SIST EN 10210-3:2020
(Main)Hot finished steel structural hollow sections - Part 3: Technical delivery conditions for high strength and weather resistant steels
Hot finished steel structural hollow sections - Part 3: Technical delivery conditions for high strength and weather resistant steels
This part of this European Standard specifies technical delivery conditions for hot-finished seamless, electric welded and submerged arc welded steel structural hollow sections for mechanical engineering purposes of circular, square, rectangular or elliptical forms.
It applies to hollow sections formed hot, with or without subsequent heat treatment, or formed cold with subsequent heat treatment above 580 °C to obtain equivalent mechanical properties to those obtained in the hot formed product.
NOTE 1 The requirements for tolerances, dimensions and sectional properties are specified in EN 10210-2.
NOTE 2 The attention of users is drawn to the fact that whilst cold formed grades in EN 10219-3 can have equivalent mechanical properties to hot-finished grades in EN 10210-3 the sectional properties of square and rectangular hollow sections in EN 10210-2 and EN 10219-2 are not equivalent.
NOTE 3 A range of material grades is specified in this document and the user should select the grade most appropriate to the intended use and service conditions. The grades and mechanical properties of the finished hollow sections are generally comparable with those in EN 10025-2, EN 10025-3, EN 10025-4, EN 10025-5 and EN 10025-6.
NOTE 4 The requirements for seamless and welded steel structural hollow sections for use in offshore structures are covered in EN 10225.
NOTE 5 Spiral welded hollow sections are to be used with caution in construction of dynamic behaviour (fatigue stress) where up to now, there is insufficient knowledge of their performance.
Warmgefertigte Hohlprofile für den Stahlbau - Teil 3: Technische Lieferbedingungen für Anwendungen im Maschinenbau
Dieser Teil der Europäischen Norm legt die technischen Lieferbedingungen für warmgefertigte nahtlose, elektrisch und unterpulvergeschweißte Hohlprofile für Anwendungen im Maschinenbau mit runder, quadratischer, rechteckiger oder elliptischer Form fest.
Sie gilt für warmgefertigte Hohlprofile mit oder ohne nachfolgende Wärmebehandlung sowie für kaltgeformte Hohlprofile mit einer anschließenden Wärmebehandlung oberhalb von 580 °C um gleichwertige mechanische Eigenschaften wie bei den warmgeformten Erzeugnissen zu erzielen.
ANMERKUNG 1 Die Anforderungen an die Grenzabmaße, Maße und statische Werte sind in EN 10210-2 festgelegt.
ANMERKUNG 2 Der Anwender wird darauf aufmerksam gemacht, dass die kaltgeformten Hohlprofile nach EN 10219-3 zwar vergleichbare mechanische Eigenschaften zu den warmgefertigten Hohlprofilen nach EN 10210-3 aufweisen können, dass aber die Maße und statischen Werte von quadratischen und rechteckigen Hohlprofilen nach EN 10210-2 und EN 10219-2 nicht vergleichbar sind.
ANMERKUNG 3 Eine Anzahl von Stahlsorten ist in dieser Norm festgelegt und der Anwender sollte die geeignetste Sorte für die beabsichtigte Verwendung aussuchen. Die Sorten und die mechanischen Eigenschaften der fertigen Hohlprofile sind im Allgemeinen vergleichbar mit den Sorten die in EN 10025-2, EN 10025-3, EN 10025-4, EN 10025-5 und EN 10025-6 aufgeführt sind.
ANMERKUNG 4 Nahtlose und geschweißte Hohlprofile für Offshore-Konstruktionen werden in der Europäischen Norm EN 10225 behandelt.
ANMERKUNG 5 Spiralnahtgeschweißte Hohlprofile sind mit Vorsicht bei dynamischer Beanspruchung (Ermüdungsbelastung) der Konstruktionen zu verwenden, da es bis heute nur unzureichende Kenntnisse bezüglich des Verhaltens gibt.
Profils creux de construction finis à chaud en aciers - Partie 3 : Conditions techniques de livraison pour des applications de construction mécanique
La présente partie de cette Norme européenne spécifie les conditions techniques de livraison pour les profils creux de construction finis à chaud en aciers sans soudure, soudés électriquement et soudés à l’arc immergé pour des applications de construction mécanique de forme circulaire, carrée, rectangulaire ou elliptique.
Elle s’applique aux profils creux formés à chaud, avec ou sans traitement thermique ultérieur, ou formés à froid avec traitement thermique ultérieur supérieur à 580 °C afin d’obtenir des caractéristiques mécaniques équivalentes à celles des produits formés à chaud.
NOTE 1 Les exigences pour les tolérances, dimensions et caractéristiques de section sont spécifiées dans l’EN 10210-2.
NOTE 2 L’attention des utilisateurs est attirée sur le fait que, même si les nuances formées à froid de l’EN 10219-3 peuvent avoir des caractéristiques mécaniques équivalentes aux nuances finies à chaud de l’EN 10210-3, les caractéristiques de section des profils creux carrés et rectangulaires de l’EN 10210-2 et de l’EN 10219-2 ne sont pas équivalentes.
NOTE 3 Une gamme de nuances de matériau est spécifiée dans le présent document, et l’utilisateur doit sélectionner la nuance la plus appropriée à l’utilisation et aux conditions de service prévues. Les nuances et caractéristiques mécaniques des profils creux finis sont généralement comparables à celles de l’EN 10025-2, l’EN 10025-3, l’EN 10025-4, l’EN 10025-5 et l’EN 10025-6.
NOTE 4 Les exigences pour les profils creux de construction en aciers sans soudure et soudés destinés aux structures marines sont couvertes par l’EN 10225.
NOTE 5 Les profils creux soudés en spirale doivent être utilisés avec prudence dans la construction quand le comportement dynamique (contrainte en fatigue) est important car jusqu'à présent, les connaissances sur leurs performances sont insuffisantes.
Vroče izdelani votli konstrukcijski profili iz jekla - 3. del: Tehnični dobavni pogoji za jekla z visoko trdnostjo in vodoodporna
General Information
Standards Content (Sample)
SLOVENSKI STANDARD
SIST EN 10210-3:2020
01-november-2020
Vroče izdelani votli konstrukcijski profili iz jekla - 3. del: Tehnični dobavni pogoji
za jekla z visoko trdnostjo in vodoodporna
Hot finished steel structural hollow sections - Part 3: Technical delivery conditions for
high strength and weather resistant steels
Warmgefertigte Hohlprofile für den Stahlbau - Teil 3: Technische Lieferbedingungen für
Anwendungen im Maschinenbau
Profils creux de construction finis à chaud en aciers - Partie 3 : Conditions techniques de
livraison pour des applications de construction mécanique
Ta slovenski standard je istoveten z: EN 10210-3:2020
ICS:
77.140.45 Nelegirana jekla Non-alloyed steels
77.140.75 Jeklene cevi in cevni profili Steel pipes and tubes for
za posebne namene specific use
SIST EN 10210-3:2020 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
---------------------- Page: 1 ----------------------
SIST EN 10210-3:2020
EN 10210-3
EUROPEAN STANDARD
NORME EUROPÉENNE
September 2020
EUROPÄISCHE NORM
ICS 77.140.75
English Version
Hot finished steel structural hollow sections - Part 3:
Technical delivery conditions for high strength and
weather resistant steels
Profils creux de construction finis à chaud en aciers - Warmgefertigte Hohlprofile für den Stahlbau - Teil 3:
Partie 3 : Conditions techniques de livraison des aciers Technische Lieferbedingungen für höher- und
à haute limite élastique et des aciers à résistance wetterfeste Stähle
améliorée à la corrosion atmosphérique
This European Standard was approved by CEN on 10 August 2020.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and
United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2020 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 10210-3:2020 E
worldwide for CEN national Members.
---------------------- Page: 2 ----------------------
SIST EN 10210-3:2020
EN 10210-3:2020 (E)
Contents Page
European foreword . 3
1 Scope . 4
2 Normative references . 4
3 Terms, definitions and symbols . 6
4 Classification and designation . 7
5 Information to be obtained by the manufacturer . 9
6 Manufacturing process . 10
7 Requirements . 11
8 Inspection . 15
9 Frequency of testing and preparation of samples and test pieces . 19
10 Test methods . 21
11 Marking . 23
Annex A (informative) Structural hollow sections of non-alloy quality steels — Chemical
composition and mechanical properties . 24
Annex B (informative) Structural hollow sections of normalized/normalized rolled steels
— Chemical composition and mechanical properties . 25
Annex C (normative) Structural hollow sections of thermomechanical formed steels —
Chemical composition and mechanical properties . 26
Annex D (normative) Structural hollow sections of quenched and tempered steels —
Chemical composition and mechanical properties . 31
Annex E (normative) Structural hollow sections of steels with improved atmospheric
corrosion resistance — Chemical composition and mechanical properties . 36
Annex F (normative) Location of samples and test pieces . 38
Annex G (informative) Hot finished hollow section production processes, manufacturing
routes and delivery conditions . 40
Bibliography . 43
2
---------------------- Page: 3 ----------------------
SIST EN 10210-3:2020
EN 10210-3:2020 (E)
European foreword
This document (EN 10210-3:2020) has been prepared by Technical Committee CEN/TC 459/SC 3
“Structural steels other than reinforcements”, the secretariat of which is held by DIN.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by March 2021, and conflicting national standards shall
be withdrawn at the latest by March 2021.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
EN 10210 consists of the following parts:
— EN 10210-1, Hot finished steel structural hollow sections - Part 1: Technical delivery conditions
— EN 10210-2, Hot finished steel structural hollow sections - Part 2: Tolerances, dimensions and
sectional properties
— EN 10210-3, Hot finished steel structural hollow sections - Part 3: Technical delivery conditions for
high strength and weather resistant steels
It forms part of a series of standards on hollow sections together with EN 10219-1 to EN 10219-3.
According to the CEN-CENELEC Internal Regulations, the national standards organisations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland,
Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of
North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the
United Kingdom.
3
---------------------- Page: 4 ----------------------
SIST EN 10210-3:2020
EN 10210-3:2020 (E)
1 Scope
This document specifies technical delivery conditions for high strength and weather resistant hot-
finished seamless, electric welded and submerged arc welded steel structural hollow sections of
circular, square, rectangular or elliptical forms.
It applies to hollow sections formed hot, with or without subsequent heat treatment, or formed cold
with subsequent heat treatment above 580 °C to obtain equivalent mechanical properties to those
obtained in the hot formed product.
NOTE 1 The requirements for tolerances, dimensions and sectional properties are specified in EN 10210-2.
NOTE 2 The attention of users is drawn to the fact that whilst cold formed grades in EN 10219-3 can have
equivalent mechanical properties to hot-finished grades in this document the sectional properties of square and
rectangular hollow sections in EN 10210-2 and EN 10219-2 are not equivalent.
NOTE 3 A range of material grades is specified in this document and the user can select the grade most
appropriate to the intended use and service conditions. The grades and mechanical properties of the finished
hollow sections are generally comparable with those in EN 10025-4, EN 10025-5 and EN 10025-6.
NOTE 4 The requirements for seamless and welded steel structural hollow sections for use in offshore
structures are covered in the EN 10225 series.
NOTE 5 Spiral welded hollow sections are expected to be used with caution in applications involving dynamic
behaviour (fatigue stress) as, up to now, there is insufficient data regarding their performance.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
EN 1011-1, Welding - Recommendations for welding of metallic materials - Part 1: General guidance for
arc welding
EN 1011-2, Welding - Recommendations for welding of metallic materials - Part 2: Arc welding of ferritic
steels
EN 10020, Definition and classification of grades of steel
EN 10021, General technical delivery conditions for steel products
EN 10027-1, Designation systems for steels - Part 1: Steel names
EN 10027-2, Designation systems for steels - Part 2: Numerical system
EN 10160, Ultrasonic testing of steel flat product of thickness equal or greater than 6 mm (reflection
method)
EN 10168, Steel products - Inspection documents - List of information and description
EN 10204, Metallic products - Types of inspection documents
4
---------------------- Page: 5 ----------------------
SIST EN 10210-3:2020
EN 10210-3:2020 (E)
EN 10210-2, Hot finished steel structural hollow sections - Part 2: Tolerances, dimensions and sectional
properties
CEN/TR 10261, Iron and steel - European standards for the determination of chemical composition
EN 10266, Steel tubes, fittings and structural hollow sections - Symbols and definitions of terms for use in
product standards
EN ISO 148-1, Metallic materials - Charpy pendulum impact test - Part 1: Test method (ISO 148-1)
EN ISO 377, Steel and steel products - Location and preparation of samples and test pieces for mechanical
testing (ISO 377)
EN ISO 643, Steels - Micrographic determination of the apparent grain size (ISO 643)
EN ISO 2566-1, Steel - Conversion of elongation values - Part 1: Carbon and low alloy steels (ISO 2566-1)
EN ISO 4885, Ferrous materials - Heat treatments - Vocabulary (ISO 4885)
EN ISO 6892-1, Metallic materials - Tensile testing - Part 1: Method of test at room temperature (ISO
6892-1)
EN ISO 9606-1, Qualification testing of welders - Fusion welding - Part 1: Steels (ISO 9606-1)
EN ISO 9712, Non-destructive testing - Qualification and certification of NDT personnel (ISO 9712)
EN ISO 10893-2, Non-destructive testing of steel tubes - Part 2: Automated eddy current testing of
seamless and welded (except submerged arc-welded) steel tubes for the detection of imperfections (ISO
10893-2)
EN ISO 10893-3, Non-destructive testing of steel tubes - Part 3: Automated full peripheral flux leakage
testing of seamless and welded (except submerged arc-welded) ferromagnetic steel tubes for the detection
of longitudinal and/or transverse imperfections (ISO 10893-3)
EN ISO 10893-6, Non-destructive testing of steel tubes - Part 6: Radiographic testing of the weld seam of
welded steel tubes for the detection of imperfections (ISO 10893-6)
EN ISO 10893-7, Non-destructive testing of steel tubes - Part 7: Digital radiographic testing of the weld
seam of welded steel tubes for the detection of imperfections (ISO 10893-7)
EN ISO 10893-8, Non-destructive testing of steel tubes - Part 8: Automated ultrasonic testing of seamless
and welded steel tubes for the detection of laminar imperfections (ISO 10893-8)
EN ISO 10893-9, Non-destructive testing of steel tubes - Part 9: Automated ultrasonic testing for the
detection of laminar imperfections in strip/plate used for the manufacture of welded steel tubes (ISO
10893-9)
EN ISO 10893-10, Non-destructive testing of steel tubes - Part 10: Automated full peripheral ultrasonic
testing of seamless and welded (except submerged arc-welded) steel tubes for the detection of longitudinal
and/or transverse imperfections (ISO 10893-10)
EN ISO 10893-11, Non-destructive testing of steel tubes - Part 11: Automated ultrasonic testing of the
weld seam of welded steel tubes for the detection of longitudinal and/or transverse imperfections (ISO
10893-11)
5
---------------------- Page: 6 ----------------------
SIST EN 10210-3:2020
EN 10210-3:2020 (E)
EN ISO 14284, Steel and iron - Sampling and preparation of samples for the determination of chemical
composition (ISO 14284)
EN ISO 14713-2:2009, Zinc coatings - Guidelines and recommendations for the protection against
corrosion of iron and steel in structures - Part 2: Hot dip galvanizing (ISO 14713-2:2009)
EN ISO 15607, Specification and qualification of welding procedures for metallic materials - General rules
(ISO 15607)
EN ISO 15609-1, Specification and qualification of welding procedures for metallic materials - Welding
procedure specification - Part 1: Arc welding (ISO 15609-1)
EN ISO 15614-1, Specification and qualification of welding procedures for metallic materials - Welding
procedure test - Part 1: Arc and gas welding of steels and arc welding of nickel and nickel alloys (ISO
15614-11)
ISO 11484, Steel products — Employer's qualification system for non-destructive testing (NDT) personnel
SNT TC-1A, Personnel Qualification and Certification in Nondestructive Testing
3 Terms, definitions and symbols
3.1 Terms and definitions
For the purpose of this document, the terms and definitions given in EN 10020, EN 10021, EN 10266
and EN ISO 4885 and the following apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— IEC Electropedia: available at http://www.electropedia.org/
— ISO Online browsing platform: available at https://www.iso.org/obp
3.1.1
hot finished
hollow sections formed hot, with or without subsequent heat treatment, or formed cold with
subsequent heat treatment above 580 °C to obtain equivalent metallurgical conditions to those
obtained in the hot formed product
3.1.2
cold forming
process where the forming to final shape of the welded hollow section is carried out at ambient
temperature
Note 1 to entry: Circular hollow sections produced from normalized strip with a normalized weld seam and
with a cold forming ratio of D/T ≥ 20 may be classified as hot-finished hollow sections.
3.1.3
thermomechanical forming
simultaneously performed forming process and heat treatment in which the final deformation from
round to rectangular/square/elliptical hollow sections is carried out in a certain temperature range
above 580 °C leading to a material condition with certain properties which cannot be achieved or
repeated by heat treatment alone
6
---------------------- Page: 7 ----------------------
SIST EN 10210-3:2020
EN 10210-3:2020 (E)
Note 1 to entry: Thermomechanical rolling leading to the delivery condition M can include processes with an
increased cooling rate with or without tempering including self-tempering but excluding direct quenching as well
as quenching and tempering.
Note 2 to entry: In some publications, the word TMCP (Thermomechanical Control Process) is also used.
3.1.4
steel with improved atmospheric corrosion resistance
steel in which a certain number of alloying elements has been added in order to increase its resistance
to atmospheric corrosion, by forming an auto-protective oxide layer on the base metal under the
influence of weather conditions
Note 1 to entry: Steel with improved atmospheric corrosion resistance is often called weathering steel.
Note 2 to entry: Additional information for the use of steel with improved atmospheric corrosion resistance is
given in Annex E.
3.1.5
quenching and tempering
process which consists of the following two steps:
— first quenching, where the steel is heated up above the AC3 temperature and then rapidly cooled
down in liquids to create a process specific grain structure;
— afterwards tempering, during which the steel is heated up to a certain temperature to adjust the
desired properties and cooled down in air afterwards
3.1.6
fine grain steel
steels with fine grain structure with an equivalent index of ferritic grain size ≥ 6
Note 1 to entry: For the determination of grain sizes except for +QT steels, see EN ISO 643.
3.1.7
hot-dip zinc coating
application of a zinc coating by immersing the prepared strip or hollow section in a molten bath
containing a zinc content of at least 98%
3.2 Symbols
For the purposes of this document, the symbols defined in EN 10266 apply.
4 Classification and designation
4.1 Classification
4.1.1 Within the grades of steels given in Annex C and D five qualities M, ML, Q, QL and QL1 are
specified. These differ in respect of the carbon, sulphur and phosphorus content, low temperature
impact properties, production process, heat treatment and grain size.
In accordance with the classification system in EN 10020, all steel grades are alloy special steels.
4.1.2 Within the grades of steels given in Annex E, three qualities J0, J2 and K2 are specified. These
differ in respect of specified impact requirements and limits on values of various elements.
7
---------------------- Page: 8 ----------------------
SIST EN 10210-3:2020
EN 10210-3:2020 (E)
In accordance with the classification system in EN 10020, all steel grades in Annex E are alloy special
steels.
4.2 Designation
4.2.1 For the products covered by this document, the steel names are allocated in accordance with
EN 10027-1; the steel numbers are allocated in accordance with EN 10027-2.
4.2.2 The designation of steel hollow sections consists of:
a) the number of this document (EN 10210-3);
b) the capital letter S for structural steel;
c) the indication of the minimum specified yield strength for thicknesses ≤ 16 mm expressed in MPa;
d) further designations for either:
1) thermomechanical formed structural steels:
i) capital letter M to indicate thermomechanical rolled with specified impact properties at
−20 °C (see 6.5);
ii) capital letters ML for qualities with specified impact properties at –50 °C; or
2) structural steels in the quenched and tempered condition:
i) capital letter Q to indicate the quenched and tempered condition with specified impact
properties at −20 °C (see 6.5);
ii) capital letters QL or QL1 for qualities with specified impact properties at –40 or –50 °C; or
3) steels with improved atmospheric corrosion resistance:
i) the characters J0 for the qualities with specified impact properties at 0 °C;
ii) the characters J2 or K2 for the qualities with specified impact properties at −20 °C; and
iii) the letter W (weather) for improved atmospheric corrosion resistance; and
e) the capital letter H to indicate hollow sections.
EXAMPLE 1 Hollow section made of structural steel (S) with a specified minimum yield strength for a
thickness not greater than 16 mm of 460 MPa, quenched and tempered condition (Q), with a minimum impact
energy value of 30 J at -20 °C, hollow section (H):
EN 10210-3 — S460QH
or
EN 10210-3 — 1.8608
8
---------------------- Page: 9 ----------------------
SIST EN 10210-3:2020
EN 10210-3:2020 (E)
EXAMPLE 2 Hollow section made of structural steel (S) with a specified minimum yield strength for a
thickness not greater than 16 mm of 355 MPa, with a minimum impact energy value of 27 J at −20 °C (J2), weather
resistant steel (W) hollow section (H):
EN 10210-3 — S355J2WH
or
EN 10210-3 — 1.8645
5 Information to be obtained by the manufacturer
5.1 Mandatory information
The following information shall be contained in the order document at the time of enquiry and order:
a) the quantity (mass or total length);
b) details of the product form:
1) HFCHS = hot finished circular hollow sections;
2) HFRHS = hot finished square or rectangular hollow sections;
3) HFEHS = hot finished elliptical hollow sections;
c) the name of the standard for dimensions and tolerances (EN 10210-2);
d) the dimensions and the type of length, length range or length (see EN 10210-2);
e) the steel designation (see 4.2).
5.2 Options
A number of options are specified in EN 10210-2 and this document. Those relevant to this part are
listed below with appropriate clause references. In the event that the purchaser does not indicate a
wish to implement any of these options at the time of enquiry and order, the hollow sections shall be
supplied in accordance with the basic specification.
3.1 Internal weld bead trimmed (see 6.4.2);
3.2 Empty (Option for EN 10219 series)
3.3 Product analysis (see 7.1.1);
3.4 Empty;
3.5 Tensile test in corner region (see 7.2.1);
3.6 Impact test in corner region (see 7.2.2).
3.7 Verification of impact properties for quality J0 (see 7.2.3);
3.8 The product shall have a chemical composition suitable for hot-dip-zinc coating (see
7.3.2);
3.9 Weld repairs to the body of structural steel hollow sections are permitted (see 7.4.4);
9
---------------------- Page: 10 ----------------------
SIST EN 10210-3:2020
EN 10210-3:2020 (E)
3.10 Full peripheral NDT (non-destructive testing) of circular tubes for imperfections - not
possible for elliptical, rectangular, square and SAW (submerged arc welded) hollow
sections (see 7.5);
3.11 Ultrasonic testing for laminar imperfections (see 7.5);
3.12 Inspection certificate 3.1 for steel grade S355J0WH of Annex E instead of a test report
2.2 (see 8.1);
3.13 Inspection certificate 3.2.
5.3 Example of an order
100 t hot finished square hollow section in accordance with EN 10210-2 with specified outside
dimensions 100 mm × 100 mm and wall thickness of 8 mm of 12 m approximate length, grade S460QH
according to this document and supplied with inspection certificate 3.1:
EXAMPLE 100 t – HFRHS – EN 10210-2 — 100 × 100 × 8 – approximate length 12 m
EN 10210-3 — S460QH
6 Manufacturing process
6.1 General
Structural hot finished hollow sections of thermomechanical rolled and quenched and tempered steels
shall conform to Annexes C and D and steels with improved atmospheric corrosion resistance shall
conform to the requirements of Annex E.
In addition, the general technical delivery requirements specified in EN 10021 shall apply.
6.2 Steel manufacturing process
6.2.1 The steel manufacturing process shall be at the discretion of the hollow section manufacturer
with the exception that the open hearth (Siemens-Martin) process shall not be employed.
6.2.2 The method of deoxidation shall be as specified in Tables C.1, D.1 and E.1.
6.3 Grain structure
The steels grades given in Annexes C and D shall have a ferritic grain size equal to or finer than 6 when
measured in accordance with EN ISO 643 (see 7.2.4).
6.4 Structural hollow section manufacturing process
6.4.1 Structural hollow sections shall be manufactured by a seamless or by a welding process (see
informative Annex G, Table G.1). Welded sections manufactured by a continuous process shall not
include the welds used to join the lengths of strip prior to forming the hollow section, except as
permitted in 10.4.3.
6.4.2 Electric welded hollow sections shall be supplied with the external weld bead trimmed to an
essentially flush condition. Trimming of the internal weld bead is at the discretion of the manufacturer
unless Option 3.1 is specified.
Option 3.1 Electric welded hollow sections shall be supplied with the internal weld bead trimmed, the
maximum height of the internal weld bead after trimming shall be agreed at the time of enquiry and
order.
10
---------------------- Page: 11 ----------------------
SIST EN 10210-3:2020
EN 10210-3:2020 (E)
6.4.3 All NDT activities shall be carried out by qualified and competent level 1, 2 and/or 3 personnel
authorized to operate by the employer.
The qualification shall be in accordance with ISO 11484 or SNT TC-1A or EN ISO 9712.
It is recommended that the level 3 personnel be certified in accordance with EN ISO 9712 or ASNT.
The operating authorization issued by the employer shall be in accordance with a written procedure.
NDT operations shall be authorized by a level 3 NDT individual approved by the employer.
NOTE The definition of levels 1, 2 and 3 can be found in the appropriate standards, e.g. EN ISO 9712 and
ISO 11484.
6.5 Delivery condition
The products shall be delivered in the conditions indicated below:
— Qualities M and ML — thermomechanical formed,
— Qualities Q, QL and QL1 — quenched and tempered,
— Qualities J0W, J2W and K2W —improved atmospheric corrosions resistance.
7 Requirements
7.1 Chemical composition
7.1.1 The chemical composition determined by the cast analysis and reported by the steel producer
shall comply with the requirements given in Tables C.1, D.1 or E.1.
The maximum carbon equivalent value (CEV) for all grades, based on the cast analyses, given in Tables
C.2, D.2 and E.2 shall apply.
When determining the CEV, the following formula of the International Institute of Welding (IIW) shall
be used:
Mn Cr++Mo V Ni+ Cu
CEV=C+ + +
6 5 15
In addition to the cast analysis the following option can be specified by the purchaser at the time of
enquiry and order:
Option 3.3 For products supplied with specific inspection and testing, a product analysis shall be
reported.
Deviations of the product analysis from the specified limits of the cast analysis shall be in accordance
with Table 1.
7.1.2 When products are supplied with a control on Si e.g. for hot-dip zinc-coating there could be a
need, for certain grades and thicknesses, to increase the content of other elements such as C and Mn, to
achieve the required mechanical properties. In such cases, the maximum carbon equivalent values of
Table C.2 to Table E.2 may be increased as follows:
— for Si ≤ 0,04 %, increase the value of the CEV by 0,02;
— for Si ≤ 0,25 %, increase the value of the CEV by 0,01.
11
---------------------- Page: 12 ----------------------
SIST EN 10210-3:2020
EN 10210-3:2020 (E)
Table 1 — Permissible deviations of the product analysis from the specified limits of the cast
analysis specified in Tables C.1, D.1 and E.1
Permissible deviation of the
Permissible maximum content in product analysis from
Element
the cast analysis specified limits for the cast
analysis
% by mass % by mass
≤ 0,20 + 0,02
C
> 0,20 + 0,03
≤ 0,60 + 0,05
Si
> 0,60 + 0,06
thermomechanical formed ≤ 2,10 + 0,10
Mn quenched and tempered ≤ 1,70 + 0,10
weather ≤ 1,50 – 0,05 / + 0,10
thermomechanical formed ≤ 0,030,
+ 0,005
quenched and tempered ≤ 0,025
P
weather ≤ 0,035 + 0,010
thermomechanical formed ≤ 0,025 + 0,005
S
quenched and tempered ≤ 0,015 + 0,002
weather ≤ 0,035 + 0,010
Nb ≤ 0,060 + 0,010
V ≤ 0,20 + 0,02
≤ 0,03 + 0,01
Ti
> 0,03 + 0,02
≤ 0,30 + 0,05
Cr
> 0,30 + 0,10
≤ 0,80 + 0,05
Ni
> 0,80 + 0,10
≤ 0,10 + 0,03
Mo
> 0,10 + 0,04
thermomechanical formed,
±0,04
weather ≤ 0,35
Cu thermomechanical formed, weather
+ 0,07
0,35 < Cu ≤ 0,55
quenched and tempered ≤ 0,50 + 0,05
thermomechanical formed,
+ 0,002
weather ≤ 0,025
N
quenched and tempered ≤ 0,020 + 0,001
Al
≥ 0,020 – 0,005
total
12
---------------------- Page: 13 ----------------------
SIST EN 10210-3:2020
EN 10210-3:2020 (E)
Permissible deviation of the
Permissible maximum content in product analysis from
Element
the cast analysis specified limits for the cast
analysis
% by mass % by mass
B ≤ 0,005 0 + 0,000 5
Zr ≤ 0,15 + 0,02
7.2 Mechanical properties
7.2.1 Under the inspection and testing conditions as specified in Clause 8 and in the delivery
condition as specified in 6.5 the mechanical properties of the finished hollow section shall conform to
the relevant requirements of Tables C.3, C.4, D.3, D.4 and E.3.
Any heat treatment at more than 580 °C could lead to a reduction in the mechanical properties of TMCR
sections and also hot finished sections not processed in the normalizing temperature range.
The following option can be specified by the purchaser at the time of enquiry and order:
Option 3.5 Longi
...
SLOVENSKI STANDARD
oSIST prEN 10210-3:2019
01-oktober-2019
Vroče izdelani votli konstrukcijski profili iz jekla - 3. del: Tehnični dobavni pogoji
za mehansko tehnično uporabo
Hot finished steel structural hollow sections - Part 3: Technical delivery conditions for
mechanical engineering purposes
Warmgefertigte Hohlprofile für den Stahlbau - Teil 3: Technische Lieferbedingungen für
Anwendungen im Maschinenbau
Profils creux de construction finis à chaud en aciers - Partie 3 : Conditions techniques de
livraison pour des applications de construction mécanique
Ta slovenski standard je istoveten z: prEN 10210-3
ICS:
77.140.45 Nelegirana jekla Non-alloyed steels
77.140.75 Jeklene cevi in cevni profili Steel pipes and tubes for
za posebne namene specific use
oSIST prEN 10210-3:2019 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
---------------------- Page: 1 ----------------------
oSIST prEN 10210-3:2019
---------------------- Page: 2 ----------------------
oSIST prEN 10210-3:2019
DRAFT
EUROPEAN STANDARD
prEN 10210-3
NORME EUROPÉENNE
EUROPÄISCHE NORM
July 2019
ICS 77.140.75
English Version
Hot finished steel structural hollow sections - Part 3:
Technical delivery conditions for mechanical engineering
purposes
Profils creux de construction finis à chaud en aciers - Warmgefertigte Hohlprofile für den Stahlbau - Teil 3:
Partie 3 : Conditions techniques de livraison pour des Technische Lieferbedingungen für Anwendungen im
applications de construction mécanique Maschinenbau
This draft European Standard is submitted to CEN members for enquiry. It has been drawn up by the Technical Committee
CEN/TC 459/SC 3.
If this draft becomes a European Standard, CEN members are bound to comply with the CEN/CENELEC Internal Regulations
which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
This draft European Standard was established by CEN in three official versions (English, French, German). A version in any other
language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC
Management Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and
United Kingdom.
Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are
aware and to provide supporting documentation.
Warning : This document is not a European Standard. It is distributed for review and comments. It is subject to change without
notice and shall not be referred to as a European Standard.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2019 CEN All rights of exploitation in any form and by any means reserved Ref. No. prEN 10210-3:2019 E
worldwide for CEN national Members.
---------------------- Page: 3 ----------------------
oSIST prEN 10210-3:2019
prEN 10210-3:2019 (E)
Contents Page
European foreword . 3
1 Scope . 4
2 Normative references . 4
3 Terms, definitions and symbols . 6
4 Classification and designation . 8
5 Information to be obtained by the manufacturer . 10
6 Manufacturing process . 11
7 Requirements . 12
8 Inspection . 17
9 Frequency of testing and preparation of samples and test pieces . 20
10 Test methods . 22
11 Marking . 24
Annex A (normative) Structural hollow sections of non-alloy quality steels — Chemical
composition and mechanical properties . 25
Annex B (normative) Structural hollow sections of normalized/normalized rolled steels —
Chemical composition and mechanical properties . 27
Annex C (normative) Structural hollow sections of thermomechanical formed steels —
Chemical composition and mechanical properties . 30
Annex D (normative) Structural hollow sections of quenched and tempered steels —
Chemical composition and mechanical properties . 35
Annex E (normative) Structural hollow sections of steels with improved atmospheric
corrosion resistance — Chemical composition and mechanical properties . 40
Annex F (normative) Location of samples and test pieces . 42
Annex G (informative) Hot finished hollow section production processes, manufacturing
routes and delivery conditions . 44
Bibliography . 46
2
---------------------- Page: 4 ----------------------
oSIST prEN 10210-3:2019
prEN 10210-3:2019 (E)
European foreword
This document (prEN 10210-3:2019) has been prepared by Technical Committee CEN/TC 459 “ECISS -
1
European Committee for Iron and Steel Standardization ”, the secretariat of which is held by AFNOR.
This document is currently submitted to the CEN Enquiry.
This standard consists of the following parts:
— EN 10210-1, Hot finished steel structural hollow sections - Part 1: Technical delivery conditions
— EN 10210-2, Hot finished steel structural hollow sections - Part 2: Tolerances, dimensions and
sectional properties
— EN 10210-3, Hot finished steel structural hollow sections - Part 3: Technical delivery conditions for
mechanical engineering purposes
It forms part of a series of standards on hollow sections together with EN 10219-1 to −3.
1
Through its subcommittee SC 3 “Structural steels other than reinforcements” (secretariat: DIN)
3
---------------------- Page: 5 ----------------------
oSIST prEN 10210-3:2019
prEN 10210-3:2019 (E)
1 Scope
This part of this European Standard specifies technical delivery conditions for hot-finished seamless,
electric welded and submerged arc welded steel structural hollow sections for mechanical engineering
purposes of circular, square, rectangular or elliptical forms.
It applies to hollow sections formed hot, with or without subsequent heat treatment, or formed cold
with subsequent heat treatment above 580 °C to obtain equivalent mechanical properties to those
obtained in the hot formed product.
NOTE 1 The requirements for tolerances, dimensions and sectional properties are specified in EN 10210-2.
NOTE 2 The attention of users is drawn to the fact that whilst cold formed grades in EN 10219-3 can have
equivalent mechanical properties to hot-finished grades in EN 10210-3 the sectional properties of square and
rectangular hollow sections in EN 10210-2 and EN 10219-2 are not equivalent.
NOTE 3 A range of material grades is specified in this document and the user are to select the grade most
appropriate to the intended use and service conditions. The grades and mechanical properties of the finished
hollow sections are generally comparable with those in EN 10025-2, EN 10025-3, EN 10025-4, EN 10025-5 and
EN 10025-6.
NOTE 4 The requirements for seamless and welded steel structural hollow sections for use in offshore
structures are covered in EN 10225.
NOTE 5 Spiral welded hollow sections are due to be used with caution in construction of dynamic behaviour
(fatigue stress) where up to now, there is insufficient knowledge of their performance.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
EN 1011-1, Welding - Recommendations for welding of metallic materials - Part 1: General guidance for
arc welding
EN 1011-2, Welding - Recommendations for welding of metallic materials - Part 2: Arc welding of ferritic
steels
EN 10020, Definition and classification of grades of steel
EN 10021, General technical delivery conditions for steel products
EN 10027-1, Designation systems for steels - Part 1: Steel names
EN 10027-2, Designation systems for steels - Part 2: Numerical system
EN 10160, Ultrasonic testing of steel flat product of thickness equal or greater than 6 mm (reflection
method)
EN 10168, Steel products - Inspection documents - List of information and description
EN 10204, Metallic products - Types of inspection documents
4
---------------------- Page: 6 ----------------------
oSIST prEN 10210-3:2019
prEN 10210-3:2019 (E)
EN 10210-2, Hot finished structural steel hollow sections - Part 2: Tolerances, dimensions and sectional
properties
CEN/TR 10261, Iron and steel - European standards for the determination of chemical composition
EN 10266, Steel tubes, fittings and structural hollow sections - Symbols and definitions of terms for use in
product standards
EN ISO 148-1, Metallic materials - Charpy pendulum impact test - Part 1: Test method (ISO 148-1)
EN ISO 377, Steel and steel products - Location and preparation of samples and test pieces for mechanical
testing (ISO 377)
EN ISO 643, Steels - Micrographic determination of the apparent grain size (ISO 643)
EN ISO 1461, Hot dip galvanized coatings on fabricated iron and steel articles - Specifications and test
methods (ISO 1461)
EN ISO 4885, Ferrous materials - Heat treatments - Vocabulary (ISO 4885)
EN ISO 6892-1, Metallic materials - Tensile testing - Part 1: Method of test at room temperature
(ISO 6892-1)
EN ISO 9606-1, Qualification testing of welders - Fusion welding - Part 1: Steels (ISO 9606-1)
EN ISO 9712, Non-destructive testing - Qualification and certification of NDT personnel (ISO 9712)
EN ISO 10893-2, Non-destructive testing of steel tubes - Part 2: Automated eddy current testing of
seamless and welded (except submerged arc-welded) steel tubes for the detection of imperfections
(ISO 10893-2)
EN ISO 10893-3, Non-destructive testing of steel tubes - Part 3: Automated full peripheral flux leakage
testing of seamless and welded (except submerged arc-welded) ferromagnetic steel tubes for the detection
of longitudinal and/or transverse imperfections (ISO 10893-3)
EN ISO 10893-6, Non-destructive testing of steel tubes - Part 6: Radiographic testing of the weld seam of
welded steel tubes for the detection of imperfections (ISO 10893-6)
EN ISO 10893-7, Non-destructive testing of steel tubes - Part 7: Digital radiographic testing of the weld
seam of welded steel tubes for the detection of imperfections (ISO 10893-7)
EN ISO 10893-8, Non-destructive testing of steel tubes - Part 8: Automated ultrasonic testing of seamless
and welded steel tubes for the detection of laminar imperfections (ISO 10893-8)
EN ISO 10893-9, Non-destructive testing of steel tubes - Part 9: Automated ultrasonic testing for the
detection of laminar imperfections in strip/plate used for the manufacture of welded steel tubes
(ISO 10893-9)
EN ISO 10893-10, Non-destructive testing of steel tubes - Part 10: Automated full peripheral ultrasonic
testing of seamless and welded (except submerged arc-welded) steel tubes for the detection of longitudinal
and/or transverse imperfections (ISO 10893-10)
5
---------------------- Page: 7 ----------------------
oSIST prEN 10210-3:2019
prEN 10210-3:2019 (E)
EN ISO 10893-11, Non-destructive testing of steel tubes - Part 11: Automated ultrasonic testing of the
weld seam of welded steel tubes for the detection of longitudinal and/or transverse imperfections
(ISO 10893-11)
EN ISO 14284, Steel and iron - Sampling and preparation of samples for the determination of chemical
composition (ISO 14284)
EN ISO 14713-2:2009, Zinc coatings - Guidelines and recommendations for the protection against
corrosion of iron and steel in structures - Part 2: Hot dip galvanizing (ISO 14713-2)
EN ISO 15607, Specification and qualification of welding procedures for metallic materials - General rules
(ISO 15607)
EN ISO 15609-1, Specification and qualification of welding procedures for metallic materials - Welding
procedure specification - Part 1: Arc welding (ISO 15609-1)
EN ISO 15614-1, Specification and qualification of welding procedures for metallic materials - Welding
procedure test - Part 1: Arc and gas welding of steels and arc welding of nickel and nickel alloys
(ISO 15614-1)
ISO 11484, Steel products - Employer’s qualification system for non-destructive testing (NDT) personnel
3 Terms, definitions and symbols
3.1 Terms and definitions
For the purpose of this document the following terms and definitions apply in addition to or where
different from those in EN 10020, EN 10021, EN 10266 and EN ISO 4885.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— IEC Electropedia: available at http://www.electropedia.org/
— ISO Online browsing platform: available at http://www.iso.org/obp
3.1.1
hot finished
hollow sections formed hot, with or without subsequent heat treatment, or formed cold with
subsequent heat treatment above 580 °C to obtain equivalent metallurgical conditions to those
obtained in the hot formed product
3.1.2
cold forming
process where the forming to final shape of the welded hollow section is carried out at ambient
temperature
Note 1 to entry: Circular hollow sections produced from normalized strip with a normalized weld seam and
with a cold forming ratio of D/T ≥ 20 may be classified as hot-finished hollow sections.
3.1.3
normalizing rolling
rolling process in which the final deformation is carried out in a certain temperature range leading to a
material condition equivalent to that obtained after normalizing so that the specified values of the
mechanical properties are retained even after subsequent normalizing
6
---------------------- Page: 8 ----------------------
oSIST prEN 10210-3:2019
prEN 10210-3:2019 (E)
3.1.4
thermomechanical forming
simultaneously performed forming process and heat treatment in which the final deformation from
round to rectangular/square/elliptical hollow sections is carried out in a certain temperature range
above 580 °C leading to a material condition with certain properties which cannot be achieved or
repeated by heat treatment alone
Note 1 to entry: Thermomechanical rolling leading to the delivery condition M can include processes with an
increasing cooling rate with or without tempering including self-tempering but excluding direct quenching and
quenching and tempering.
Note 2 to entry: In some publications, the word TMCP (Thermomechanical Control Process) is also used.
3.1.5
steel with improved atmospheric corrosion resistance
steel in which a certain number of alloying elements has been added in order to increase its resistance
to atmospheric corrosion, by forming an auto-protective oxide layer on the base metal under the
influence of weather conditions
Note 1 to entry: Steel with improved atmospheric corrosion resistance is often called weathering steel.
Note 2 to entry: Additional information for the use of steel with improved atmospheric corrosion resistance is
given in prEN 10210-2:2016, Annex E.
3.1.6
quenching and tempering
process which consists of the following two steps:
— first quenching, where the steel is heated up above AC3 temperature and then rapidly cooled down
in liquids to create a process specific grain structure;
— afterwards tempering, during which the steel is heated up to a certain temperature to adjust the
desired properties and cooled down in air afterwards
3.1.7
fine grain steel
steels with fine grain structure with an equivalent index of ferritic grain size ≥ 6
Note 1 to entry: For the determination of grain sizes except for +QT steels, see EN ISO 643.
3.1.8
hot-dip zinc coating
galvanizing
application of a zinc coating by immersing the prepared strip or hollow section in a molten bath
containing a zinc content of at least 99%
3.2 Symbols
For the purposes of this document, the symbols defined in EN 10266 apply.
7
---------------------- Page: 9 ----------------------
oSIST prEN 10210-3:2019
prEN 10210-3:2019 (E)
4 Classification and designation
4.1 Classification
4.1.1 Within the grades of non-alloy steels given in Annex A, four qualities JR, J0, J2 and K2 are
specified. These differ in respect of specified impact requirements, limits on values of various elements,
with particular reference to sulphur and phosphorus, and the inspection and testing requirements.
In accordance with the classification system in EN 10020, all steel grades in Annex A are non-alloy
quality steels.
4.1.2 Within the grades of steels given in Annex B, C and D seven qualities N, NL, M, ML, Q, QL and QL1
are specified. These differ in respect of the carbon, sulphur and phosphorus content, low temperature
impact properties, production process, heat treatment and grain size.
In accordance with the classification system in EN 10020, steel grades S275NH, S275NLH, S355NH and
S355NLH are non-alloy quality steels and all other steel grades are alloy special steels.
4.1.3 Within the grades of steels given in Annex E, three qualities J0, J2 and K2 are specified. These
differ in respect of specified impact requirements and limits on values of various elements.
In accordance with the classification system in EN 10020, all steel grades in Annex E are alloy special
steels.
4.2 Designation
4.2.1 For the products covered by this document the steel names are allocated in accordance with
EN 10027-1; the steel numbers are allocated in accordance with EN 10027-2.
4.2.2 The designation of steel hollow sections consists of:
a) the number of this document (EN 10210-1);
b) the capital letter S for structural steel;
c) the indication of the minimum specified yield strength for thicknesses ≤ 16 mm expressed in MPa;
d) further designations for either:
1) non-alloy structural steels:
i) the capital letters JR for the qualities with specified impact properties at room
temperature;
ii) the characters J0 for the qualities with specified impact properties at 0 °C; and
iii) the characters J2 or K2 for the qualities with specified impact properties at −20 °C; or
2) normalized/normalized rolled structural steels:
i) capital letter N to indicate normalized or normalized rolled with specified impact
properties at −20 °C (see 6.5); and
ii) capital letter NL for qualities with specified impact properties at –50 °C; or
8
---------------------- Page: 10 ----------------------
oSIST prEN 10210-3:2019
prEN 10210-3:2019 (E)
3) thermomechanical formed structural steels:
i) capital letter M to indicate thermomechanical rolled with specified impact properties at
−20 °C (see 6.5); and
ii) capital letter ML for qualities with specified impact properties at –50 °C; or
4) structural steels in the quenched and tempered condition:
i) capital letter Q to indicate the quenched and tempered condition with specified impact
properties at −20 °C (see 6.5); and
ii) capital letter QL or QL1 for qualities with specified impact properties at –40 or –50 °C; or
5) steels with improved atmospheric corrosion resistance:
i) the capital letters JR for the qualities with specified impact properties at room
temperature;
ii) the characters J0 for the qualities with specified impact properties at 0 °C;
iii) the characters J2 or K2 for the qualities with specified impact properties at −20 °C and
iv) the letter W (weather) for improved atmospheric corrosion resistance; and
6) the capital letter H to indicate hollow sections.
EXAMPLE 1 Hollow section made of structural steel (S) with a specified minimum yield strength for a
thickness not greater than 16 mm of 275 MPa, with a minimum impact energy value of 27 J at 0 °C (J0), hollow
section (H):
EN 10210-1 — S275J0H
or
EN 10210-1 — 1.0149
EXAMPLE 2 Hollow section made of structural steel (S) with a specified minimum yield strength for a
thickness not greater than 16 mm of 355 MPa, normalized condition (N), with a minimum impact energy value of
27 J at −50 °C (L), hollow section (H):
EN 10210-1 — S355NLH
or
EN 10210-1 — 1.0549
9
---------------------- Page: 11 ----------------------
oSIST prEN 10210-3:2019
prEN 10210-3:2019 (E)
5 Information to be obtained by the manufacturer
5.1 Mandatory information
The following information shall be contained in the order document at the time of enquiry and order:
a) the quantity (mass or total length);
b) details of the product form:
1) HFCHS = hot finished circular hollow sections;
2) HFRHS = hot finished square or rectangular hollow sections;
3) HFEHS = hot finished elliptical hollow sections;
c) the name of the standard for dimensions and tolerances (EN 10210-2);
d) the dimensions and the type of length, length range or length (see EN 10210-2);
e) the steel designation (see 4.2).
5.2 Options
A number of options are specified in parts 1 and 2 of this document. Those relevant to this part are
listed below with appropriate clause references. In the event that the purchaser does not indicate a
wish to implement any of these options at the time of enquiry and order, the hollow sections shall be
supplied in accordance with the basic specification.
1.1 Internal weld bead trimmed (see 6.4.2);
1.2 Empty (Option for EN 10219)
1.3 Product analysis (see 7.1.1);
1.4 Cr, Cu, Mo, Ni, Ti and V cast analysis contents to be reported for non-alloy quality steels (see
7.1.2);
1.5 Tensile test in corner region (see 7.2.1);
1.6 Impact test in corner region (see 7.2.2).
1.7 Verification of impact properties for qualities JR and J0 (see 7.2.3);
1.8 The product shall have a chemical composition suitable for hot-dip-zinc coating (see 7.3.2);
1.9 Weld repairs to the body of structural steel hollow sections are permitted (see 7.4.4);
1.10 Full peripheral NDT (non-destructive testing) of circular tubes for imperfections - not possible
for elliptical, rectangular, square and SAW (submerged arc welded) hollow sections (see 7.5);
1.11 Ultrasonic testing for laminar imperfections (see 7.5);
1.12 Inspection certificate 3.1 for steel grades S235JRH, S275J0H, S355J0H of Annex A and S355J0WH
of Annex E instead of a test report 2.2 (see 8.1);
1.13 Inspection certificate 3.2.
10
---------------------- Page: 12 ----------------------
oSIST prEN 10210-3:2019
prEN 10210-3:2019 (E)
5.3 Example of an order
100 t hot finished square hollow section in accordance with EN 10210-2 with specified outside
dimensions 100 mm × 100 mm and wall thickness of 8 mm of 12 m approximate length, grade S355J0H
according to EN 10210-1, verified impact properties at 0 °C (Option 1.7) and supplied with inspection
certificate 3.1 (Option 1.12):
100 t– HFRHS – EN 10210-2 —100 × 100 × 8 – approximate length 12 m
EN 10210-1 — S355J0H – Options 1.7 and 1.12
6 Manufacturing process
6.1 General
Structural hot finished hollow sections of non-alloy steels shall conform to the requirements of Annex A.
Structural hot finished hollow sections of normalized/normalized rolled, thermomechanical rolled and
quenched and tempered steels shall conform to Annexes B to D and steels with improved atmospheric
corrosion resistance shall conform to the requirements of Annex E.
In addition, the general technical delivery requirements specified in EN 10021 shall apply.
6.2 Steel manufacturing process
6.2.1 The steel manufacturing process shall be at the discretion of the hollow section manufacturer
with the exception that the open hearth (Siemens-Martin) process shall not be employed.
6.2.2 The method of deoxidation shall be as specified in Tables A.1, B.1, C.1, D.1 and E.1.
6.3 Grain structure
The steels grades given in Annexes B to D shall have a ferritic grain size equal to or finer than 6 when
measured in accordance with EN ISO 643 (see 7.2.4).
6.4 Structural hollow section manufacturing process
6.4.1 Structural hollow sections shall be manufactured by a seamless or by a welding process (see
informative Annex G). Welded sections manufactured by a continuous process shall not include the
welds used to join the lengths of strip prior to forming the hollow section, except as permitted in 10.4.3.
6.4.2 Electric welded hollow sections shall be supplied with the external weld bead trimmed to an
essentially flush condition. Trimming of the internal weld bead is at the discretion of the manufacturer
unless Option 1.1 is specified.
Option 1.1 Electric welded hollow sections shall be supplied with the internal weld bead trimmed, the
maximum height of the internal weld bead after trimming shall be agreed at the time of enquiry and
order.
11
---------------------- Page: 13 ----------------------
oSIST prEN 10210-3:2019
prEN 10210-3:2019 (E)
6.4.3 All NDT activities shall be carried out by qualified and competent level 1, 2 and/or 3 personnel
authorized to operate by the employer.
The qualification shall be in accordance with ISO 11484 or, at least, an equivalent to it.
It is recommended that the level 3 personnel be certified in accordance with EN ISO 9712 or, at least, an
equivalent to it.
The operating authorization issued by the employer shall be in accordance with a written procedure.
NDT operations shall be authorized by a level 3 NDT individual approved by the employer.
NOTE The definition of levels 1, 2 and 3 can be found in the appropriate standards, e.g. EN ISO 9712 and
ISO 11484.
6.5 Delivery condition
The products shall be delivered in the conditions indicated below:
— Qualities JR, J0, J2 and K2 — hot finished,
— Qualities N and NL — full body normalized. Normalized includes normalized rolled and normalized
formed,
— Qualities M and ML – thermomechanical formed,
— Qualities Q, QL and QL1 — quenched and tempered.
For steels of qualities JR, J0, J2, K2 of Annex A and steel of qualities N, NL of Annex B it may be necessary
for hollow sections to apply accelerated cooling after austenitizing to achieve the intended structure, or
liquid quenching and tempering to achieve the specified mechanical properties. The decision shall be
left to the discretion of the manufacturer, but shall be stated to the purchaser at the time of enquiry and
order. Hollow sections treated in such a way by quenching and tempering shall be designated by the
steel name supplemented with the symbol “+QT”.
7 Requirements
7.1 Chemical composition
7.1.1 The chemical composition determined by the cast analysis and reported by the steel producer
shall comply with the requirements given in Tables A.1, B.1, C.1, D.1 or E.1.
The maximum carbon equivalent value (CEV) for all grades, based on the cast analyses, given in Tables
A.2, B.2, C.2, D.2 and E.2 shall apply.
When determining the CEV, the following formula of the International Institute of Welding (IIW) shall
be used:
Mn Cr++Mo V Ni+ Cu
CEV=C+ + +
6 5 15
In addition to the cast analysis the following option can be specified by the purchaser at the time of
enquiry and order:
Option 1.3For products supplied with specific inspection and testing, a product analysis shall be
reported.
Deviations of the product analysis from the specified limits of the cast analysis shall be in accordance
with Table 1.
12
---------------------- Page: 14 ----------------------
oSIST prEN 10210-3:2019
prEN 10210-3:2019 (E)
7.1.2 For non-alloy steel products with specific inspection (3.1 or 3.2), the following option may be
specified:
Option 1.4 The recording on the inspection certificate of the Cr, Cu, Mo, Ni, Ti and V content (cast
analysis).
7.1.3 When produ
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.