TC 82 - Solar photovoltaic energy systems
To prepare international standards for systems of photovoltaic conversion of solar energy into electrical energy and for all the elements in the entire photovoltaic energy system. In this context, the concept "photovoltaic energy system" includes the entire field from light input to a photovoltaic cell to and including the interface with the electrical system(s) to which energy is supplied. NOTE: It is recognized that there is some common interest between TC 47 and TC 82, therefore these two Committees shall maintain liaison.
Systèmes de conversion photovoltaïque de l'énergie solaire
Etablir des normes internationales pour les systèmes de conversion photovoltaïque de l'énergie solaire en énergie électrique et pour tous les éléments qui composent le système complet de conversion photovoltaïque de l'énergie. Dans ce contexte, la notion de "système à énergie photovoltaïque" comprend dans son entier le domaine qui va de l'entrée de la lumière dans la cellule photovoltaïque à l'interface (compris) avec le ou les circuits électriques auxquels l'énergie est fournie. NOTE: Etant reconnu qu'il existe certains domaines d'intérêt communs au CE 82 et au CE 47, ces Comités devront en conséquence entretenir des liaisons.
General Information
- 1 (current)
- 2
- 3
- 4
- 5
IEC 61730-1:2023 specifies and describes the fundamental construction requirements for photovoltaic (PV) modules in order to provide safe electrical and mechanical operation. Specific topics are provided to assess the prevention of electrical shock, fire hazards, and personal injury due to mechanical and environmental stresses. This document pertains to the particular requirements of construction. IEC 61730-2 defines the requirements for testing. Modules with modified construction are qualified as described in IEC TS 62915.
This document lays down requirements for terrestrial PV modules suitable for long-term operation in open-air climates with 98th percentile module operating temperatures of 70 °C or less. Guidelines for modules to be used at higher operating temperatures are described in IEC TS 63126.
This document is intended to apply to all terrestrial flat plate module materials, such as crystalline silicon module types as well as thin-film modules.
This document defines the basic requirements for various applications of PV modules, but it cannot be considered to encompass all national or regional codes.
- Standard143 pagesEnglish and French languagesale 15% off
IEC 61730-2:2023 is available as IEC 61730-2:2023 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 61730-2:2023 lists the tests a PV module is required to fulfil for safety qualification. This document applies for safety qualification only in conjunction with IEC 61730-1. The objective of this document is to provide the testing sequence intended to verify the safety of PV modules whose construction has been assessed by IEC 61730-1. The test sequence and pass criteria are designed to detect the potential breakdown of internal and external components of PV modules that would result in fire, electric shock, and/or personal injury. This document defines the basic safety test requirements and additional tests that are a function of the PV module end-use applications. The additional testing requirements outlined in relevant ISO documents, or the national or local codes which govern the installation and use of these PV modules in their intended locations, are considered in addition to the requirements contained within this document.
- Standard134 pagesEnglish and French languagesale 15% off
IEC 62788-2-1:2023 specifies the safety requirements for flexible polymeric front- and backsheet constructions, which are intended for use as relied-upon insulation in photovoltaic (PV) modules. The specifications in this document define the specific requirements of polymeric front- or backsheet constructions on the component level and cover mechanical, electrical, visual and thermal characterization in an unexposed state and/or after ageing.
This document covers class II and class 0 modules, as defined in IEC 61730-1. Class III modules are out of scope. This document provides the requirements for qualification of front- and backsheets to be used in module safety qualification according to IEC 61730-1. Test method descriptions are provided in IEC TS 62788-2, along with additional characterization methods useful for performance or quality assurance.
- Standard65 pagesEnglish and French languagesale 15% off
- Technical specification2 pagesEnglish languagesale 15% off
IEC 60904-2:2023 gives requirements for the classification, selection, packaging, marking, calibration and care of photovoltaic reference devices. This document applies to photovoltaic (PV) reference devices that are used to measure the irradiance of natural or simulated sunlight for the purpose of quantifying the electrical performance of photovoltaic devices (cells, modules and arrays). It does not cover photovoltaic reference devices for use under concentrated sunlight. This fourth edition cancels and replaces the third edition published in 2015. This edition includes the following significant technical changes with respect to the previous edition:
a) added calibration procedures for calibrating PV devices at maximum power by extending the respective Clauses 12 and 13;
b) revised requirements for mandatory measurement of spectral responsivity, temperature coefficients and linearity, depending on usage and allowing some measurements on equivalent devices;
c) revised requirements for built-in shunt resistor;
d) added requirements for traceability of calibration explicitly.
- Standard62 pagesEnglish languagesale 15% off
IEC 63027:2023 applies to equipment used for the detection and optionally the interruption of electric DC arcs in photovoltaic (PV) system circuits. The document covers test procedures for the detection of series arcs within PV circuits, and the response times of equipment employed to interrupt the arcs.
The document defines reference scenarios according to which the testing is conducted. This document covers equipment connected to systems not exceeding a maximum PV source circuit voltage of 1 500 V DC. This document provides requirements and testing procedures for arc-fault protection devices used in PV systems to reduce the risk of igniting an electrical fire.
- Standard131 pagesEnglish and French languagesale 15% off
IEC TS 63202-3:2023 describes procedures for the measurement of current-voltage (I-V) characteristics of crystalline silicon bifacial photovoltaic (PV) cells for both laboratory and mass production applications.
This document is intended to be used for measurement of individual unencapsulated bifacial PV cells, in addition to the requirements described in IEC 60904-1 and differentiating from IEC TS 60904-1-2 which is more applicable to encapsulated PV device. Specific requirements on bifacial reference cells and calibration of solar simulators are also defined to provide useful guidance for the proposed methods.
- Technical specification17 pagesEnglish languagesale 15% off
IEC TS 63397:2022 defines additional testing requirements for modules deployed under applications or in environments where PV modules are likely to be exposed to the impact of hailstones leading to higher stress beyond the scope of the IEC 61215 series. This document aims to assist in the selection of modules for deployment in specific regions that have a higher risk of hail damage and to provide tools for improving module design.
The contents of the corrigendum of July 2023 have been included in this copy.
- Technical specification19 pagesEnglish languagesale 15% off
- Standard17 pagesEnglish and French languagesale 15% off
IEC TS 62257-100:2022 introduces the entire series regarding off-grid renewable energy and hybrid products and systems most commonly used for rural applications and access to electricity. This document provides a guide for facilitating the reading and the use of the IEC 62257 series for setting up off-grid electrification in developing countries or in developed countries, the only difference being the level of service and the needed quantity of energy that the customer can afford.
This document outlines the organization of documents within the updated IEC 62257-xxx series published in 2022 and later, including utilization of a new 3-digit part numbering scheme, grouped into topics and subtopics.
- Technical specification19 pagesEnglish languagesale 15% off
- Technical specification1 pageEnglish languagesale 15% off
IEC TS 62788-6-3:2022 describes the single cantilevered beam (SCB) test, useful for characterizing adhesion in photovoltaic (PV) modules. This document offers a generalized method for performing the test, with the expectation that best practices for utilizing this test method will be developed for specific applications.
This document provides a method for measuring the adhesion energy of most interfaces within the photovoltaic (PV) module laminate. This method provides a measure of adhesive energy, via the critical energy release rate, and so is more useful for comparing adhesion of different specimen types; e.g. different materials, module or coupon samples, or materials before and after stress exposure.
- Technical specification32 pagesEnglish languagesale 15% off
IEC TS 63209-2:2022 includes a menu of tests to use for evaluation of the long-term reliability of materials used as backsheets and encapsulants in PV modules. It is intended to provide information to supplement the baseline testing defined in IEC 61215 and IEC 61730, which are qualification tests with pass-fail criteria. used for reliability analysis and is not intended to be used as a pass-fail test procedure. This document addresses polymeric materials in the crystalline silicon module laminates, specifically backsheets and encapsulants in Glass/Glass or Glass/Backsheet modules. The included environmental stress tests are intended to cause degradation that is most relevant to field experience, but these may not capture all failure modes which may be observed in various locations.
- Technical specification20 pagesEnglish languagesale 15% off
IEC TS 63342:2022 is designed to assess the effect of light induced degradation at elevated temperatures (LETID) by application of electrical current at higher temperatures. In this document, only the current injection approach for the detection of LETID is addressed.
This document does not address the B-O and Iron Boron (Fe-B) related degradation phenomena, which already occur at room temperatures under the presence of light and on much faster time scales. The proposed test procedure can reveal sample sensitivity to LETID degradation mechanisms, but it does not provide an exact measure of field observable degradation.
- Technical specification13 pagesEnglish languagesale 15% off
IEC 62759-1:2022 describes methods for the simulation of transportation of complete package units of modules and combined subsequent environmental impacts.
This second edition cancels and replaces the first edition published in 2015. This edition includes the following significant technical changes with respect to the previous edition:
a. Cancellation of tests and references to relevant standards for CPV.
b. Deletion of different classes for PV modules.
c. Deletion of requirement for minimum 10 modules per shipping unit.
d. Implementation of stabilization as intermediate measurement.
e. Addition of pass/fail criteria.
f. Change of requirements for retesting.
g. Change of number of cycles in dynamic mechanical load test.
- Standard37 pagesEnglish and French languagesale 15% off
IEC TS 63202-4:2022 describes procedures for measuring the light and elevated temperature induced degradation (LETID) of crystalline silicon photovoltaic (PV) cells in simulated sunlight. The requirements for measuring initial light induced degradation (LID) of crystalline silicon PV cells are covered by IEC 63202-1, where LID degradation risk of PV cells under moderate temperature and initial durations within termination criteria of 20 kWh·m-2 are evaluated. The procedures described in this document are to evaluate the degradation behaviour of PV cells under elevated temperature and longer duration of light irradiation. The procedures described in this document can be used to detect the LETID risks of PV cells [2],[3] and to judge the effectiveness of LETID mitigation measures, e.g. quick test for production monitoring, thus helping improve the energy yield of PV modules.
- Technical specification10 pagesEnglish languagesale 15% off
IEC TS 63265:2022 outlines methods that can be utilized to ensure reliability throughout the PVPS project phases. It is derived from a management motivation for long lasting and cost-effective energy performance, energy production, secure production and revenue, and safe function. The application of reliability practices in this document is designed to be practical and reduce the costs of unreliability. This document further identifies and defines a normative minimum set of processes and tools to meet the requirements of this document.
Key objectives of this document are to inform users of reliability tools and assessment methods (historic, predictive, and analytical) that can satisfy the stakeholders needs for dependable PV Power System (PVPS) operation. This document provides a fundamental process for ensuring reliability needs can be understood and met. IEC TS 63019 addresses availability which is a higher-level metric that combines reliability and maintainability, and it complements this document as a key normative standard. It should be used in combination with this document.
- Technical specification35 pagesEnglish languagesale 15% off
IEC 62108:2022 is available as IEC 62108:2022 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC 62108:2022 specifies the minimum requirements for the design qualification and type approval of concentrator photovoltaic (CPV) modules and assemblies suitable for long-term operation in general open-air climates as defined in IEC 60721-2-1. The object of this test document is to determine the electrical, mechanical, and thermal characteristics of the CPV modules and assemblies and to show, as far as possible within reasonable constraints of cost and time, that the CPV modules and assemblies are capable of withstanding prolonged exposure in climates described in the scope.
- Standard103 pagesEnglish and French languagesale 15% off
IEC TS 63106-2:2022 provides recommendations for Low Voltage (LV) DC power simulators used for testing photovoltaic (PV) power conversion equipment (PCE) to utility interconnection or PV performance standards. This document primarily addresses DC power simulators used for testing of grid-interactive PCE, also referred to as grid-connected power converters (GCPCs). It also addresses some uses of DC power simulators for testing stand-alone and multi-mode PCEs.
- Technical specification53 pagesEnglish languagesale 15% off
IEC TS 62804-2:2022 defines apparatus and procedures to test and evaluate the durability of photovoltaic (PV) modules to power loss by the effects of high voltage stress in a damp heat environment, referred to as potential-induced degradation (PID). This document defines a test method that compares the coulomb transfer between the active cell circuit and ground through the module packaging under voltage stress during accelerated stress testing with the coulomb transfer during outdoor testing to determine an acceleration factor for the PID.
This document tests for the degradation mechanisms involving mobile ions influencing the electric field over the semiconductor absorber layer or electronically interacting with the films such that module power is affected.
- Technical specification44 pagesEnglish languagesale 15% off
- Standard12 pagesEnglish and French languagesale 15% off
IEC TS 63109:2022 specifies a method to measure the diode ideality factor of photovoltaic cells and modules by quantitative analysis of electroluminescence (EL) images. This document provides a definition of the term diode ideality factor n, as the inverse of increment ratio of natural logarithm of current as a function of applied voltage, which is related to the fill factor FF, and is useful as an effective indicator to represent the output efficiency of photovoltaic cells and modules with the other key parameters open circuit voltage Voc and short circuit current Isc.
- Technical specification28 pagesEnglish languagesale 15% off
IEC TS 62257-7-2:2022 applies to all small wind turbines (SWTs) with a swept area smaller than or equal to 200 m2, and designed for supplying electrical power to isolated sites used in systems as described in IEC TS 62257-2.
This document is not an exhaustive resource for the design, installation, operation or maintenance of small wind turbines and wind power systems, but is more focused on recommendations to provide strategies on selection and criteria which may affect the use of a small wind power system (SWPS) in a rural electrification project.
The aim of this document is to provide users with the appropriate levels of reliability and safety of the equipment during its estimated service lifespan.
- Technical specification58 pagesEnglish languagesale 15% off
IEC 62788-7-3:2022 defines the test methods that can be used for evaluating the abrasion of materials and coatings in photovoltaic modules or other solar devices. This document may be applied to components on the incident surface (including coatings, frontsheet, and glass) as well as the back surface (including backsheets or back glass). This document is intended to address abrasion of PV module surfaces and any coatings present using representative specimens (e.g. which can be centimetres in size); the methods and apparatus used here can also be used on PV module specimens (e.g. meters in size).
- Standard43 pagesEnglish and French languagesale 15% off
IEC TS 63349-2:2022 defines operation modes of photovoltaic direct-driven appliance (PVDDA) controllers and describes one example of a graphic display. The graphic display is an interface to PVDDA users, which uses easily understood graphics to show a real-time operation mode, such as what equipment is installed, controlled and monitored in the system, which equipment is generating power and how much it generates, and which equipment is consuming power and how much it consumes. This helps with user’s interest, knowledge, planning on renewable energy usage.
- Technical specification14 pagesEnglish languagesale 15% off
- Standard9 pagesEnglish and French languagesale 15% off
IEC 62093:2022 lays down IEC requirements for the design qualification of power conversion equipment (PCE) suitable for long-term operation in terrestrial photovoltaic (PV) systems.
This document covers electronic power conversion equipment intended for use in terrestrial PV applications. The term PCE refers to equipment and components for electronic power conversion of electric power into another kind of electric power with respect to voltage, current, and frequency. This document is suitable for PCE for use in both indoor and outdoor climates as defined in IEC 60721-3-3 and IEC 60721-3-4. Such equipment may include, but is not limited to, grid-tied and off-grid DC-to-AC PCEs, DC-to-DC converters, battery charger converters, and battery charge controllers. This document covers PCE that is connected to PV arrays that do not nominally exceed a maximum circuit voltage of 1 500 V DC.
This second edition cancels and replaces the first edition published in 2005. This edition includes the following significant technical changes with respect to the previous edition:
a. Title modified.
b. This edition focusses on the design qualification of power conversion electronics (PCE), and eliminates the clauses associated with qualification testing of other balance of system components.
c. While many clause titles remain the same as the first edition, substantial changes have been made.
d. Whereas the first edition establishes requirements for the design qualification of balance-of-system components used in terrestrial photovoltaic (PV) systems, this edition is limited to power conversion equipment.
e. The test protocols have been changed.
- Standard117 pagesEnglish and French languagesale 15% off
IEC TS 63217:2021 provides a test procedure for evaluating the performance of Over Voltage Ride-Through (OVRT) functions in inverters used in utility-interconnected photovoltaic (PV) systems.
This document is most applicable to large systems where PV inverters are connected to utility high voltage (HV) distribution systems. However, the applicable procedures may also be used for low voltage (LV) installations in locations where evolving OVRT requirements include such installations, e.g. single-phase or 3-phase systems. This document is for testing of PV inverters, though it contains information that may also be useful for testing of a complete PV power plant consisting of multiple inverters connected at a single point to the utility grid. It further provides a basis for utility-interconnected PV inverters numerical simulation and model validation.
- Technical specification22 pagesEnglish languagesale 15% off
IEC 60891:2021 defines procedures to be followed for temperature and irradiance corrections to the measured I-V (current-voltage) characteristics (also known as I-V curves) of photovoltaic (PV) devices. It also defines the procedures used to determine factors relevant to these corrections. Requirements for I-V measurement of PV devices are laid down in IEC 60904-1 and its relevant subparts.
This third edition cancels and replaces the second edition published in 2009. This edition includes the following significant technical changes with respect to the previous edition:
- adds guidance on which correction procedure shall be used depending on application;
- introduces translation procedure 4 applicable to c-Si technologies with unknown temperature coefficients;
- introduces various clarifications in existing procedures to improve measurement accuracy and reduce measurement uncertainty;
- adds an informative annex for supplementary methods that can be used for series resistance determination.
- Standard71 pagesEnglish and French languagesale 15% off
IEC TS 63163:2021 is intended to apply to terrestrial modules for consumer applications for outdoor operation shorter than those qualified to IEC 61215. The useful service life of modules so qualified depends on their design, their environment and the conditions under which they are operated. This document classes those PV modules into Category 1, Category 2, and Category 3 with respectively low, medium and high expected outdoor exposure. This specification is intended to qualify the PV portion of these devices. It may, however, be used as a basis for testing such PV modules, but does not qualify the electronic portion. The purpose of the test sequence is to determine the electrical, thermal, and mechanical durability characteristics of the module, and to show that the module is capable of withstanding outdoor exposure for different outdoor durations designated as “low”, “medium”, and “high”. Mobile and attached applications are considered to require lower mechanical durability than portable applications, which are more prone to mechanical damage.
- Technical specification23 pagesEnglish languagesale 15% off
IEC 61724-1:2021 is available as IEC 61724-1:2021 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC 61724-1:2021 outlines terminology, equipment, and methods for performance monitoring and analysis of photovoltaic (PV) systems. It also serves as a basis for other standards which rely upon the data collected. This document defines classes of photovoltaic (PV) performance monitoring systems and serves as guidance for monitoring system choices. This second edition cancels and replaces the first edition, published in 2017. This edition includes the following significant technical changes with respect to the previous edition:
- Monitoring of bifacial systems is introduced.
- Irradiance sensor requirements are updated.
- Soiling measurement is updated based on new technology.
- Class C monitoring systems are eliminated.
- Various requirements, recommendations and explanatory notes are updated.
- Standard136 pagesEnglish and French languagesale 15% off
IEC 63112:2021 is applicable to low voltage Photovoltaic Earth-Fault Protection Equipment (PV-EFPE) whose function is to detect, interrupt, and warn system operators of earth faults in solar photovoltaic arrays. This document specifies:
- the types and levels of the monitoring and protection functions that may be provided;
- the nature and timing of responses to earth faults;
- test methods for validating the monitoring and protection functions provided;
- requirements for functional safety and fault tolerance;
- requirements for product safety including construction, environmental suitability, markings, documentation, and testing.
- Standard154 pagesEnglish and French languagesale 15% off
IEC TS 63140:2021 provides test methods for quantifying the permanent change in a monolithically integrated PV module’s power output that may result from some potential partial shade conditions. Three tests are available, representing conditions of use, misuse, and most severe misuse. This document is applicable to monolithically integrated PV modules with one series-connected cell group or with multiple series-connected cell groups that are in turn connected in parallel. This document is not applicable to PV modules formed by the interconnection of separate cells.
- Technical specification14 pagesEnglish languagesale 15% off
IEC TS 63209-1:2021 is intended to provide information to supplement the baseline testing defined in IEC 61215, which is a qualification test with pass-fail criteria. This document provides a standardized method for evaluating longer term reliability of photovoltaic (PV) modules and for different bills of materials (BOMs) that may be used when manufacturing those modules. The included test sequences in this specification are intended to provide information for comparative qualitative analysis using stresses relevant to application exposures to target known failure modes.
- Technical specification19 pagesEnglish languagesale 15% off
- Standard22 pagesEnglish and French languagesale 15% off
IEC 61215-2:2021 is available as IEC 61215-2:2021 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC 61215-2:2021 lays down requirements for the design qualification of terrestrial photovoltaic modules suitable for long-term operation in open-air climates. This document is intended to apply to all terrestrial flat plate module materials such as crystalline silicon module types as well as thin-film modules. The objective of this test sequence is to determine the electrical characteristics of the module and to show, as far as possible within reasonable constraints of cost and time, that the module is capable of withstanding prolonged exposure outdoors. This second edition of IEC 61215-2 cancels and replaces the first edition of IEC 61215-2 issued in 2016. This edition includes the following significant technical changes with respect to the previous edition:
a. Addition of cyclic (dynamic) mechanical load testing (MQT 20).
b. Addition of a test for detection of potential-induced degradation (MQT 21).
c. Addition of test methods required for bifacial PV modules.
d. Addition of test methods required for flexible modules. This includes the addition of the bending test (MQT 22).
e. Revision of simulator requirements to ensure uncertainty is both well-defined and minimized.
f. Correction to the hot spot endurance test, where the procedure for monolithically integrated (MLI) thin film technologies (MQT 09.2) previously included two sections describing a procedure only appropriate for silicon modules.
g. Selection of three diodes, rather than all, for testing in the bypass diode thermal test (MQT 18).
h. Removal of the nominal module operating test (NMOT), and associated test of performance at NMOT, from the IEC 61215 series.
- Standard112 pagesEnglish and French languagesale 15% off
IEC 61215-1:2021 is available as IEC 61215-1:2021 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC 61215-1:2021 lays down requirements for the design qualification of terrestrial photovoltaic modules suitable for long-term operation in open-air climates. The useful service life of modules so qualified will depend on their design, their environment and the conditions under which they are operated. Test results are not construed as a quantitative prediction of module lifetime. This document is intended to apply to all terrestrial flat plate module materials such as crystalline silicon module types as well as thin-film modules. It does not apply to systems that are not long-term applications, such as flexible modules installed in awnings or tenting. This second edition of IEC 61215-1 cancels and replaces the first edition of IEC 61215-1, published in 2016. This edition includes the following significant technical changes with respect to the previous edition:
a. Addition of a test taken from IEC TS 62782.
b. Addition of a test taken from IEC TS 62804-1.
c. Addition of test methods required for flexible modules. This includes the addition of the bending test (MQT 22).
d. Addition of definitions, references and instructions on how to perform the IEC 61215 design qualification and type approval on bifacial PV modules.
e. Clarification of the requirements related to power output measurements.
f. Addition of weights to junction box during 200 thermal cycles.
g. Requirement that retesting be performed according to IEC TS 62915.
h. Removal of the nominal module operating test (NMOT), and associated test of performance at NMOT, from the IEC 61215 series.
The contents of the corrigendum of May 2021 have been included in this copy.
- Standard96 pagesEnglish and French languagesale 15% off
IEC 61215-1-1:2021 is available as IEC 61215-1-1:2021 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC 61215-1-1:2021 lays down requirements for the design qualification of terrestrial photovoltaic modules suitable for long-term operation in open-air climates. The useful service life of modules so qualified will depend on their design, their environment and the conditions under which they are operated. Test results are not construed as a quantitative prediction of module lifetime. In climates where 98th percentile operating temperatures exceed 70 °C, users are recommended to consider testing to higher temperature test conditions as described in IEC TS 63126. This document is intended to apply to all crystalline silicon terrestrial flat plate modules. This second edition cancels and replaces the first edition of IEC 61215-1-1, issued in 2016. This edition includes the following significant technical changes with respect to the previous edition:
a. A cyclic (dynamic) mechanical load test (MQT 20) added.
b. A test for detection of potential-induced degradation (MQT 21) added.
c. A bending test (MQT 22) for flexible modules added.
d. A procedure for stress specific stabilization – BO LID (MQT 19.3) added.
e. A final stabilization procedure for modules undergoing PID testing added
- Standard12 pagesEnglish languagesale 15% off
- Standard21 pagesEnglish and French languagesale 15% off
IEC 61215-1-4:2021 is available as IEC 61215-1-4:2021 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC 61215-1-4:2021 lays down requirements for the design qualification of terrestrial photovoltaic modules suitable for long-term operation in open-air climates. The useful service life of modules so qualified will depend on their design, their environment and the conditions under which they are operated. Test results are not construed as a quantitative prediction of module lifetime. This document is intended to apply to all thin-film Cu(In,Ga)(S,Se)2 based terrestrial flat plate modules. As such it addresses special requirements for testing of this technology supplementing IEC 61215-1:2021 and IEC 61215-2:2021 requirements for testing. This second edition cancels and replaces the first edition of IEC 61215-1-4, issued in 2016. This edition includes the following significant technical changes with respect to the previous edition:
a. A cyclic (dynamic) mechanical load test (MQT 20) added.
b. A test for detection of potential-induced degradation (MQT 21) added.
c. A bending test (MQT 22) for flexible modules added.
This standard is to be read in conjunction with IEC 61215-1:2021 and IEC 61215-2:2021.
- Standard29 pagesEnglish and French languagesale 15% off
- Standard66 pagesEnglish and French languagesale 15% off
IEC 61215-1-3:2021 is available as IEC 61215-1-3:2021 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC 61215-1-3:2021 lays down requirements for the design qualification of terrestrial photovoltaic modules suitable for long-term operation in open-air climates. The useful service life of modules so qualified will depend on their design, their environment and the conditions under which they are operated. Test results are not construed as a quantitative prediction of module lifetime. This document is intended to apply to all thin-film amorphous silicon (a-Si; a-Si/µc-Si) based terrestrial flat plate modules. As such, it addresses special requirements for testing of this technology supplementing IEC 61215-1:2021 and IEC 61215-2:2021 requirements for testing. This second edition cancels and replaces the first edition of IEC 61215-1-3, issued in 2016. This edition includes the following significant technical changes with respect to the previous edition:
a. A cyclic (dynamic) mechanical load test (MQT 20) added.
b. A test for detection of potential-induced degradation (MQT 21) added.
c. A bending test (MQT 22) for flexible modules.
- Standard22 pagesEnglish and French languagesale 15% off
- Standard52 pagesEnglish and French languagesale 15% off
IEC TR 63226:2021 is intended for use as guidance for reducing fire risks in general and for site-specific needs for buildings with PV systems. In addition to the general recommendations, technical, installation, and maintenance measures can be selected to reach the intended safety level of the PV system and building, depending on the results of a risk assessment. This document contains general information about building related risks and includes measures for reducing those risks. These measures are not general requirements or recommendations. They are explained as a guide for selecting suitable measures depending on the on-site needs.
- Technical report27 pagesEnglish languagesale 15% off
IEC 61215-1-2:2021 is available as IEC 61215-1-2:2021 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC 61215-1-2:2021 lays down requirements for the design qualification of terrestrial photovoltaic modules suitable for long-term operation in open-air climates. The useful service life of modules so qualified will depend on their design, their environment and the conditions under which they are operated. Test results are not construed as a quantitative prediction of module lifetime. This document is intended to apply to all thin-film CdTe based terrestrial flat plate modules. As such, it addresses special requirements for testing of this technology supplementing IEC 61215-1:2021 and IEC 61215-2:2021 requirements for testing. This document defines PV technology dependent modifications to the testing procedures and requirements per IEC 61215-1:2021 and IEC 61215-2:2021. This second edition cancels and replaces the first edition of IEC 61215-1-2, issued in 2016. This edition includes the following significant technical changes with respect to the previous edition:
a. A cyclic (dynamic) mechanical load test (MQT 20) added.
b. A test for detection of potential-induced degradation (MQT 21) added.
c. A bending test (MQT 22) for flexible modules added.
- Standard22 pagesEnglish and French languagesale 15% off
- Standard52 pagesEnglish and French languagesale 15% off
IEC TS 63156:2021 describes the procedure for evaluating the energy conversion performance of stand-alone or grid-connected power conversion equipment (PCE) used in PV systems. This procedure includes the calculation of inverter performance to anticipate the energy yield of PV systems. This evaluation method is based on standard power efficiency calculation procedures for PCE found in IEC 61683 and IEC 62891, but provides additional methods for evaluating the expected overall energy efficiency for a particular location given solar load profiles. This document can be used as the energy evaluation method for PCE in IEC TS 61724-3, which defines a procedure for evaluating a PV system’s actual energy production relative to its modeled or expected performance.
- Technical specification23 pagesEnglish languagesale 15% off
IEC 62787:2021 specifies the minimum requirements for the qualification of concentrator photovoltaic (CPV) cells and Cell on Carrier (CoC) assemblies for incorporation into CPV receivers, modules and systems. The object of this qualification standard is to determine the optoelectronic, mechanical, thermal, and processing characteristics of CPV cells and CoCs to show that they are capable of withstanding assembly processes and CPV application environments. The qualification tests of this document are designed to demonstrate that cells or CoCs are suitable for typical assembly processes, and when properly assembled, are capable of passing IEC 62108.
This document defines qualification testing for two levels of concentrator photovoltaic device assembly:
a) cell, or bare cell; and
b) cell on carrier (CoC).
- Standard70 pagesEnglish and French languagesale 15% off
IEC TR 60904-14:2020 provides guidelines for measurements of the maximum power (Pmax) output of single-junction photovoltaic (PV) modules and for reporting at standard test conditions (STC) in industrial production line settings. As it is desirable to have consistent measurement practices across the industry, this document describes the following features of such measurements:
- Essential elements, in order to provide common understanding;
- Common issues or complications;
- Sources of error and uncertainty, including recommendations to minimize them.
- Technical report28 pagesEnglish languagesale 15% off
IEC TS 63106-1:2020 provide recommendations for Low Voltage (LV) AC power simulators used for testing utility interactive photovoltaic power conversion equipment (PCE). This document establish terminology, and create a framework for, and provide guidance regarding the electrical performance of AC power simulators used to test utility interactive photovoltaic (PV) power conversion equipment (PCE) for compliance with grid interconnection standards.
It serves as a generalized guideline for the development of AC power simulators used within a test and evaluation system for PV PCEs.
- Technical specification39 pagesEnglish languagesale 15% off
IEC TR 63227:2020 deals with the protection of PV power supply systems against detrimental effects of lightning strikes and surge voltages of atmospheric origin. In the event that a lightning and/or surge voltage protection is required to be erected, this document describes requirements and measures for maintaining the safety, functionality, and availability of the PV power supply systems.
- Technical report38 pagesEnglish languagesale 15% off
- Standard13 pagesEnglish and French languagesale 15% off
- 1 (current)
- 2
- 3
- 4
- 5