The Geography Markup Language (GML) is an XML encoding in accordance with ISO 19118 for the transport and storage of geographic information modelled in accordance with the conceptual modelling framework used in the ISO 19100 series of International Standards and including both the spatial and non-spatial properties of geographic features.
This document defines the XML Schema syntax, mechanisms and conventions that:
— provide an open, vendor-neutral framework for the description of geospatial application schemas for the transport and storage of geographic information in XML;
— allow profiles that support proper subsets of GML framework descriptive capabilities;
— support the description of geospatial application schemas for specialized domains and information communities;
— enable the creation and maintenance of linked geographic application schemas and datasets;
— support the storage and transport of application schemas and datasets;
— increase the ability of organizations to share geographic application schemas and the information they describe.
Implementers can decide to store geographic application schemas and information in GML, or they can decide to convert from some other storage format on demand and use GML only for schema and data transport.
NOTE If an ISO 19109 conformant application schema described in UML is used as the basis for the storage and transportation of geographic information, this document provides normative rules for the mapping of such an application schema to a GML application schema in XML Schema and, as such, to an XML encoding for data with a logical structure in accordance with the ISO 19109 conformant application schema.

  • Standard
    374 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document defines the conceptual schema for the description of referencing by coordinates. It describes the minimum data required to define coordinate reference systems. This document supports the definition of:
— spatial coordinate reference systems where coordinate values do not change with time. The system may:
— be geodetic and apply on a national or regional basis, or
— apply locally such as for a building or construction site, or
— apply locally to an image or image sensor;
— be referenced to a moving platform such as a car, a ship, an aircraft or a spacecraft. Such a coordinate reference system can be related to a second coordinate reference system which is referenced to the Earth through a transformation that includes a time element;
— spatial coordinate reference systems in which coordinate values of points on or near the surface of the earth change with time due to tectonic plate motion or other crustal deformation. Such dynamic systems include time evolution, however they remain spatial in nature;
— parametric coordinate reference systems which use a non-spatial parameter that varies monotonically with height or depth;
— temporal coordinate reference systems which use dateTime, temporal count or temporal measure quantities that vary monotonically with time;
— mixed spatial, parametric or temporal coordinate reference systems.
The definition of a coordinate reference system does not change with time, although in some cases some of the defining parameters can include a rate of change of the parameter. The coordinate values within a dynamic and in a temporal coordinate reference system can change with time.
This document also describes the conceptual schema for defining the information required to describe operations that change coordinate values.
In addition to the minimum data required for the definition of the coordinate reference system or coordinate operation, the conceptual schema allows additional descriptive information - coordinate reference system metadata - to be provided.
This document is applicable to producers and users of geographic information. Although it is applicable to digital geographic data, the principles described in this document can be extended to many other forms of spatial data such as maps, charts and text documents.

  • Standard
    154 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the data structure and content of an interface that permits communication between position-providing device(s) and position-using device(s) enabling the position-using device(s) to obtain and unambiguously interpret position information and determine, based on a measure of the degree of reliability, whether the resulting position information meets the requirements of the intended use.
A standardized interface for positioning allows the integration of reliable position information obtained from non-specific positioning technologies and is useful in various location-focused information applications, such as surveying, navigation, intelligent transportation systems (ITS), and location-based services (LBS).

  • Standard
    73 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies conceptual schemas for describing the spatial characteristics of geographic entities, and a set of spatial operations consistent with these schemas. It treats "vector" geometry and topology. It defines standard spatial operations for use in access, query, management, processing and data exchange of geographic information for spatial (geometric and topological) objects. Because of the nature of geographic information, these geometric coordinate spaces will normally have up to three spatial dimensions, one temporal dimension and any number of other spatially dependent parameters as needed by the applications. In general, the topological dimension of the spatial projections of the geometric objects will be at most three.

  • Standard
    237 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document defines XML based encoding rules for conceptual schemas specifying types that describe geographic resources. The encoding rules support the UML profile as used in the UML models commonly used in the standards developed by ISO/TC 211. The encoding rules use XML schema for the output data structure schema.
The encoding rules described in this document are not applicable for encoding UML application schema for geographic features (see ISO 19136 for those rules).

  • Technical specification
    49 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document defines the conceptual schema for spatial references based on geographic identifiers. It establishes a general model for spatial referencing using geographic identifiers and defines the components of a spatial reference system. It also specifies a conceptual scheme for a gazetteer.
Spatial referencing by coordinates is addressed in ISO 19111. However, a mechanism for recording complementary coordinate references is included in this document.
This document enables producers of data to define spatial reference systems using geographic identifiers and assists users in understanding the spatial references used in datasets. It enables gazetteers to be constructed in a consistent manner and supports the development of other standards in the field of geographic information.
This document is applicable to digital geographic data, and its principles may be extended to other forms of geographic data such as maps, charts and textual documents.

  • Standard
    28 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document extends ISO 19115-1:2014 by defining the schema required for an enhanced description
of the acquisition and processing of geographic information, including imagery. Included are the
properties of measuring systems and the numerical methods and computational procedures used to
derive geographic information from the data acquired by them. This document also provides the XML
encoding for acquisition and processing metadata thereby extending the XML schemas defined in ISO/
TS 19115-3.

  • Standard
    65 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The Geography Markup Language (GML) is an XML encoding in compliance with ISO 19118 for the transport and storage of geographic information modelled in accordance with the conceptual modelling framework used in the ISO 19100‑ series of International Standards and including both the spatial and non-spatial properties of geographic features.
ISO 19136-2:2015 defines the XML Schema syntax, mechanisms and conventions that:
? provide an open, vendor-neutral framework for the description of geospatial application schemas for the transport and storage of geographic information in XML;
? allow profiles that support proper subsets of GML framework descriptive capabilities;
? support the description of geospatial application schemas for specialized domains and information communities;
? enable the creation and maintenance of linked geographic application schemas and datasets;
? support the storage and transport of application schemas and datasets;
? increase the ability of organizations to share geographic application schemas and the information they describe.
Implementers may decide to store geographic application schemas and information in GML, or they may decide to convert from some other storage format on demand and use GML only for schema and data transport.
ISO 19136-2:2015 builds on ISO 19136:2007 (GML 3.2), and extends it with additional schema components and requirements.
NOTE If an ISO 19109 conformant application schema described in UML is used as the basis for the storage and transportation of geographic information, this part of ISO 19136 provides normative rules for the mapping of such an application schema to a GML application schema in XML Schema and, as such, to an XML encoding for data with a logical structure in accordance with the ISO 19109 conformant application schema.

  • Standard
    89 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document establishes a methodology for cross-mapping vocabularies. It also specifies an implementation of ISO 19135-1:2015 for the purpose of registering cross-mapped vocabulary entries.
Methodologies for the development of ontologies and taxonomies that relate to geographic information and geomatics are not within the scope of this document.

  • Standard
    66 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Amendment
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Amendment
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Amendment
    20 pages
    French language
    sale 10% off
    e-Library read for
    1 day

ISO 19110:2016 defines the methodology for cataloguing feature types. This document specifies how feature types can be organized into a feature catalogue and presented to the users of a set of geographic data. This document is applicable to creating catalogues of feature types in previously uncatalogued domains and to revising existing feature catalogues to comply with standard practice. This document applies to the cataloguing of feature types that are represented in digital form. Its principles can be extended to the cataloguing of other forms of geographic data. Feature catalogues are independent of feature concept dictionaries defined in ISO 19126 and can be specified without having to use or create a Feature Concept Dictionary.
ISO 19110:2016 is applicable to the definition of geographic features at the type level. This document is not applicable to the representation of individual instances of each type. This document excludes portrayal schemas as specified in ISO 19117.
ISO 19110:2016 may be used as a basis for defining the universe of discourse being modelled in a particular application, or to standardize general aspects of real world features being modelled in more than one application.

  • Standard
    78 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 19119:2016 defines requirements for how platform neutral and platform specific specification of services shall be created, in order to allow for one service to be specified independently of one or more underlying distributed computing platforms.
ISO 19119:2016 defines requirements for a further mapping from platform neutral to platform specific service specifications, in order to enable conformant and interoperable service implementations.
ISO 19119:2016 addresses the Meta:Service foundation of the ISO geographic information reference model described in ISO 19101‑1:2014, Clause 6 and Clause 8, respectively.
ISO 19119:2016 defines how geographic services shall be categorised according to a service taxonomy based on architectural areas and allows also for services to be categorised according to a usage life cycle perspective, as well as according to domain specific and user defined service taxonomies, providing support for easier publication and discovery of services.

  • Standard
    113 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 19109:2015 defines rules for creating and documenting application schemas, including principles for the definition of features.
The scope of this International Standard includes the following:
- conceptual modelling of features and their properties from a universe of discourse;
- definition of application schemas;
- use of the conceptual schema language for application schemas;
- transition from the concepts in the conceptual model to the data types in the application schema;
- integration of standardized schemas from other ISO geographic information standards with the application schema.
The following are outside the scope:
- choice of one particular conceptual schema language for application schemas;
- definition of any particular application schema;
- representation of feature types and their properties in a feature catalogue;
- representation of metadata;
- rules for mapping one application schema to another;
- implementation of the application schema in a computer environment;
- computer system and application software design;
- programming.

  • Standard
    101 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 19135-1:2015 specifies procedures to be followed in establishing, maintaining, and publishing registers of unique, unambiguous, and permanent identifiers and meanings that are assigned to items of geographic information. In order to accomplish this purpose, ISO 19135-1:2015 specifies elements that are necessary to manage the registration of these items.

  • Standard
    71 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of the Technical Report provides guidance for validation and testing of data, metadata and services, as the main Spatial Data Infrastructure (SDI) components defined in other parts of CEN/TR 15449.
The guidance is given by means of examples of the validation and testing process required to assure conformance with the requirements existing in the relevant standards and guidelines.

  • Technical report
    84 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 19101-1:2014 defines the reference model for standardization in the field of geographic information. This reference model describes the notion of interoperability and sets forth the fundamentals by which this standardization takes place.
Although structured in the context of information technology and information technology standards, ISO 19101-1:2014 is independent of any application development method or technology implementation approach.

  • Standard
    57 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 19115-1:2014 defines the schema required for describing geographic information and services by means of metadata. It provides information about the identification, the extent, the quality, the spatial and temporal aspects, the content, the spatial reference, the portrayal, distribution, and other properties of digital geographic data and services.
ISO 19115-1:2014 is applicable to:
-the cataloguing of all types of resources, clearinghouse activities, and the full description of datasets and services;
-geographic services, geographic datasets, dataset series, and individual geographic features and feature properties.
ISO 19115-1:2014 defines:
-mandatory and conditional metadata sections, metadata entities, and metadata elements;
-the minimum set of metadata required to serve most metadata applications (data discovery, determining data fitness for use, data access, data transfer, and use of digital data and services);
-optional metadata elements to allow for a more extensive standard description of resources, if required;
-a method for extending metadata to fit specialized needs.
Though ISO 19115-1:2014 is applicable to digital data and services, its principles can be extended to many other types of resources such as maps, charts, and textual documents as well as non-geographic data. Certain conditional metadata elements might not apply to these other forms of data.

  • Standard
    177 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    206 pages
    French language
    sale 10% off
    e-Library read for
    1 day

ISO 19117:2012 specifies a conceptual schema for describing symbols, portrayal functions that map geospatial features to symbols, and the collection of symbols and portrayal functions into portrayal catalogues. This conceptual schema can be used in the design of portrayal systems. It allows feature data to be separate from portrayal data, permitting data to be portrayed in a dataset independent manner.

  • Standard
    103 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 19157:2013 establishes the principles for describing the quality of geographic data. It
- defines components for describing data quality;
- specifies components and content structure of a register for data quality measures;
- describes general procedures for evaluating the quality of geographic data;
- establishes principles for reporting data quality.
ISO 19157:2013 also defines a set of data quality measures for use in evaluating and reporting data quality. It is applicable to data producers providing quality information to describe and assess how well a data set conforms to its product specification and to data users attempting to determine whether or not specific geographic data are of sufficient quality for their particular application.
ISO 19157:2013 does not attempt to define minimum acceptable levels of quality for geographic data.

  • Standard
    154 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 19156:2011 defines a conceptual schema for observations, and for features involved in sampling when making observations. These provide models for the exchange of information describing observation acts and their results, both within and between different scientific and technical communities.
Observations commonly involve sampling of an ultimate feature-of-interest. ISO 19156:2011 defines a common set of sampling feature types classified primarily by topological dimension, as well as samples for ex-situ observations. The schema includes relationships between sampling features (sub-sampling, derived samples).
ISO 19156:2011 concerns only externally visible interfaces and places no restriction on the underlying implementations other than what is needed to satisfy the interface specifications in the actual situation.

  • Standard
    54 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Technical Report describes a service-centric view of a Spatial Data Infrastructure (SDI).
The Service Centric view addresses the concepts of service specifications, the methodology for developing service specifications through the application of the relevant International Standards, and the content of such service specifications described from the perspective of the five Reference Model of Open Distributed Processing (RM-ODP) viewpoints:
-   the enterprise viewpoint addresses service aspects from an organisational, business and user perspective;
-   the computational viewpoint addresses service aspects from a system architect perspective;
-   the information viewpoint addresses service aspects from a geospatial information expert perspective;
-   the engineering viewpoint addresses service aspects from a system designer perspective;
-   the technology viewpoint addresses service aspects from a system builder and implementer perspective.
The intended readership of this Technical Report is those people who are responsible for creating frameworks for SDI, experts contributing to INSPIRE experts in information and communication technologies and e-government that need to familiarise themselves with geographic information and SDI concepts, and standards developers and writers.

  • Technical report
    45 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 19152:2012:
defines a reference Land Administration Domain Model (LADM) covering basic information-related components of land administration (including those over water and land, and elements above and below the surface of the earth);
provides an abstract, conceptual model with four packages related to parties (people and organizations); basic administrative units, rights, responsibilities, and restrictions (ownership rights); spatial units (parcels, and the legal space of buildings and utility networks); spatial sources (surveying), and spatial representations (geometry and topology);
provides terminology for land administration, based on various national and international systems, that is as simple as possible in order to be useful in practice. The terminology allows a shared description of different formal or informal practices and procedures in various jurisdictions;
provides a basis for national and regional profiles; and
enables the combining of land administration information from different sources in a coherent manner.

  • Standard
    128 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of the Technical Report provides best practices regarding Spatial Data Infrastructures (SDIs), referencing to the outcomes of the projects in the frame of the European Union funding programmes. It summarises the deliverables of projects, structured according to the reference model defined in Part 1 of this Technical Report, to be made available in an on-line repository where the relevant outcomes are collected and classified in order to provide a structured sets of recommendations for implementing SDIs at the European, national and sub-national levels.
This collection refers mainly to the projects funded by the European Union funding programmes: this choice is driven by the wide vision and analysis which such kind of projects can provide and the wide numbers of stakeholders which have been involved.
The outcomes delivered by these relevant practices are collected into a document registry available through the CEN/TC 287 web site. This part of the Technical Report defines the processes and the content of these projects and documents registries, which will help making them more accessible and re-usable. It provides the relevant project deliverables addressing the main SDI issues as described in the other parts of this Technical Report.
The intended readership of this Technical Report are those people who are responsible for creating frameworks for SDI, experts contributing to INSPIRE, experts in information and communication technologies and e-government that need to familiarise themselves with geographic information and SDI concepts, and standards developers and writers.

  • Technical report
    47 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Part 3 of the Technical Report describes a data-centric view of a Spatial Data Infrastructure (SDI). The Data Centric view addresses the concepts of semantic interoperability, the methodology for developing data specifications through the application of the relevant International Standards, and the content of such specifications including Application Schemas, Feature Catalogues, General Feature Model, Data Lifecycle Management and Data Quality, Data Access and Data Transformation.
The intended readership of this Technical Report are those people who are responsible for creating frameworks for SDI, experts contributing to INSPIRE, experts in information and communication technologies and e-government that need to familiarise themselves with geographic information and SDI concepts, and standards developers and writers.

  • Technical report
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of the Technical Report provides a reference model for a Spatial Data Infrastructure (SDI). It covers framework standards and identifies the relevant standards, technical specifications, technical reports and guidelines.
This part of the Technical Report provides a context model for the other parts of this Technical Report applying general architecture standards.
The intended readership of this Technical Report are those people who are responsible for creating frameworks for SDIs, experts contributing to INSPIRE, experts in information and communication technologies and e-government that need to familiarise themselves with geographic information and SDI concepts, and standards developers and writers.

  • Technical report
    41 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 19144-1:2009 establishes the structure of a geographic information classification system, together with the mechanism for defining and registering the classifiers for such a system. It specifies the use of discrete coverages to represent the result of applying the classification system to a particular area and defines the technical structure of a register of classifiers in accordance with ISO 19135.

  • Corrigendum
    5 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 19144-1:2009 establishes the structure of a geographic information classification system, together with the mechanism for defining and registering the classifiers for such a system. It specifies the use of discrete coverages to represent the result of applying the classification system to a particular area and defines the technical structure of a register of classifiers in accordance with ISO 19135.

  • Standard
    39 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 19143:2010 describes an XML and KVP encoding of a system neutral syntax for expressing projections, selection and sorting clauses collectively called a query expression.
These components are modular and intended to be used together or individually by other International Standards which reference ISO 19143:2010.
ISO 19143:2010 defines an abstract component, named AbstractQueryExpression, from which other specifications can subclass concrete query elements to implement query operations.
It also defines an additional abstract query component, named AbstractAdhocQueryExpresison, which is derived from AbstractQueryExpression and from which other specifications can subclass concrete query elements which follow the following query pattern:
An abstract query element from which service specifications can subclass a concrete query element that implements a query operation that allows a client to specify a list of resource types, an optional projection clause, an optional selection clause, and an optional sorting clause to query a subset of resources that satisfy the selection clause.
This pattern is referred to as an ad hoc query pattern since the server in not aware of the query until it is submitted for processing. This is in contrast to a stored query expression, which is stored and can be invoked by name or identifier.
ISO 19143:2010 also describes an XML and KVP encoding of a system-neutral representation of a select clause. The XML representation is easily validated, parsed and transformed into a server-specific language required to retrieve or modify object instances stored in some persistent object store.
ISO 19143:2010 defines the XML encoding for the following predicates.
- A standard set of logical predicates: and, or and not.
- A standard set of comparison predicates: equal to, not equal to, less than, less than or equal to, greater than, greater than or equal to, like, is null and between.
- A standard set of spatial predicates: equal, disjoint, touches, within, overlaps, crosses, intersects, contains, within a specified distance, beyond a specified distance and BBOX.
- A standard set of temporal predicates: after, before, begins, begun by, contains, during, ends, equals, meets, met by, overlaps and overlapped by.
- A predicate to test whether the identifier of an object matches the specified value.
ISO 19143:2010 defines the XML encoding of metadata that allows a service to declare which conformance classes, predicates, operators, operands and functions it supports. This metadata is referred to as Filter Capabilities.

  • Standard
    90 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 19118:2011 specifies the requirements for defining encoding rules for use for the interchange of data that conform to the geographic information in the set of International Standards known as the "ISO 19100 series".
ISO 19118:2011 specifies requirements for creating encoding rules based on UML schemas, requirements for creating encoding services, and requirements for XML-based encoding rules for neutral interchange of data.
ISO 19118:2011 does not specify any digital media, does not define any transfer services or transfer protocols, nor does it specify how to encode inline large images.

  • Standard
    77 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 19142:2010 specifies the behaviour of a web feature service that provides transactions on and access to geographic features in a manner independent of the underlying data store. It specifies discovery operations, query operations, locking operations, transaction operations and operations to manage stored parameterized query expressions.

  • Standard
    253 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 19141:2008 defines a method to describe the geometry of a feature that moves as a rigid body. Such movement has the following characteristics.
The feature moves within any domain composed of spatial objects as specified in ISO 19107.
The feature may move along a planned route, but it may deviate from the planned route.
Motion may be influenced by physical forces, such as orbital, gravitational, or inertial forces.
Motion of a feature may influence or be influenced by other features, for example:
The moving feature might follow a predefined route (e.g. road), perhaps part of a network, and might change routes at known points (e.g. bus stops, waypoints).
Two or more moving features may be “pulled” together or pushed apart (e.g. an airplane will be refuelled during flight, a predator detects and tracks a prey, refugee groups join forces).
Two or more moving features may be constrained to maintain a given spatial relationship for some period (e.g. tractor and trailer, convoy).
ISO 19141:2008 does not address other types of change to the feature. Examples of changes that are not adressed include the following:
The deformation of features.
The succession of either features or their associations.
The change of non-spatial attributes of features.
The feature's geometric representation cannot be embedded in a geometric complex that contains the geometric representations of other features, since this would require the other features' representations to be updated as the feature moves.
Because ISO 19141:2008 is concerned with the geometric description of feature movement, it does not specify a mechanism for describing feature motion in terms of geographic identifiers. This is done, in part, in ISO 19133.

  • Standard
    58 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 6709:2008 is applicable to the interchange of coordinates describing geographic point location. It specifies the representation of coordinates, including latitude and longitude, to be used in data interchange. It additionally specifies representation of horizontal point location using coordinate types other than latitude and longitude. It also specifies the representation of height and depth that can be associated with horizontal coordinates. Representation includes units of measure and coordinate order.
ISO 6709:2008 is not applicable to the representation of information held within computer memories during processing and in their use in registers of geodetic codes and parameters.
ISO 6709:2008 supports point location representation through the eXtensible Markup Language (XML) and, recognizing the need for compatibility with the previous version of this International Standard, ISO 6709:1983, allows for the use of a single alpha-numeric string to describe point locations.
For computer data interchange of latitude and longitude, ISO 6709:2008 generally suggests that decimal degrees be used. It allows the use of sexagesimal notations: degrees, minutes and decimal minutes or degrees, minutes, seconds and decimal seconds.
ISO 6709:2008 does not require special internal procedures, file-organization techniques, storage medium, languages, etc., to be used in its implementation.

  • Standard
    38 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 19132:2007 defines a reference model and a conceptual framework for location-based services (LBS), and describes the basic principles by which LBS applications may interoperate. This framework references or contains an ontology, a taxonomy, a set of design patterns and a core set of LBS service abstract specifications in UML. ISO 19132:2007 further specifies the framework's relationship to other frameworks, applications and services for geographic information and to client applications.
ISO 19132:2007 addresses, for an LBS system, the first three basic viewpoints as defined in the Reference Model for Open Distributed Processing (RM-ODP, see ISO/IEC 10746-1). These viewpoints are the Enterprise Viewpoint – detailing the purpose, scope, and policies of the system; Information Viewpoint – detailing the semantics of information and processing within the system; Computational Viewpoint – detailing the functional decomposition of the system.
The fourth and fifth viewpoints are addressed only in requirements or examples. These are the Engineering Viewpoint – detailing the infrastructure for distribution; Technology Viewpoint – detailing the technology for implementation;
Reference models and frameworks can be defined at a variety of levels, from conceptual design to software documentation. ISO 19132:2007 defines the conceptual framework for and the type of applications included within LBS, establishes general principles for LBS for both mobile and fixed clients, specifies the interface for data access while roaming, defines the architectural relationship with other ISO geographic information standards, and identifies areas in which further standards for LBS are required.
ISO 19132:2007 does not address rules by which LBS are developed, nor general principles for roaming agreements for mobile clients and tracking targets.

  • Standard
    105 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 19134:2006 specifies the data types and their associated operations for the implementation of multimodal location-based services for routing and navigation. It is designed to specify web services that may be made available to wireless devices through web-resident proxy applications, but is not limited to that environment.

  • Standard
    46 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    46 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO - Taking over of an ISO Technical Corrigendum

  • Corrigendum
    8 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 19131:2007 specifies requirements for the specification of geographic data products, based upon the concepts of other ISO 19100 International Standards. It also provides help in the creation of data product specifications, so that they are easily understood and fit for their intended purpose.

  • Standard
    48 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 19137:2007 defines a core profile of the spatial schema specified in ISO 19107 that specifies, in accordance with ISO 19106, a minimal set of geometric elements necessary for the efficient creation of application schemata.
It supports many of the spatial data formats and description languages already developed and in broad use within several nations or liaison organizations.

  • Standard
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 19128:2005 specifies the behaviour of a service that produces spatially referenced maps dynamically from geographic information. It specifies operations to retrieve a description of the maps offered by a server, to retrieve a map, and to query a server about features displayed on a map. ISO 19128:2005 is applicable to pictorial renderings of maps in a graphical format; it is not applicable to retrieval of actual feature data or coverage data values.

  • Standard
    83 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 19123:2005 defines a conceptual schema for the spatial characteristics of coverages. Coverages support mapping from a spatial, temporal or spatiotemporal domain to feature attribute values where feature attribute types are common to all geographic positions within the domain. A coverage domain consists of a collection of direct positions in a coordinate space that may be defined in terms of up to three spatial dimensions as well as a temporal dimension. Examples of coverages include rasters, triangulated irregular networks, point coverages and polygon coverages. Coverages are the prevailing data structures in a number of application areas, such as remote sensing, meteorology and mapping of bathymetry, elevation, soil and vegetation.
ISO 19123:2005 defines the relationship between the domain of a coverage and an associated attribute range. The characteristics of the spatial domain are defined whereas the characteristics of the attribute range are not part of ISO 19123:2005.

  • Standard
    73 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 19133:2005 describes the data types, and operations associated with those types, for the implementation of tracking and navigation services. It is designed to specify web services that can be made available to wireless devices through web-resident proxy applications, but is not restricted to that environment.

  • Standard
    150 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Amendment
    8 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Amendment
    6 pages
    English language
    sale 10% off
    e-Library read for
    1 day

N/A

  • Standard
    64 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    61 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Amendment
    9 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Amendment
    6 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Amendment
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Amendment
    8 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a conceptual schema for locations relative to a one-dimensional object as
measurement along (and optionally offset from) that object. It defines a description of the data and
operations required to use and support linear referencing.
This document is applicable to transportation, utilities, environmental protection, location-based
services and other applications which define locations relative to linear objects. For ease of reading,
most examples discussed in this document come from the transportation domain.

  • Standard
    109 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    102 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Amendment
    10 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Amendment
    10 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a schema for feature concept dictionaries to be established and managed as
registers. It does not specify schemas for feature catalogues or for the management of feature catalogues
as registers. However, as feature catalogues are often derived from feature concept dictionaries, this
document does specify a schema for a hierarchical register of feature concept dictionaries and feature
catalogues. These registers are in accordance with ISO 19135-1.

  • Standard
    58 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    40 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 19106:2004 is intended to define the concept of a profile of the ISO geographic information standards developed by ISO/TC 211 and to provide guidance for the creation of such profiles. Only those components of specifications that meet the definition of a profile contained herein can be established and managed through the mechanisms described in this International Standard. These profiles can be standardized internationally using the ISO standardization process. This document also provides guidance for establishing, managing, and standardizing at the national level (or in some other forum).

  • Standard
    40 pages
    English language
    sale 10% off
    e-Library read for
    1 day