
    339 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of IEC 62056 specifies DLMS/COSEM communication profiles for narrow-band OFDM power line carrier PRIME neighbourhood networks using the modulation as specified in Recommendation ITU-T G.9904:2012. Three communication profiles are specified: - a profile using the IEC 61334-4-32 LLC layer; - a profile using TCP-UDP/IPv4; - a profile using TCP-UDP/IPv6.

  • Standard
    83 pages
    English language
    sale 10% off
    e-Library read for
    1 day

2020-02-07: EC rejected for citation EMC
2018-09-12: positive assessments for MID and EMC.

  • Amendment
    10 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62056-6-2:2017 specifies a model of a meter as it is seen through its communication interface(s). Generic building blocks are defined using object-oriented methods, in the form of interface classes to model meters from simple up to very complex functionality. Annexes A to F (informative) provide additional information related to some interface classes. This third edition cancels and replaces the second edition of IEC 62056-6-2 published in 2016. It constitutes a technical revision. The significant technical changes with respect to the previous edition are listed in Annex F(Informative).

  • Standard
    440 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62056-6-1:2017 specifies the overall structure of the OBject Identification System (OBIS) and the mapping of all commonly used data items in metering equipment to their identification codes. This third edition cancels and replaces the second edition of IEC 62056-6-1, published in 2015. It constitutes a technical revision. The main technical changes with respect to the previous edition are listed in Annex B (informative).

  • Standard
    49 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62056-8-5:2017(E) specifies the IEC 62056 DLMS/COSEM communication profile for metering purposes based on the Recommendations ITU-T G.9901: Narrowband orthogonal frequency division multiplexing power line communication transceivers - Power spectral density specification and ITU-T G.9903:2014, Narrowband orthogonal frequency division multiplexing power line communication transceivers for G3-PLC networks, an Orthogonal Frequency Division Multiplexing (OFDM) Power Line Communications (PLC) protocol.

  • Standard
    35 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62056-5-3:2017(E) specifies the DLMS/COSEM application layer in terms of structure, services and protocols for DLMS/COSEM clients and servers, and defines rules to specify the DLMS/COSEM communication profiles. It defines services for establishing and releasing application associations, and data communication services for accessing the methods and attributes of COSEM interface objects, defined in IEC 62056-6-2 using either logical name (LN) or short name (SN) referencing. This third edition cancels and replaces the second edition of IEC 62056-5-3, published in 2016. It constitutes a technical revision. The significant technical changes with respect to the previous edition are listed in Annex K (Informative).

  • Standard
    352 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62056-8-6:2017 specifies the DLMS/COSEM communication profile for ISO/IEC 12139‑1. High speed PLC (HS-PLC) neighbourhood networks. It uses the standard ISO/IEC 12139-1 established by ISO/IEC JTC1 SC06.

  • Standard
    41 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62056-7-3:2017(E) specifies DLMS/COSEM wired and wireless M-Bus communication profiles for local and neighbourhood networks. It is restricted to aspects concerning the use of communication protocols in conjunction with the COSEM data model and the DLMS/COSEM application layer.

  • Standard
    40 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Specifies particular requirements for the type test of newly manufactured indoor time switches with operation reserve that are used to control electrical loads, multi-tariff registers and maximum demand devices of electricity metering equipment

  • Amendment
    6 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Applies only to newly manufactured static var-hour meters of accuracy classes 2 and 3, for the measurement of alternating current electrical reactive energy in 50 Hz or 60 Hz networks and it applies to their type tests only. For practical reasons, this standard is based on a conventional definition of reactive energy for sinusoidal currents and voltages containing the fundamental frequency only.

  • Amendment
    6 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Covers type tests for electricity metering equipment for indoor and outdoor application and to newly manufactured equipment designed to measure the electric energy on 50 Hz or 60 Hz networks, with a voltage up to 600 V. It applies to electromechanical or static meters for indoor and outdoor application consisting of a measuring element and register(s) enclosed together in a meter case. It also applies to operation indicator(s) and test output(s)

  • Amendment
    13 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62053-24:2014 applies only to newly manufactured transformer operated static var-hour meters of accuracy classes 0,5 S, and 1 S as well as direct connected static var-hour meters of accuracy class 1, for the measurement of alternating current electrical reactive energy in 50 Hz or 60 Hz networks and it applies to their type tests only. It uses a conventional definition of reactive energy where the reactive power and energy is calculated from the fundamental frequency components of the currents and voltages only.

  • Amendment
    6 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Specifies particular requirements for the type test of newly manufactured indoor electronic ripple control receivers for the reception and interpretation of pulses of a single audio frequency superimposed on the voltage of the electricity distribution network and for the execution of the corresponding switching operations. In this system the mains frequency is generally used to synchronize the transmitter and receivers. Neither the control frequency nor the encoding are standardized in this standard.

  • Amendment
    6 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Specifies general requirements for the type test of newly manufactured indoor tariff and load control equipment, like electronic ripple control receivers and time switches that are used to control electrical loads, multi-tariff registers and maximum demand indicator devices.

  • Amendment
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Applies only to newly manufactured static watt-hour meters of accuracy classes 0,2 S and 0,5 S, for the measurement of alternating current electrical active energy in 50 Hz or 60 Hz networks and it applies to their type tests only.

  • Amendment
    7 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Applies only to newly manufactured static watt-hour meters of accuracy classes 1 and 2, for the measurement of alternating current electrical active energy in 50 Hz or 60 Hz networks and it applies to their type tests only. It applies only to static watt-hour meters for indoor and outdoor application consisting of a measuring element and register(s) enclosed together in a meter case.

  • Amendment
    7 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Applies only to newly manufactured electromechanical watt-hour meters of accuracy classes 0,5, 1 and 2, for the measurement of alternating current electrical active energy in 50 Hz or 60 Hz networks and it applies to their type tests only. It applies only to electromechanical watt-hour meters for indoor and outdoor application consisting of a measuring element and register(s) enclosed together in a meter case. It also applies to operation indicator(s) and test output(s).

  • Amendment
    7 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62056-4-7:2015 specifies a connection-less and a connection oriented transport layer (TL) for DLMS/COSEM communication profiles used on IP networks. These TLs provide OSI-style services to the service user DLMS/COSEM AL. The connection-less TL is based on the Internet Standard User Datagram Protocol (UDP). The connection-oriented TL is based on the Internet Standard Transmission Control Protocol (TCP). This first edition cancels and replaces the IEC 62056-47 published in 2006 and constitutes a technical revision. It includes the following changes: - This standard is applicable now both for IP4 and IPv6 networks; - Latest editions of the IEC 62056 suite are referenced. DLMS/COSEM IANA-registered port numbers added.

  • Standard
    41 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62056-7-5:2016 specifies DLMS/COSEM communication profiles for transmitting metering data modelled by COSEM interface objects through a Local Data Transmission Interface (LDTI). The LDTI may be part of a meter or of a Local Network Access Point (LNAP) hosting a DLMS/COSEM server.

  • Standard
    44 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62052-31:2015(E) specifies product safety requirements for equipment for electrical energy measurement and control. It applies to newly manufactured metering equipment designed to measure and control electrical energy on 50 Hz or 60 Hz networks with a voltage up to 600 V, where all functional elements, including add-on modules are enclosed in or form a single. It also applies to metering equipment containing supply and load control switches, but only those which are electromechanical in operation and is applicable to auxiliary input and output circuits.

  • Standard
    194 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62056-1-0:2014 provides information on the smart metering use cases and on architectures supported by the IEC 62056 DLMS/COSEM series of standards specifying electricity meter data exchange. It describes the standardization framework including: - the principles on which the standards shall be developed; - the ways the existing standards shall be extended to support new use cases and to accommodate new communication technologies, while maintaining coherency; - the aspects of interoperability and information security. It also provides guidance for selecting the suitable standards for a specific interface within the smart metering system.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Technical Specification contains 4 profile specifications: • the DLMS/COSEM SMITP B-PSK PLC Profile (clause 4) • the Original-SMITP B-PSK PLC Profile (clause 5) • the Original-SMITP IP Profile (clause 6) • the Original-SMITP Local data exchange profile (clause 7) The DLMS/COSEM SMITP B-PSK profile defines the use of the CLC/FprTS 50568-4 communication protocol and methods to access and exchange data modelled by the COSEM objects of EN 62056 6 2 via the EN 62056-5-3 application layer. This section forms part of the DLMS/COSEM suite as described in FprEN 62056-1-0. NOTE In the following, the expression Original-SMITP refers to the open protocol originally developed and maintained by the Meters and More Open Technologies association (see Foreword). The Original-SMITP Profiles define the access and exchange of data modelled by the Original-SMITP data model (clause 9) using the Original-SMITP application services (Clause 8). The “Original-SMITP” specifications refer to smart metering system specifications defined prior to the availability of the DLMS/COSEM SMITP B-PSK PLC Profile. The “Original-SMITP” specifications do not form part of the DLMS/COSEM suite of EN 62056.

  • Technical specification
    289 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Technical Specification specifies the physical layer, medium access control layer and logical link control layer for communication on an electrical distribution network between a master node and one or more slave nodes using adaptive multi-carrier spread spectrum (AMC SS) technique. The adaptive cellular communication network technology provided in this specification may be used for automated meter reading as well as for other distribution network applications.

  • Technical specification
    135 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Technical Specification is part of the EN 62056 / 52056 DLMS/COSEM suite and specifies the DLMS/COSEM communication profile for compatibly extendable power line carrier neighbourhood networks using Adaptive Multi-Carrier Spread-Spectrum (AMC-SS). The physical layer provides a modulation technique that efficiently utilizes the allowed bandwidth within the CENELEC A band (3 kHz – 95 kHz), offering a very robust communication in the presence of narrowband interference, impulsive noise, and frequency selective attenuation. The physical layer of AMC-SS is defined in Clause 5 of CLC/FprTS 50590:2014. The data link (DL) layer consists of three parts, the ‘Medium Access Control’ (MAC) sub-layer, the Logical Link Control (LLC) sub-layer and the ‘Convergence’ sub-layer. The data link layer allows the transmission of data frames through the use of the power line physical channel. It provides data services, frame integrity control, routing, registration, multiple access, and cell change functionality. The MAC sub-layer and the LLC sub-layer of AMC-SS are defined in Clause 6 of CLC/FprTS 50590:2014. The Convergence sub-layer is defined in this document. The transport layer, the application layer and the data model are as specified in the EN 62056 DLMS/COSEM suite.

  • Technical specification
    42 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Technical Specification specifies the characteristics of the profile related to Physical and Data Link Layers for communications on LV distribution network between a Concentrator (master node) and one or more slave nodes. The following prescriptions are applied to groups of devices that communicate using low voltage network. Each section of the network is composed by one Concentrator (acting as the master of the section), and one or more primary nodes (A-Nodes). Every A-Node can optionally be associated to one secondary node (B-Node).

  • Technical specification
    50 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62053-24:2014 applies only to newly manufactured transformer operated static var-hour meters of accuracy classes 0,5 S, and 1 S as well as direct connected static var-hour meters of accuracy class 1, for the measurement of alternating current electrical reactive energy in 50 Hz or 60 Hz networks and it applies to their type tests only. It uses a conventional definition of reactive energy where the reactive power and energy is calculated from the fundamental frequency components of the currents and voltages only.

  • Standard
    30 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62056-3-1:2013 describes three profiles for local bus data exchange with stations either energized or not. For non-energized stations, the bus supplies energy for data exchange. Three different profiles are supported: - base profile; - profile with DLMS; - profile with DLMS/COSEM. The three profiles use the same physical layer and they are fully compatible, meaning that devices implementing any of these profiles can be operated on the same bus. The transmission medium is twisted pair using carrier signalling and it is known as the Euridis Bus. This first edition cancels and replaces the first edition of IEC 62056-31, issued in 1999, and constitutes a technical revision. The main technical changes are: - addition of a profile which makes use of the IEC 62056 DLMS/COSEM Application layer and COSEM object model, - review of the data link layer which is split into two parts: a pure Data Link layer; a "Support Manager" entity managing the communication media; - ability to negotiate the communication speed, bringing baud rate up to 9 600 bauds.

  • Standard
    116 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62056-9-7:2013 specifies the DLMS/COSEM communication profile for TCP-UDP/IP networks.

  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62056-7-6:2013 specifies the DLMS/COSEM 3-layer, connection-oriented HDLC based communication profile.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62056-8-3:2013 specifies the DLMS/COSEM PLC S-SFK communication profile for neighbourhood networks. It uses standards established by IEC TC 57 in the IEC 61334 series.

  • Standard
    55 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Technical Report applies to newly manufactured static watt-hour meters intended for residential, commercial and light industrial use, of class indexes A, B and C, for the measurement of alternating current electrical active energy in 50 Hz networks. It specifies particular requirements and immunity test for direct connected and transformer connected electricity meters as an extension for EN 50470-1 and EN 50470-3. The tests are designed to achieve immunity against disturbing currents of up to 2 A (2 kHz-30 kHz) and up to 1 A (30 KHz-150 kHz) for direct connected meters and 2 % Imax (2 kHz-30 kHz) and 1 % Imax (30 KHz-150 kHz) for transformer connected meters. It applies to static watt-hour meters for indoor and outdoor application, consisting of a measuring element and register(s) enclosed together in a meter case. If the meter has (a) measuring element(s) for more than one type of energy (multi-energy meters), or when other functional elements, like maximum demand indicators, electronic tariff registers, time switches, ripple control receivers, data communication interfaces etc. are enclosed in the meter case (multi-function meters) then this Technical Report applies only for the active energy metering part. This Technical Report distinguishes between: – meters of class indexes A, B and C; – direct connected and transformer operated meters; It does not apply to: – watt-hour meters where the voltage across the connection terminals exceeds 600 V (line-to-line voltage for meters for polyphase systems); – portable meters; – reference meters.

  • Technical report
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62059-32-1:2011 specifies a method for testing the stability of metrological characteristics of electricity meters, by operating a test specimen at the upper limit of the specified operating range of temperature, voltage and current for an extended period.

  • Standard
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62058-21:2008 specifies particular requirements for acceptance inspection of newly manufactured direct connected or transformer operated electromechanical meters for active energy (classes 0,5, 1 and 2) delivered in lots in quantities above 50. The method of acceptance of smaller lots should be agreed upon by the manufacturer and the customer.

  • Standard
    27 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62058-11:2008 specifies the general acceptance inspection methods which apply to newly manufactured electricity meters produced and supplied in lots of 50 and above.

  • Standard
    91 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62058-31:2008 specifies particular requirements for acceptance inspection of newly manufactured direct connected or transformer operated static meters for active energy (classes 0,2 S, 0,5 S, 1 and 2) delivered in lots in quantities above 50. The method of acceptance of smaller lots should be agreed upon by the manufacturer and the customer.

  • Standard
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62059-31-1:2008 provides one of several possible methods for estimating product life characteristics by accelerated reliability testing. In this standard, elevated, constant temperature and humidity is applied to achieve acceleration. The method takes into account the effect of voltage and current variation. It is applicable to all types of metering equipment for energy measurement, tariff and load control in the scope of IEC TC 13. The method given in this standard may be used for estimating (with given confidence limits) product life characteristics of such equipment prior to and during serial production. This method may also be used to compare different designs. The contents of the corrigendum of December 2008 have been included in this copy.

  • Standard
    89 pages
    English language
    sale 10% off
    e-Library read for
    1 day