SIST EN 15302:2008+A1:2010
(Main)Railway applications - Method for determining the equivalent conicity
Railway applications - Method for determining the equivalent conicity
This European Standard establishes an evaluation procedure for determining equivalent conicity. A benchmark calculation is specified to achieve comparable results on a consistent basis for the equivalent conicity, which may be calculated by different methods not given in this European Standard. This European Standard also proposes possible calculation methods. Informative examples of the use of the Klingel formula (see Annex B) and linear regression of the Δr-function (see Annex C) are included in this European Standard. This European Standard includes reference profiles, profile combinations, tolerances and reference results with tolerance limits, which allow the user to assess the acceptability of a measuring and calculation system including random- and grid- errors of the measuring system. It sets down the principles of calculation that need to be followed but does not impose any particular numerical calculation method. This European Standard does not define limits for the equivalent conicity and gives no tolerances for the rail profile and the wheel profile to achieve acceptable results for the conicity. For purposes outside the scope of this European Standard (e.g. simulation of vehicle behaviour) it can be useful or necessary to use more sophisticated theories. These methods are not within the scope of this European Standard. For the application of this European Standard some general recommendations are given in Annex I.
Bahnanwendungen - Verfahren zur Bestimmung der äquivalenten Konizität
Diese Europäische Norm legt ein Bewertungsverfahren zur Bestimmung der äquivalenten Konizität fest. Es wird eine Vergleichsberechnung spezifiziert, mit Hilfe derer vergleichbare Ergebnisse für die äquivalente Konizität auf einer einheitlichen Basis erzielt werden können. Diese Ergebnisse können mit anderen als in dieser Europäischen Norm angegebenen Verfahren berechnet werden. In diesem Dokument werden auch mögliche Berechnungsverfahren vorgeschlagen. Es enthält außerdem informative Beispiele zur Anwendung der Klingelschen Formel (siehe Anhang B) und der linearen Regression der Funktion Δr (siehe Anhang C).
Diese Europäische Norm beinhaltet Referenzprofile, Profilkombinationen, Toleranzen und Referenzergeb-nisse mit Toleranzgrenzen und ermöglicht so die Beurteilung der Zulässigkeit eines Mess- und Berechnungs-systems, unter Berücksichtigung von Zufalls- und Gitterfehlern des Messsystems. Sie gibt Berechnungs-grundsätze an, die einzuhalten sind, aber schreibt keine spezielle numerische Berechnungsmethode vor.
Sie legt keinen Grenzwert für die äquivalente Konizität fest und gibt keine Toleranzen für das Schienen-kopfprofil und das Radprofil an, um akzeptable Konizitätswerte zu erhalten.
Für andere Anwendungszwecke dieser Europäischen Norm (z. B. Simulation des Fahrzeugverhaltens) kann es nützlich oder erforderlich sein, weitergehende Verfahren zu verwenden. Diese Verfahren liegen außerhalb des Anwendungsbereiches dieser Europäischen Norm.
Für die Anwendung dieser Norm sind einige allgemeine Empfehlungen in Anhang I aufgeführt.
Applications ferroviaires - Méthode de détermination de la conicité équivalente
La présente Norme Européenne établit une procédure d'évaluation pour la détermination de la conicité équivalente. Un calcul de comparaison est spécifié pour l'obtention de résultats comparables sur une base cohérente pour la conicité équivalente, laquelle peut être calculée par différentes méthodes qui ne sont pas données dans la présente Norme Européenne. La présente Norme Européenne propose aussi des méthodes de calcul possibles. Des exemples de l'utilisation de la formule de Klingel (voir Annexe B) et d'une régression linéaire de la fonction r (voir Annexe C) sont inclus à titre informatif dans la présente Norme Européenne.
La présente Norme Européenne inclut des profils de référence, des combinaisons de profils, des tolérances et des résultats de référence avec des limites de tolérance, permettant à l’utilisateur d’évaluer l’acceptabilité d'un système de mesure et de calcul, en incluant les erreurs aléatoires et de grille inhérentes au système. Elle établit des principes de calcul qui doivent être suivis, mais n’impose aucune méthode de calcul particulière.
La présente Norme Européenne ne définit pas de limite pour la conicité équivalente et ne donne aucune tolérance pour les profils de rail et de roue, pour obtenir des résultats acceptables pour la conicité.
Pour les usages sortant du champ de la présente Norme Européenne (par exemple la simulation du comportement d'un véhicule), il peut être utile ou nécessaire d'utiliser des théories plus élaborées. Ces méthodes ne relèvent pas du domaine d'application de la présente Norme Européenne.
Pour l’application de la présente Norme Européenne, des recommandations générales sont données en Annexe I.
Železniške naprave - Metoda za ugotavljanje ustrezne koničnosti
Ta evropski standard vzpostavlja postopek vrednotenja za ugotavljanje ustrezne koničnosti. Opredeljen je primerjalni izračun za stalno doseganje primerljivih rezultatov ustrezne koničnosti, ki se lahko izračuna z različnimi metodami, ki niso navedene v tem evropskem standardu. Ta evropski standard predlaga tudi možne metode izračuna. V ta evropski standard so vključeni tudi informativni primeri uporabe Klingelove formule (glej Dodatek B) in linearne regresije funkcije Δr (glej Dodatek C). Ta evropski standard vključuje referenčne profile, kombinacije profilov, odstopanja in referenčne rezultate z dovoljenimi odstopanji, ki omogočajo uporabniku ocenjevanje sprejemljivosti sistema merjenja in izračunavanja, vključno s slučajnimi in mrežnimi napakami merilnega sistema. Določa načela izračunavanja, ki jih je treba upoštevati, vendar ne predpisuje točno določene metode numeričnega izračuna. Ta evropski standard ne opredeljuje omejitev ustrezne koničnosti in ne navaja odstopanja za profile tirnic in koles za doseganje sprejemljivih rezultatov koničnosti. Za namene, ki so zunaj obsega uporabe tega evropskega standarda (npr. za simulacijo obnašanja vozila), je koristno ali nujno uporabiti bolj zapletene teorije. Te metode niso predmet tega evropskega standarda. V Dodatku I je navedenih nekaj splošnih priporočil za uporabo tega evropskega standarda.
General Information
Relations
Standards Content (Sample)
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.Bahnanwendungen - Verfahren zur Bestimmung der äquivalenten KonizitätApplications ferroviaires - Méthode de détermination de la conicité équivalenteRailway applications - Method for determining the equivalent conicity45.060.01Železniška vozila na splošnoRailway rolling stock in generalICS:Ta slovenski standard je istoveten z:EN 15302:2008+A1:2010SIST EN 15302:2008+A1:2010en,fr,de01-december-2010SIST EN 15302:2008+A1:2010SLOVENSKI
STANDARD
SIST EN 15302:2008+A1:2010
EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM
EN 15302:2008+A1
November 2010 ICS 17.040.20; 45.060.01 Supersedes EN 15302:2008English Version
Railway applications - Method for determining the equivalent conicity
Applications ferroviaires - Méthode de détermination de la conicité équivalente
Bahnanwendungen - Verfahren zur Bestimmung der äquivalenten Konizität This European Standard was approved by CEN on 7 February 2008 and includes Amendment 1 approved by CEN on 28 September 2010. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN Management Centre or to any CEN member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN Management Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG
Management Centre:
Avenue Marnix 17,
B-1000 Brussels © 2010 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No. EN 15302:2008+A1:2010: ESIST EN 15302:2008+A1:2010
EN 15302:2008+A1:2010 (E) 2 Contents Page Foreword .9Introduction . 101 Scope . 132 Normative references . 133 Symbols . 144 Principle of determining the equivalent conicity . 154.1 Integration of the equation of the wheelset movement of a conical profile . 154.2 Determining the wavelength of a conical profile . 164.3 Definition of equivalent conicity for nonlinear profiles . 175 Description of the reference procedure . 175.1 General principles. 175.2 Determining the wheel and rail profiles . 185.2.1 Principles of measurement . 185.2.2 Accuracy of the measuring system . 185.3 Determining the rolling radius difference function ∆∆∆∆r . 185.4 Determining the equivalent conicity . 196 Benchmark calculation . 196.1 Overview . 196.2 Validation of evaluation method . 19Annex A (informative)
Example of presentation of ∆∆∆∆r function and conicity . 21Annex B (informative)
Example of method for determining the equivalent conicity by integration of the nonlinear differential equation . 22B.1 Principle . 22B.2 Steps of the procedure . 25B.3 Special cases . 26Annex C (informative)
Example of method for determining the equivalent conicity by linear regression of the ∆∆∆∆r function . 28C.1 Principles . 28C.2 Steps of the procedure . 28C.3 Particularities . 28Annex D (normative)
Reference profiles. 29D.1 Wheel A . 29D.1.1 Drawing . 29D.1.2 Analytic definition . 29D.1.3 Cartesian coordinates . 30D.2 Wheel B . 31D.2.1 Drawing . 31D.2.2 Analytic definition . 31D.2.3 Cartesian coordinates . 32D.3 Wheel H . 33D.3.1 Drawing . 33D.3.2 Analytic definition . 33D.3.3 Cartesian coordinates . 34D.4 Wheel I . 35D.4.1 Drawing . 35D.4.2 Analytic definition . 35SIST EN 15302:2008+A1:2010
EN 15302:2008+A1:2010 (E) 3 D.4.3 Cartesian coordinates . 36D.5 Rail A . 37D.5.1 Drawing. 37D.5.2 Analytic definition . 37D.5.3 Cartesian coordinates . 38Annex E (normative)
Calculation results with reference profiles . 39E.1 Wheel A / Rail A . 40E.1.1 Diagram of ∆∆∆∆r, tanγγγγa, tanγγγγe functions and representation of contact points . 40E.1.2 Representation of the curves of kinematic rolling movement of the wheelset on track . 41E.1.3 Numerical values for ∆∆∆∆r function . 42E.1.4 Numerical values for tanγγγγe function . 43E.2 Wheel B / Rail A . 44E.2.1 Diagram ∆∆∆∆r, tanγγγγa, tanγγγγe functions and representation of contact points . 44E.2.2 Representation of the curves of kinematic rolling movement of the wheelset on track . 45E.2.3 Numerical values for ∆∆∆∆r function . 46E.2.4 Numerical values for tanγγγγe function . 47E.3 Wheel H / Rail A . 48E.3.1 Diagram of ∆∆∆∆r, tanγγγγa, tanγγγγe functions and representation of contact points . 48E.3.2 Representation of the curves of kinematic rolling movement of the wheelset on track . 49E.3.3 Numerical values for ∆∆∆∆r function . 50E.3.4 Numerical values for tanγγγγe function . 51E.4 Wheel I / Rail A . 52E.4.1 Diagram of ∆∆∆∆r, tanγγγγa, tanγγγγe functions and representation of contact points . 52E.4.2 Representation of the curves of kinematic rolling movement of the wheelset on track . 53E.4.3 Numerical values for ∆∆∆∆r function . 54E.4.4 Numerical values for tanγγγγe function . 55E.5 Modified Wheel A (-2 mm on left wheel diameter) / Rail A . 56E.5.1 Diagram of ∆∆∆∆r, tanγγγγa, tanγγγγe functions and representation of contact points . 56E.5.2 Representation of the curves of kinematic rolling movement of the wheelset on track . 57E.5.3 Numerical values for ∆∆∆∆r function . 58E.5.4 Numerical values for tanγγγγe function . 59E.6 Modified Wheel B (-2 mm on left wheel diameter) / Rail A . 60E.6.1 Diagram of ∆∆∆∆r, tanγγγγa, tanγγγγe functions and representation of contact points . 60E.6.2 Representation of the curves of kinematic rolling movement of the wheelset on track . 61E.6.3 Numerical values for ∆∆∆∆r function . 62E.6.4 Numerical values for tanγγγγe function . 63E.7 Modified Wheel H (-2 mm on left wheel diameter) / Rail A . 64E.7.1 Diagram of ∆∆∆∆r, tanγγγγa, tanγγγγe functions and representation of contact points . 64E.7.2 Representation of the curves of kinematic rolling movement of the wheelset on track . 65E.7.3 Numerical values for ∆∆∆∆r function . 66E.7.4 Numerical values for tanγγγγe function . 67E.8 Modified Wheel I (-2 mm on left wheel diameter) / Rail A . 67E.8.1 Diagram of ∆∆∆∆r, tanγγγγa, tanγγγγe functions and representation of contact points . 67E.8.2 Representation of the curves of kinematic rolling movement of the wheelset on track . 69E.8.3 Numerical values for ∆∆∆∆r function . 70E.8.4 Numerical values for tanγγγγe function . 71E.9 (Right Wheel A – Left Wheel B) / Rail A . 72E.9.1 Diagram of ∆∆∆∆r, tanγγγγa, tanγγγγe functions and representation of contact points . 72E.9.2 Representation of the curves of kinematic rolling movement of the wheelset on track . 73E.9.3 Numerical values for ∆∆∆∆r function . 74E.9.4 Numerical values for tanγγγγe function . 75Annex F (normative)
Tolerances on equivalent conicity . 76F.1 Wheel A / Rail A . 77SIST EN 15302:2008+A1:2010
EN 15302:2008+A1:2010 (E) 4 F.1.1 Diagram . 77F.1.2 Numerical values . 78F.2 Wheel B / Rail A . 80F.2.1 Diagram . 80F.2.2 Numerical values . 81F.3 Wheel H / Rail A . 83F.3.1 Diagram . 83F.3.2 Numerical values . 84F.4 Wheel I / Rail A . 86F.4.1 Diagram . 86F.4.2 Numerical values . 87F.5 Modified Wheel A (-2 mm on left wheel diameter) / Rail A . 89F.5.1 Diagram . 89F.5.2 Numerical values . 90F.6 Modified Wheel B (-2 mm on left wheel diameter) / Rail A . 92F.6.1 Diagram . 92F.6.2 Numerical values . 93F.7 Modified Wheel H (-2 mm on left wheel diameter) / Rail A . 95F.7.1 Diagram . 95F.7.2 Numerical values . 96F.8 Modified Wheel I (-2 mm on left wheel diameter) / Rail A . 98F.8.1 Diagram . 98F.8.2 Numerical values . 99F.9 (Right Wheel A – Left Wheel B) / Rail A . 101F.9.1 Diagram . 101F.9.2 Numerical values . 102Annex G (informative)
Examples of calculation results with introduced errors. 104G.1 Wheel A / Rail A – Random error in mm . 104G.2 Wheel A / Rail A — Random error in mm . 105G.3 Wheel A / Rail A — Random error in mm . 106G.4 Wheel A / Rail A — Grid error in mm . 107G.5 Wheel A / Rail A — Grid error in mm . 108G.6 Wheel A / Rail A — Grid error in mm . 109G.7 Wheel H / Rail A — Random error in mm . 110Annex H (informative)
Guideline for application of errors . 111H.1 Grid error . 111H.2 Random error . 114Annex I (informative)
Guidelines for application . 117Annex ZA (informative)
!!!!Relationship between this European Standard and the Essential Requirements of EU Directive 2008/57/EC of the European Parliament and of the Council of 17 June 2008 on the interoperability of the rail system within the Community (Recast)"""" . 119Bibliography . 124 Figures Figure 1 — Benchmark process, Step 1 . 11Figure 2 — Benchmark process, Step 2 . 11Figure 3 — Benchmark process, Step 3 . 12Figure 4 — Dimensions on the wheelset . 15Figure 5 — y = f(x) function . 16Figure A.1 — ∆∆∆∆r = f(y) function and tanγγγγe = f(y) . 21SIST EN 15302:2008+A1:2010
EN 15302:2008+A1:2010 (E) 5 Figure B.1 — Representation of dx, dy . 22Figure B.2 — Representation of ds, dΨΨΨΨ . 22Figure B.3 — Representation of r1, r2, e . 23Figure B.4 — ∆∆∆∆r = f(y) characteristic with negative slope . 26Figure B.5 — Calculation of ∫rdyû integral . 26Figure B.6 — Determination of yem , calculation of ∫∆rdyand determination of yˆ . 27Figure B.7 — Determination of yemin = f(yˆ) and yemax = f(yˆ) functions . 27Figure B.8 — Determination of C constant . 27Figure D.1 — Wheel A . 29Figure D.2 —Wheel B . 31Figure D.3 — Wheel H . 33Figure D.4 — Wheel I . 35Figure D.5 — Rail A . 37Figure E.1a — Diagram of ∆∆∆∆r, tanγγγγa, tanγγγγe functions and representation of contact points —
Wheel A / Rail A . 40Figure E.1b — Representation of the curves of kinematic rolling movement of the wheelset on track — Wheel A / Rail A . 41Figure E.2a — Diagram ∆∆∆∆r, tanγγγγa, tanγγγγe functions and representation of contact points —
Wheel B / Rail A . 44Figure E.2b — Representation of the curves of kinematic rolling movement of the wheelset on track — Wheel B / Rail A . 45Figure E.3a — Diagram of ∆∆∆∆r, tanγγγγa, tanγγγγe functions and representation of contact points —
Wheel H / Rail A . 48Figure E.3b — Representation of the curves of kinematic rolling movement of the wheelset on track — Wheel H / Rail A . 49Figure E.4a — Diagram of ∆∆∆∆r, tanγγγγa, tanγγγγe functions and representation of contact points —
Wheel I / Rail A . 52Figure E.4b — Representation of the curves of kinematic rolling movement of the wheelset on track — Wheel I / Rail A . 53Figure E.5a — Diagram of ∆∆∆∆r, tanγγγγa, tanγγγγe functions and representation of contact points —
Modified Wheel A / Rail A . 56Figure E.5b — Representation of the curves of kinematic rolling movement of the wheelset on track — Modified Wheel A / Rail A . 57Figure E.6a — Diagram of ∆∆∆∆r, tanγγγγa, tanγγγγe functions and representation of contact points —
Modified Wheel B / Rail A . 60Figure E.6b — Representation of the curves of kinematic rolling movement of the wheelset on track — Modified Wheel B / Rail A . 61Figure E.7a — Diagram of ∆∆∆∆r, tanγγγγa, tanγγγγe functions and representation of contact points —
Modified Wheel H / Rail A . 64Figure E.7b — Representation of the curves of kinematic rolling movement of the wheelset on track — Modified Wheel H / Rail A . 65SIST EN 15302:2008+A1:2010
EN 15302:2008+A1:2010 (E) 6 Figure E.8a — Diagram of ∆∆∆∆r, tanγγγγa, tanγγγγe functions and representation of contact points —
Modified Wheel I / Rail A . 68Figure E.8b — Representation of the curves of kinematic rolling movement of the wheelset on track — Modified Wheel I / Rail A . 69Figure E.9a — Diagram of ∆∆∆∆r, tanγγγγa, tanγγγγe functions and representation of contact points —
(Right Wheel A – Left Wheel B) / Rail A . 72Figure E.9b — Representation of the curves of kinematic rolling movement of the wheelset on track — (Right Wheel A – Left Wheel B) / Rail A . 73Figure F.1 — Diagram Wheel A / Rail A .
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.