Oil spill identification - Petroleum and petroleum related products - Part 2: Analytical method and interpretation of results based on GC-FID and GC-low resolution-MS analyses

This document specifies a method to identify and compare the compositional characteristics of oil samples. Specifically, it describes the detailed analytical and data processing methods for identifying the characteristics of spill samples and establishing their correlation to suspected source oils. Even when samples or data from suspected sources are not available for comparison, establishing the specific nature (e.g. refined petroleum, crude oil, waste oil, etc.) of the spilled oil still helps to constrain the possible source(s).
This methodology is restricted to petroleum related products containing a significant proportion of hydrocarbon-components with a boiling point above 150 °C. Examples are: crude oils, higher boiling condensates, diesel oils, residual bunker or heavy fuel oils, lubricants, and mixtures of bilge and sludge samples, as well as distillate fuels and blends. While the specific analytical methods are perhaps not appropriate for lower boiling oils (e.g. kerosene, jet fuel, or gasoline), the general concepts described in this methodology, i.e. statistical comparison of weathering-resistant diagnostic ratios, are applicable in spills involving these kinds of oils.
Paraffin based products (e.g. waxes, etc.) are outside the scope of this method because too many compounds are removed during the production process [37]. However, the method can be used to identify the type of product involved.
Although not directly intended for identifying oil recovered from groundwater, vegetation, wildlife/tissues, soil, or sediment matrices, they are not precluded. However, caution is needed as extractable compounds can be present in these matrices that alter and/or contribute additional compounds compared to the source sample. If unrecognized, the contribution from the matrix can lead to false “non-matches”. It is therefore advisable to analyse background sample(s) of the matrix that appear unoiled.
When analysing “non-oil” matrices additional sample preparation (e.g. clean-up) is often required prior to analysis and the extent to which the matrix affects the correlation achieved is to be considered. Whether the method is applicable for a specific matrix depends upon the oil concentration compared to the “matrix concentration”. In matrices containing high concentrations of oil, a positive match can still be concluded. In matrices containing lower concentrations of oil, a false “non-match” or an “inconclusive match” can result from matrix effects. Evaluation of possible matrix effects is beyond the scope of this document.

Identifizierung von Ölverschmutzungen - Mineralöl und verwandte Produkte - Teil 2: Analytische Methodik und Interpretation der Ergebnisse, basierend auf GC-FID- und GC-MS-Analysen bei niedriger Auflösung

Dieses Dokument legt eine Methode zur Identifizierung und zum Vergleich der Zusammensetzungsmerkmale von Ölproben fest. Insbesondere werden die detaillierten Analyse- und Datenverarbeitungsmethoden beschrieben, mit denen die Merkmale der Proben von Ölverschmutzungen identifiziert und ihre Korrelation mit den vermuteten Ölquellen festgestellt wird. Selbst wenn keine Proben oder Daten von mutmaßlichen Quellen zum Vergleich zur Verfügung stehen, hilft die Feststellung der spezifischen Beschaffenheit des freigesetzten Öls (z. B. raffiniertes Mineralöl, Rohöl, Ölabfälle usw.) dennoch dabei, die mögliche(n) Quelle(n) einzugrenzen.
Diese Methodik ist auf Mineralölerzeugnisse beschränkt, die einen erheblichen Anteil an Kohlenwasserstoffkomponenten mit einem Siedepunkt über 150 °C enthalten. Beispiele sind: Rohöle, höhersiedende Kondensate, Dieselöle, Rückstände von Bunker oder Schwerölen, Schmierstoffe und Mischungen aus Bilgen sowie Schlammproben und Destillattreibstoffe und Mischungen derselben. Während die spezifischen Analysemethoden für Öle mit niedrigerem Siedepunkt (z. B. Kerosin, Düsentreibstoff oder Ottokraftstoff) vielleicht nicht geeignet sind, sind die in dieser Methodik beschriebenen allgemeinen Konzepte, d. h. der statistische Vergleich von witterungsbeständigen diagnostischen Verhältnissen, bei Unfällen mit diesen Arten von Ölen anwendbar.
Paraffin-Erzeugnisse (z. B. Wachse usw.) fallen nicht in den Anwendungsbereich dieser Methode, weil während des Herstellungsprozesses zu viele Verbindungen entfernt werden [37], um sie korrekt voneinander zu unterscheiden. Die Methode kann jedoch zur Identifizierung der Art des betreffenden Produkts verwendet werden.
Obwohl sie nicht direkt zur Identifizierung von Ölproben bestimmt sind, die aus dem Grundwasser, der Vegetation, der Tierwelt oder tierischem Gewebe, aus Böden oder Sediment genommen werden, sind sie nicht ausgeschlossen. Es ist jedoch Vorsicht geboten, da in diesen Matrices extrahierbare Verbindungen vorhanden sein können, die die Ausgangsprobe verändern und/oder zusätzliche Verbindungen in diese einbringen können. Wird dies nicht erkannt, kann der Beitrag der Matrix zu falschen Nicht-Übereinstimmungen führen. Es ist daher ratsam, Hintergrundbelastungsproben der Matrix zu analysieren, die nicht durch Öl verunreinigt sind.
Bei der Analyse von „Nicht-Öl“-Matrices ist häufig eine zusätzliche Probenvorbereitung (z. B. Aufreinigung) vor der Analyse erforderlich, und es ist zu berücksichtigen, inwieweit die Matrix die erzielte Korrelation beeinflusst. Ob die Methode für eine spezifische Matrix anwendbar ist, hängt von der Ölkonzentration im Vergleich zur „Matrixkonzentration“ ab. In Matrices, die hohe Konzentrationen an Öl enthalten, kann immer noch auf eine Übereinstimmung geschlossen werden. In Matrices, die geringere Konzentrationen an Öl enthalten, kann eine falsche „Nicht-Übereinstimmung“ oder ein „uneindeutiges Ergebnis“ auf Matrixeffekte zurückzuführen sein. Die Bewertung möglicher Matrixeffekte fällt nicht in den Anwendungsbereich dieses Dokuments.

Identification des pollutions pétrolières - Pétrole et produits pétroliers - Partie 2 : Méthode d'analyse et interprétation des résultats sur la base des analyses par CPG DIF et CPG-SM faible résolution

Le présent document spécifie une méthode d'identification et de comparaison des caractéristiques de composition des échantillons de pétrole. Plus spécifiquement, il décrit en détail les méthodes d'analyse et de traitement des données visant à identifier les caractéristiques des échantillons de déversement, et à établir une corrélation avec les pétroles sources potentiels. Même en l'absence d'échantillons ou de données sur les sources potentielles pour effectuer la comparaison, le fait d'établir la nature propre du pétrole déversé (par exemple pétrole raffiné, pétrole brut, huile usée, etc.) aide malgré tout à restreindre la liste des sources potentielles.
Cette méthodologie est limitée aux produits pétroliers contenant une proportion significative d'hydrocarbures avec un point d'ébullition supérieur à 150 °C, par exemple : les pétroles bruts, les condensats à température d'ébullition élevée, les gazoles, les résidus de soute ou de fiouls lourds, les lubrifiants, les mélanges d'eau de cale et de boues, ainsi que les distillats et les mélanges. Si les méthodes d'analyse spécifiques présentées ici ne sont pas forcément adaptées à des pétroles à plus faible température d'ébullition (par exemple kérosène, carburéacteur ou essence), les concepts généraux associés, par exemple la comparaison statistique des ratios de diagnostic résistants aux intempéries, s'appliquent aux déversements impliquant ces types de pétroles.
Les produits à base de paraffine (par exemple les cires, etc.) sont hors du domaine d'application de la présente méthode, car un nombre trop important de composés sont retirés au cours du processus de production [37] ; ce qui ne permet pas ensuite de correctement les distinguer les uns des autres. Cependant, la méthode peut être utilisée pour identifier le type de produit concerné.
Bien qu'elle ne vise pas directement à identifier le pétrole prélevé dans les eaux souterraines, la végétation, la faune/les tissus, les sols ou les sédiments, ces applications ne sont pas exclues. Cependant, elles nécessitent d'user de prudence, car ces matrices peuvent contenir des composés extractibles susceptibles de s'altérer et/ou de générer des composés supplémentaires par rapport à l'échantillon de la source. Si l'effet de matrice n'est pas pris en compte, cela peut entraîner des « faux négatifs ». Il est donc recommandé d'analyser un ou des échantillons de base de la matrice apparemment non contaminés.
Pour analyser des matrices « non pétrolières », des étapes supplémentaires de préparation des échantillons (par exemple nettoyage) sont souvent nécessaires en amont, et le degré auquel la matrice affecte la corrélation obtenue doit être pris en compte. La question de savoir si cette méthode est applicable à une matrice spécifique dépend de la concentration de pétrole par rapport à la « concentration de la matrice ». Ainsi, dans les matrices contenant des concentrations élevées de pétrole, une correspondance positive peut malgré tout être obtenue. En revanche, dans des matrices contenant de faibles concentrations de pétrole, on peut obtenir un faux négatif ou une correspondance non conclusive. L'évaluation des potentiels effets de matrice ne fait pas partie du domaine d'application du présent document.

Prepoznavanje razlitij olj - Nafta in sorodni naftni proizvodi - 2. del: Analizne metode in podajanje rezultatov, izhajajočih iz GC-FID in GC-MS nizke ločljivosti

Ta dokument določa metodo za ugotavljanje lastnosti sestave vzorcev olja. Natančneje, opisuje podrobne analizne metode in metode obdelovanja podatkov za prepoznavanje lastnosti vzorcev razlitij in vzpostavlja korelacijo z možnimi viri olja. Tudi če vzorci ali podatki iz možnih virov niso na voljo za primerjavo, lahko opredelitev specifične narave (npr. rafinirana nafta, surova nafta, odpadno olje itd.) razlitega olja pomaga pri omejevanju možnih virov razlitij.
Ta metodologija je omejena na nafto in naftne proizvode z znatnim deležem ogljikovodikovih sestavnih delov z vreliščem nad 150 °C. Primeri vključujejo: surovo olje, kondenzate z višjim vreliščem, dizelska goriva, ostanke goriv iz ladijskih rezervoarjev ali težkih kurilnih olj, maziva ter mešanice vzorcev kaluže in blata, kot tudi destilatna goriva in mešanice. Specifične analizne metode morda niso primerne za olja z nizkim vreliščem (npr. kerozine, goriva za reaktivne letalske motorje ali bencin), vendar se splošni pojmi, opisani v
tej metodologiji, npr. statistična primerjava diagnostičnih razmerij odpornosti na pospešeno staranje, lahko uporabijo pri razlitjih
tovrstnih olj.
Parafinski proizvodi (npr. voski itd.) niso zajeti na področje uporabe te metode, saj je iz njih v postopku proizvodnje [37] odstranjenih preveč spojin, da bi jih lahko pravilno razlikovali.
Vseeno
pa je to metodo mogoče uporabiti za ugotavljanje tipa zadevnega proizvoda.
Čeprav metoda ni neposredno namenjena za ugotavljanje olj, pridobljenih iz podtalnice, vegetacije, prostoživečih živali in rastlin/tkiv, tal ali sedimentov, le-ti niso izključeni. Vseeno pa je potrebna previdnost, saj so spojine, ki jih je mogoče ekstrahirati, lahko prisotne v matricah, ki spremenijo in/ali prispevajo k dodatnim spojinam v primerjavi z izvornim vzorcem. Če se jih ne odkrije, lahko povzročijo
»lažna neujemanja«. Zato je priporočljivo analizirati vzorce ozadja matrice, ki se zdijo brez olja.
Pri analiziranju matric »brez olja« je pogosto pred analizo potreben pripravek dodatnega vzorca (npr. očiščen) in
treba je upoštevati obseg, v katerem matrica vpliva na doseženo korelacijo.
Možnost uporabe metode za določeno matrico je odvisna od koncentracije olja v primerjavi s »koncentracijo matrice«. Pri matricah z visoko koncentracijo olja se lahko še vedno ugotovi pozitivno ujemanje. Pri matricah z nizko koncentracijo olja lahko zaradi učinkov matrice pride do »neujemanja« ali »nedoločnega ujemanja«. Ocena možnih učinkov matrice ni predmet tega dokumenta.

General Information

Status
Withdrawn
Publication Date
28-Mar-2023
Withdrawal Date
06-May-2025
Current Stage
6060 - Definitive text made available (DAV) - Publishing
Start Date
29-Mar-2023
Due Date
24-Sep-2022
Completion Date
29-Mar-2023

Relations

Standard
EN 15522-2:2023 - BARVE
English language
219 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Frequently Asked Questions

EN 15522-2:2023 is a standard published by the European Committee for Standardization (CEN). Its full title is "Oil spill identification - Petroleum and petroleum related products - Part 2: Analytical method and interpretation of results based on GC-FID and GC-low resolution-MS analyses". This standard covers: This document specifies a method to identify and compare the compositional characteristics of oil samples. Specifically, it describes the detailed analytical and data processing methods for identifying the characteristics of spill samples and establishing their correlation to suspected source oils. Even when samples or data from suspected sources are not available for comparison, establishing the specific nature (e.g. refined petroleum, crude oil, waste oil, etc.) of the spilled oil still helps to constrain the possible source(s). This methodology is restricted to petroleum related products containing a significant proportion of hydrocarbon-components with a boiling point above 150 °C. Examples are: crude oils, higher boiling condensates, diesel oils, residual bunker or heavy fuel oils, lubricants, and mixtures of bilge and sludge samples, as well as distillate fuels and blends. While the specific analytical methods are perhaps not appropriate for lower boiling oils (e.g. kerosene, jet fuel, or gasoline), the general concepts described in this methodology, i.e. statistical comparison of weathering-resistant diagnostic ratios, are applicable in spills involving these kinds of oils. Paraffin based products (e.g. waxes, etc.) are outside the scope of this method because too many compounds are removed during the production process [37]. However, the method can be used to identify the type of product involved. Although not directly intended for identifying oil recovered from groundwater, vegetation, wildlife/tissues, soil, or sediment matrices, they are not precluded. However, caution is needed as extractable compounds can be present in these matrices that alter and/or contribute additional compounds compared to the source sample. If unrecognized, the contribution from the matrix can lead to false “non-matches”. It is therefore advisable to analyse background sample(s) of the matrix that appear unoiled. When analysing “non-oil” matrices additional sample preparation (e.g. clean-up) is often required prior to analysis and the extent to which the matrix affects the correlation achieved is to be considered. Whether the method is applicable for a specific matrix depends upon the oil concentration compared to the “matrix concentration”. In matrices containing high concentrations of oil, a positive match can still be concluded. In matrices containing lower concentrations of oil, a false “non-match” or an “inconclusive match” can result from matrix effects. Evaluation of possible matrix effects is beyond the scope of this document.

This document specifies a method to identify and compare the compositional characteristics of oil samples. Specifically, it describes the detailed analytical and data processing methods for identifying the characteristics of spill samples and establishing their correlation to suspected source oils. Even when samples or data from suspected sources are not available for comparison, establishing the specific nature (e.g. refined petroleum, crude oil, waste oil, etc.) of the spilled oil still helps to constrain the possible source(s). This methodology is restricted to petroleum related products containing a significant proportion of hydrocarbon-components with a boiling point above 150 °C. Examples are: crude oils, higher boiling condensates, diesel oils, residual bunker or heavy fuel oils, lubricants, and mixtures of bilge and sludge samples, as well as distillate fuels and blends. While the specific analytical methods are perhaps not appropriate for lower boiling oils (e.g. kerosene, jet fuel, or gasoline), the general concepts described in this methodology, i.e. statistical comparison of weathering-resistant diagnostic ratios, are applicable in spills involving these kinds of oils. Paraffin based products (e.g. waxes, etc.) are outside the scope of this method because too many compounds are removed during the production process [37]. However, the method can be used to identify the type of product involved. Although not directly intended for identifying oil recovered from groundwater, vegetation, wildlife/tissues, soil, or sediment matrices, they are not precluded. However, caution is needed as extractable compounds can be present in these matrices that alter and/or contribute additional compounds compared to the source sample. If unrecognized, the contribution from the matrix can lead to false “non-matches”. It is therefore advisable to analyse background sample(s) of the matrix that appear unoiled. When analysing “non-oil” matrices additional sample preparation (e.g. clean-up) is often required prior to analysis and the extent to which the matrix affects the correlation achieved is to be considered. Whether the method is applicable for a specific matrix depends upon the oil concentration compared to the “matrix concentration”. In matrices containing high concentrations of oil, a positive match can still be concluded. In matrices containing lower concentrations of oil, a false “non-match” or an “inconclusive match” can result from matrix effects. Evaluation of possible matrix effects is beyond the scope of this document.

EN 15522-2:2023 is classified under the following ICS (International Classification for Standards) categories: 13.020.40 - Pollution, pollution control and conservation; 75.080 - Petroleum products in general. The ICS classification helps identify the subject area and facilitates finding related standards.

EN 15522-2:2023 has the following relationships with other standards: It is inter standard links to CEN/TR 15522-2:2012, EN 15522-2:2023+A1:2025, EN 15522-2:2023/FprA1. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

You can purchase EN 15522-2:2023 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of CEN standards.

Standards Content (Sample)


SLOVENSKI STANDARD
01-junij-2023
Nadomešča:
SIST-TP CEN/TR 15522-2:2013
Prepoznavanje razlitij olj - Nafta in sorodni naftni proizvodi - 2. del: Analizne
metode in podajanje rezultatov, izhajajočih iz GC-FID in GC-MS nizke ločljivosti
Oil spill identification - Petroleum and petroleum related products - Part 2: Analytical
method and interpretation of results based on GC-FID and GC-low resolution-MS
analyses
Identifizierung von Ölverschmutzungen - Rohöl und Mineralölerzeugnisse - Teil 2:
Analytische Methodik und Interpretation der Ergebnisse, basierend auf GC-FID- und GC-
MS-Analysen bei niedriger Auflösung
Identification des pollutions pétrolières - Pétrole et produits pétroliers - Partie 2 :
Méthode d'analyse et interprétation des résultats sur la base des analyses par CPG DIF
et CPG-SM faible résolution
Ta slovenski standard je istoveten z: EN 15522-2:2023
ICS:
13.020.40 Onesnaževanje, nadzor nad Pollution, pollution control
onesnaževanjem in and conservation
ohranjanje
13.060.99 Drugi standardi v zvezi s Other standards related to
kakovostjo vode water quality
75.080 Naftni proizvodi na splošno Petroleum products in
general
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

EN 15522-2
EUROPEAN STANDARD
NORME EUROPÉENNE
March 2023
EUROPÄISCHE NORM
ICS 13.020.40; 75.080 Supersedes CEN/TR 15522-2:2012
English Version
Oil spill identification - Petroleum and petroleum related
products - Part 2: Analytical method and interpretation of
results based on GC-FID and GC-low resolution-MS
analyses
Identification des pollutions pétrolières - Pétrole et Identifizierung von Ölverschmutzungen - Rohöl und
produits pétroliers - Partie 2 : Méthode d'analyse et Mineralölerzeugnisse aus dem Wasser - Teil 2:
interprétation des résultats sur la base des analyses Analytische Methodik und Interpretation der
par CPG DIF et CPG-SM faible résolution Ergebnisse, basierend auf GC-FID- und GC-MS-
Analysen bei niedriger Auflösung
This European Standard was approved by CEN on 25 December 2022.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and
United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION

EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2023 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 15522-2:2023 E
worldwide for CEN national Members.

Contents Page
European foreword . 8
Introduction . 10
1 Scope . 12
2 Normative references . 12
3 Terms and definitions . 13
3.1 General. 13
3.2 Sample comparison . 15
3.3 Abbreviations . 15
4 Strategy for the identification of oil spill sources . 16
4.1 General. 16
4.2 Basis for reliable conclusions – Numerical comparisons . 17
5 General lab instructions . 18
5.1 Sampling and sample preparation . 18
5.2 GC-FID and GC-MS analysis . 18
5.3 Conclusions and reporting . 20
6 Sample preparation . 20
6.1 General. 20
6.2 Visual examination and description of samples . 20
6.3 Preparation . 21
6.3.1 Sample storage . 21
6.3.2 Water samples . 21
6.3.3 Oil samples from an Ethylene-tetrafluorethylene (ETFE) net . 22
6.3.4 Thick oil and emulsified oil samples . 22
6.3.5 Tar balls and emulsified lumps . 22
6.3.6 Samples from oiled birds, fish and other animals and vegetation . 23
6.3.7 Sediment . 23
6.4 Sample clean-up . 23
6.4.1 General. 23
6.4.2 Particle removal . 23
6.4.3 Asphaltenes precipitation . 24
6.4.4 Alumina column clean-up of biogenic materials . 24
6.4.5 Silica or Florisil® column clean-up . 25
6.5 Recommended injection concentration . 26
7 Characterization and evaluation of analytical data . 27
7.1 General. 27
7.2 Characterization by GC-FID – Level 1 . 28
7.2.1 General. 28
7.2.2 Evaluation of the influence of weathering on sample comparison . 28
7.2.3 Acyclic isoprenoids ratios – Level 1.2 . 31
7.2.4 Level 1 criteria . 32
7.2.5 Level 1 conclusions . 32
7.3 Characterization by GC-MS – Level 2 . 32
7.3.1 General. 32
7.3.2 Visual inspection and overall characterization - Level 2.1 . 32
7.3.3 Treatment of the GC-MS results – Level 2.2 . 33
7.4 Treatment of the results using the MS-PW-plot– Level 2.2 . 33
7.4.1 General . 33
7.4.2 PW-plot calculations . 34
7.4.3 Evaluation of the variability of the analysis and peak integration . 34
7.4.4 Evaluation of weathering . 36
7.5 Treatment of the results using diagnostic ratios – Level 2.2 . 37
7.5.1 General . 37
7.5.2 Diagnostic ratios calculation . 38
7.5.3 Normative diagnostic ratios . 38
7.5.4 Analytical error . 42
7.5.5 Match-criterion for ratios . 43
7.5.6 Criteria for selecting, eliminating and evaluating diagnostic ratios . 44
7.6 Conclusions . 48
8 Reporting . 49
8.1 General . 49
8.2 Internal documentation – technical report . 50
8.3 Identification report – summary report . 51
9 Quality assurance . 51
Annex A (normative) GC-FID analysis . 53
A.1 General . 53
A.2 Analytical standards for GC-FID analyses . 53
A.2.1 N-alkanes . 53
A.2.2 Injection concentration of the standard GC-FID . 54
A.2.3 Storage of frequently used standard solutions . 54
A.3 Suggested instrumental conditions . 54
A.4 Measures to improve and verify the accuracy of the method – GC-FID . 55
A.4.1 Mass discrimination . 55
A.4.2 Column resolution . 56
A.4.3 Linearity . 58
A.4.4 Mid-level concentration . 58
A.4.5 Variance . 59
A.4.6 GC-FID sequence. 59
Annex B (normative) GC-MS analysis . 60
B.1 General . 60
B.2 Analytical standards for GC-MS analyses . 60
B.2.1 General . 60
B.2.2 Crude oil to be used around each sequence . 61
B.2.3 Oil mixture . 61
B.2.4 Analytical standards for PAH homologues . 61
B.2.5 FAMEs . 62
B.2.6 Storage of frequently used standard solutions . 62
B.3 Suggested instrumental conditions . 62
B.3.1 GC conditions for the exchange of analytical results . 62
B.3.2 GC-MS conditions for full-scan analysis . 64
B.3.3 MS preparation for selected ion monitoring (SIM) analysis . 65
B.4 Measures to improve and verify the accuracy of the GC-MS method . 66
B.4.1 Relative retention time . 66
B.4.2 Mass discrimination . 66
B.4.3 Peak symmetry and column resolution . 66
B.4.4 Patterns . 67
B.4.5 Linearity . 67
B.4.6 Mid-level concentration . 67
B.4.7 Variance. 68
B.4.8 Sample analysis with GC-MS . 68
Annex C (informative) Precision statement . 69
C.1 General. 69
C.2 Precision of the MS-PW-plot . 69
C.3 Precision of the ratio comparison . 70
C.4 Reproducibility . 71
C.5 The effect of the ratio type on the RSD . 72 ®
C.6 Example of a paired ratio calculation in Excel . 73 ®
C.7 Calculation of the evaporation line for the MS-PW-plot in Excel . 74
Annex D (normative) Evaluative reporting using match definitions or likelihood ratios . 77
D.1 General. 77
D.2 Match definitions . 77
D.3 Likelihood ratios (LR) . 78
Annex E (normative) List of compounds and compound groups analysed by GC-MS-SIM . 80
E.1 General. 80
E.2 Compounds. 81
E.2.1 General. 81
E.2.2 Compound type . 86
E.3 Normative ratios and informative ratios. . 87
Annex F (informative) Chromatograms and ratios of compounds and compound groups analysed
by GC-MS-SIM . 91
F.1 General. 91
F.2 Alkanes . 91
F.3 Cyclohexanes and polycyclic alkanes . 92
F.4 Mono-aromatic and poly-aromatic compounds . 98
F.4.1 Alkyl-benzenes and alkyl-toluenes . 98
F.4.2 PAHs, alkyl-PAHs and S-PAHs . 98
F.4.3 Tri-aromatic steranes . 109
F.5 FAMEs . 110
Annex G (informative) General composition of oils – chemical groups . 114
G.1 General . 114
G.2 Hydrocarbons . 115
G.3 Aliphatic compounds . 115
G.3.1 General . 115
G.3.2 Paraffins . 115
G.3.3 Naphthenes . 115
G.4 Aromatic compounds . 116
G.5 Heteroatomic organic compounds . 116
G.5.1 General . 116
G.5.2 Resins . 116
G.5.3 Asphaltenes . 116
Annex H (informative) Weathering of oils spilled on water and land . 118
H.1 General . 118
H.2 Weathering processes . 118
H.2.1 Weathering of oils spilled on water . 118
H.2.2 Weathering of waterborne oils stranded on land or land based oil spills . 120
H.2.3 Mixing and contamination. 120
H.2.4 Dispersion . 121
H.2.5 In-situ burning . 123
H.3 Evaluation of weathering processes . 124
H.3.1 Evaporation . 124
H.3.2 Dissolution . 127
H.3.3 Photo-oxidation . 129
H.3.4 Biodegradation . 135
H.3.5 Wax redistribution . 138
H.3.6 Mixing . 144
H.3.7 Contamination . 146
H.3.8 In-situ burning . 146
Annex I (informative) Characteristic features of different oil types in oil spill identification . 149
I.1 General . 149
I.2 Crude oil . 149
I.2.1 General. 149
I.2.2 Analysis . 150
I.3 Light fuel oil (gas oil, diesel, fuel No 2, biofuels, GTL) . 156
I.3.1 General. 156
I.3.2 Analysis, GC screening . 157
I.3.3 GC-MS analysis . 159
I.3.4 Biofuels . 162
I.3.5 Gas to liquid products . 163
I.4 Lubricating oil . 164
I.4.1 General. 164
I.4.2 Analysis . 166
I.5 Heavy fuel oil (HFO, Bunker C, Fuel No 6) and low sulfur fuel oil . 170
I.5.1 General. 170
I.5.2 Analysis . 171
I.6 Waste oil (bilge oil, sludge, slops) . 179
I.6.1 General. 179
I.6.2 Analysis . 180
I.7 Conclusion . 184
Annex J (informative) Example of external documentation – identification report of an oil spill case
.......................................................................................................................................................................... 186
J.1 General. 186
J.2 Sample information . 186
J.3 Analytical procedure . 186
J.3.1 Method . 186
J.3.2 Dilution/extraction . 186
J.3.3 Analyses. 186
J.4 Results . 186
J.5 Interpretation . 186
J.5.1 General. 186
J.5.2 Positive match . 187
J.5.3 Probable match . 187
J.5.4 Inconclusive . 187
J.5.5 Non-match . 187
J.6 Conclusions . 187
Annex K (informative) Example of internal documentation – technical report of an oil spill case
.......................................................................................................................................................................... 189
K.1 General . 189
K.2 Sample information . 189
K.2.1 Samples . 189
K.2.2 Contact information . 189
K.2.3 Request . 189
K.2.4 Photo(s) of the samples . 190
K.3 Sample preparation and analyses . 190
K.4 Quality assurance . 192
K.5 GC-FID results – Level 1 . 194
K.5.1 GC-FID chromatograms – Level 1.1 . 194
K.5.2 GC-FID numerical comparisons – Level 1.2 . 196
K.5.3 GC-FID conclusions . 201
K.6 GC-MS results – Level 2 . 202
K.6.1 General . 202
K.6.2 GC-MS chromatograms – Level 2.1 . 202
K.6.3 GC-MS numerical comparisons – Level 2.2 . 203
K.6.4 Visual inspection . 211
K.6.5 Overall conclusions . 212
Bibliography . 213

European foreword
This document (EN 15522-2:2023) has been prepared by Technical Committee CEN/TC 19 “Gaseous and
liquid fuels, lubricants and related products of petroleum, synthetic and biological origin”, the secretariat
of which is held by NEN.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by September 2023, and conflicting national standards shall
be withdrawn at the latest by September 2023.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document will supersede CEN/TR 15522-2:2012.
In comparison with the previous edition CEN/TR 15522-2:2012, the following technical modifications
have been made:
— adding compounds to be analysed in order to include light products in the diesel range;
— adding more information about biodegradation;
— adding a Reporting and a Quality assurance chapter;
— adding Annex C with precision data;
— adding Annex D with likelihood grade conclusions;
— introduction of characterization of FAME in Annex I;
— serious revision of Annexes H, I, J and K, adding new pictures and chromatograms.
EN 15522 is composed of two parts that describe the following:
— Part 1 on sampling, describing good sampling practice, detailing sampling equipment, sampling
techniques and the handling of oil samples prior to their arrival at the forensic laboratory;
— Part 2 giving the analytical method, which covers the general concepts and laboratory procedures of
oil spill identification, analytical techniques, data processing, data treatment,
interpretation/evaluation and reporting of results.
This document has originally been prepared under a mandate given to CEN by the European Commission
and the European Free Trade Association.
A list of all parts in a series can be found on the CEN website.
Any feedback and questions on this document should be directed to the users’ national standards body.
A complete listing of these bodies can be found on the CEN website.
According to the CEN-CENELEC Internal Regulations, the national standards organisations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia,
Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland,
Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North
Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the United
Kingdom.
Introduction
This document describes a forensic method for characterizing and identifying the source of oil spills in
the environment resulting from accidents or intentional discharges. By following this method, data
generated can be used as evidence in support of the legal process. This method is based on the experience
gained from use of the earlier revisions.
This document is composed of two parts that describe the following:
— Part 1 on sampling, describing good sampling practice, detailing sampling equipment, sampling
techniques and the handling of oil samples prior to their arrival at the forensic laboratory;
— Part 2 giving the analytical method, which covers the general concepts and laboratory procedures of
oil spill identification, analytical techniques, data processing, data treatment,
interpretation/evaluation and reporting of results.
Oil spill source identification is a complex process due to the large variation in sample types and oil spill
situations that can be encountered. Part 1 is a compilation of instructions and experiences from experts
all over the world which will guide the user in sampling, storing and delivering oil samples for laboratory
analysis. Part 2 will guide the reader through the analytical process. It prescribes how to prepare and
analyse oil samples using Gas Chromatography with Flame Ionization Detection (GC-FID) and GC with
low-resolution Mass Spectrometry (GC-MS). Any compositional difference found between samples is only
relevant if this difference is larger than the variability of the method itself. Good analytical performance
and strict quality assurance are therefore essential. In the Annexes of Part 2, relevant information
concerning different types of oil and oil comparison techniques are presented.
In a typical standard method for testing, instructions are given on performing an “analytical” procedure.
However, oil spill identification comprises both analytical and assessment components. Sample
preparation is described in Chapter 6. Analytical methodology for GC-FID is provided in Annex A, while
GC-MS is covered in Annexes B, E and F. Other parts of the document describe how to assess the analytical
data utilizing various tools to draw a conclusion. As every case can differ in situation, size, products and
weathering, the evaluation part of the method is described as a toolbox. Annexes J and K provide example
documents for an oil spill case and show how the assessment tools may be applied. Further examples of
specific oil spill cases are available as summary reports of the annual round robins (RR-tests) organized
by Bonn-OSINet [11] and in literature.
The purpose of this document is to assist the reader in defensibly identifying the source of an oil spill by
comparing the chemical composition of spill samples against suspected source oils. The basis for this
method is the widely variable chemical compositions of oils, which allows oils from different sources to
be distinguished by analytical techniques. The method relies upon detailed chemical characterization and
statistical comparison between samples (i.e. a spilled oil and a suspected source) diagnostic features in
order to determine whether they “match”. To minimize the danger of “false positive matches”, good
laboratory practices are to be maintained. A “positive match” between a spilled oil and suspected source
sample may not be sufficient to identify the PRP (potential responsible party) on its own. However, this
result can be critical evidence in proving a case within the legal process.
It should be noted that oil spill identification methodologies have limitations and may not necessarily
lead to unequivocal conclusions. In certain cases, neither the oil spill nor suspected source(s) are unique
or homogeneous in nature, e.g. due to the changing/variable nature of oil in bilge tanks or due to mixing
of oils spilled from several sources. For such cases there is a risk that the chemi
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...

이 기사는 EN 15522-2:2023 표준에 대해 설명합니다. 이 표준은 오일 샘플의 구성 특성을 식별하고 비교하는 방법을 정의합니다. 특히, 이 표준은 오일 샘플의 특성을 식별하고 의심되는 원유와의 상관관계를 수립하기 위한 상세한 분석 및 데이터 처리 방법을 서술합니다. 비교를 위해 의심되는 원유의 샘플이나 데이터가 없더라도, 흘린 오일의 구체적인 성격(정제 원유, 원유, 폐유 등)을 파악하는 것은 가능한 원본을 제한하는 데 도움이 됩니다. 이 방법론은 150°C 이상의 끓는점을 가진 탄화수소 성분이 주요한 부분으로 포함된 석유 관련 제품에 제한됩니다. 예를 들어, 원유, 높은 끓는 점의 컨덴세이트, 디젤 오일, 잔여 벙커나 중플 오일, 윤활유, 속석과 슬러지 샘플의 혼합물, 그리고 증류 연료와 혼합물입니다. 특정 분석 방법은 낮은 끓는 점의 오일(케로신, 제트 연료, 가솔린 등)에는 적합하지 않을 수 있지만, 이 방법론에 설명된 일반적인 개념, 즉 내후성 진단 비율의 통계적 비교는 이러한 종류의 오일이 관련된 오일 유출 사고에서도 적용 가능합니다. 파라핀 기반 제품(예: 왁스 등)은 이 방법의 범위를 벗어납니다. 제품 생산 과정에서 너무 많은 화합물이 제거되기 때문입니다. 하지만 이 방법은 해당 제품의 유형을 식별하는 데 사용될 수 있습니다. 이 표준은 지하수, 식물, 야생동물/조직, 토양 또는 퇴적물 행렬에서 회수된 오일을 직접 식별하기 위한 것은 아니지만, 주의를 기울여 사용할 수 있습니다. 원본 샘플과 비교하여 추출 가능한 화합물이 있을 수 있으며, 이로 인해 올바르지 않은 "일치하지 않음"이나 "추론 불가"가 될 수 있습니다. 따라서 오일이 없어 보이는 행렬의 배경 샘플을 분석하는 것이 좋습니다. "비-오일" 행렬을 분석할 때는 분석 전에 추가적인 샘플 준비(예: 청소 작업)가 종종 필요하며, 행렬이 상관관계에 미치는 영향을 고려해야 합니다. 행렬에 오일이 농도가 높게 존재하는 경우에는 긍정적인 일치가 결론 짓을 수 있습니다. 오일 농도가 낮은 행렬에는 행렬 효과로 인해 잘못된 "비일치"나 "추론 불가"가 발생할 수 있습니다. 가능한 행렬 효과의 평가는 이 문서의 범위를 벗어납니다.

この記事では、EN 15522-2:2023の規格について説明しています。この規格は、オイルサンプルの組成特性を識別し、比較する方法を定義しています。具体的には、 detaiエルな分析およびデータ処理方法について説明し、 detaiエルな分析およびデータ処理方法について説明しています。 この方法論は、150℃以上の沸点を有する石油および石油関連製品に制限されています。例えば、原油、高沸コンデンセート、ディーゼルオイル、残留バンカーまたは重油、潤滑油、汚泥サンプルの混合物、および蒸留燃料および混合物などです。具体的な分析方法はガソリンやジェット燃料などの低沸点の油には適していないかもしれませんが、統計的な比較に基づく耐候性の診断比率といった一般的な概念は、これらの種類の油に関わる流出事故に適用することができます。 パラフィン系製品(例:ワックスなど)は、この方法の範囲外です。製品の製造プロセス中に多くの化合物が除去されるためですが、製品のタイプを特定することはできます。 この規格は地下水、植物、野生動物/組織、土壌、または堆積物行列から回収された油を直接的に識別することを意図したものではありませんが、注意を払って使用することができます。元のサンプルと比較して行列中に抽出可能な化合物が存在する可能性があり、これによって正確な「一致しない」と「推論不可能」が発生する場合があります。そのため、油が含まれていないように見える行列のバックグラウンドサンプルを分析することが望ましいです。 「非油性」の行列を分析する場合には、分析の前に追加のサンプル前処理(例:清掃)がしばしば必要であり、行列が相関に与える影響を考慮する必要があります。油の濃度が高い行列には、正の一致が得られる可能性があります。油の濃度が低い行列には、行列効果による誤った「一致しない」または「推論不可能」が生じることがあります。可能な行列効果の評価は、この文書の範囲外です。

The article discusses the EN 15522-2:2023 standard, which outlines a method for identifying and comparing the composition of oil samples. The standard provides detailed instructions for analyzing and interpreting data to determine the characteristics of spilled oil and establish its correlation to potential source oils. The method is applicable to petroleum and petroleum-related products with hydrocarbon-components boiling above 150 °C, such as crude oils, diesel oils, lubricants, and distillate fuels. While the specific analytical methods may not be suitable for lower boiling oils like gasoline or kerosene, the general concepts can be applied. The standard does not cover paraffin-based products, but it can still identify the type of product involved. Although the standard is not primarily intended for analyzing oil in groundwater, vegetation, wildlife/tissues, soil, or sediment, it can be used with caution. Background samples of the matrix should be analyzed to account for potential contributions or alterations of compounds. When analyzing non-oil matrices, additional sample preparation may be necessary, and the impact of the matrix on correlation should be considered. The document does not evaluate matrix effects in detail.