This document specifies field survey methods for measuring a) airborne sound insulation between rooms, b) impact sound insulation of floors, c) airborne sound insulation of façades, and d) sound pressure levels in rooms caused by service equipment. The methods described in this document are applicable for measurements in rooms of dwellings or in rooms of comparable size with a maximum of 150 m3. For airborne sound insulation, impact sound insulation and façade sound insulation the method gives values which are (octave band) frequency dependent. They can be converted into a single number characterising the acoustical performances by application of ISO 717-1 and ISO 717-2. For heavy/soft impact sound insulation, the results also are given as A-weighted maximum impact sound pressure level. For service equipment sound the results are given directly in A - or C -weighted sound pressure levels.

  • Standard
    33 pages
    English language
    sale 15% off
  • Standard
    34 pages
    French language
    sale 15% off
  • Draft
    33 pages
    English language
    sale 15% off
  • Draft
    34 pages
    French language
    sale 15% off
  • Standard
    24 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    23 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies test requirements for the laboratory measurement of the sound insulation of
building elements and products, including detailed requirements for the preparation and mounting of
the test elements, and for the operating and test conditions. It also specifies the applicable quantities,
and provides additional test information for reporting.
The general procedures for airborne and impact sound insulation measurements are given in
ISO 10140-2 and ISO 10140-3, respectively.

  • Standard
    63 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    58 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies laboratory test facilities and equipment for sound insulation measurements of
building elements, such as:
— components and materials;
— building elements;
— technical elements (small building elements);
— sound insulation improvement systems.
It is applicable to laboratory test facilities with suppressed radiation from flanking elements and
structural isolation between source and receiving rooms.
This document specifies qualification procedures for use when commissioning a new test facility
with equipment for sound insulation measurements. It is intended that these procedures be repeated
periodically to ensure that there are no issues with the equipment and the test facility.

  • Standard
    48 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    45 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the basic measurement procedures for airborne and impact sound insulation
of building elements in laboratory test facilities.

  • Standard
    21 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies test requirements for the laboratory measurement of the sound insulation of building elements and products, including detailed requirements for the preparation and mounting of the test elements, and for the operating and test conditions. It also specifies the applicable quantities, and provides additional test information for reporting. The general procedures for airborne and impact sound insulation measurements are given in ISO 10140‑2 and ISO 10140-3, respectively.

  • Standard
    54 pages
    English language
    sale 15% off
  • Standard
    57 pages
    French language
    sale 15% off
  • Draft
    53 pages
    English language
    sale 15% off
  • Draft
    58 pages
    French language
    sale 15% off

This document provides technical guidance to achieve acoustic quality of open office spaces to support dialogue and formal commitment between the various stakeholders involved in the planning, design, construction or layout of open-plan workspaces: end customers, project owners, prescribers, consultants, etc. It is applicable to all open-plan offices in which the following activities are performed: —   Space type 1: activity not known yet – vacant floor plate; —   Space type 2: activity mainly focusing on outside of the room communication (by telephone/audio/video); —   Space type 3: activity mainly based on collaboration between people at the nearest workstations; —   Space type 4: activity based on a small amount of collaborative work; —   Space type 5: activity that can involve receiving public; —   Space type 6: combining activities within the same space. More specifically, this document applies to refitting projects of existing business sites (renovation and/or change or add activities) and layout projects for new spaces and spaces delivered unfurnished. It covers both the activities and the operations of the following stakeholders: —   end customers: diagnosis, survey, expression of needs in keeping with their knowledge in the area of acoustics; —   project owners: drafting contract specifications; —   project management companies (architects, acousticians, ergonomists, economists and consulting engineers): indicating the performance of acoustic solutions and the layout principles used to achieve the result expressed in the specifications; —   building traders: reaching a clear and verifiable target with respect to the choices of materials and implementation; —   Building developer: promoting indoor environmental quality, including acoustic comfort, in estate operations in order to use it as a competitive element; —   specialists in occupational health, safety and quality; —   expert assessments and consultancy.

  • Standard
    39 pages
    English language
    sale 15% off
  • Standard
    41 pages
    French language
    sale 15% off
  • Draft
    39 pages
    English language
    sale 15% off
  • Draft
    41 pages
    French language
    sale 15% off

This document describes criteria and procedures for acoustic classification of dwellings. The purpose of this document is to make it easier for developers to specify a classified level of acoustic quality for a dwelling, and help users and builders to be informed about the acoustic conditions and define increased acoustic quality. The document can also be applied as a general tool to characterize the quality of the existing housing stock and includes provisions for classifying the acoustic quality before and after renovation has taken place. By the acoustic quality for a dwelling is understood the quality of the acoustic performances typically included in building regulations, e.g. sound insulation towards neighbouring premises and road traffic as well as sound from service equipment. Sound insulation and room acoustics internally in a dwelling are not included in the acoustic classes defined. This document does not have a legal status in a country, unless decided by its own authorities. However, an additional purpose of this document is to help national authorities and standardization organisations to develop or revise national building regulations and acoustic classification schemes. For the purpose of this document, the term ”dwellings” refers to detached and attached dwelling-houses, buildings with several flats as well as individual dwellings, and a dwelling is the living space for a household.

  • Technical specification
    16 pages
    English language
    sale 15% off
  • Draft
    16 pages
    English language
    sale 15% off

This document specifies laboratory methods for measuring the impact sound insulation of floor assemblies. The test results can be used to compare the sound insulation properties of building elements, classify elements according to their sound insulation capabilities, help design building products which require certain acoustic properties and estimate the in situ performance in complete buildings. The measurements are performed in laboratory test facilities in which sound transmission via flanking paths is suppressed. The results of measurements made in accordance with this document are not applicable directly to the field situation without accounting for other factors affecting sound insulation, such as flanking transmission, boundary conditions, and loss factor. A test method is specified that uses the standard tapping machine (see ISO 10140-5:2021, Annex E) to simulate impact sources like human footsteps when a person is wearing shoes. Alternative test methods, using a modified tapping machine or a heavy/soft impact source (see ISO 10140-5:2021, Annex F) to simulate impact sources with strong low frequency components, such as human footsteps (bare feet) or children jumping, are also specified. This document is applicable to all types of floors (whether heavyweight or lightweight) with all types of floor coverings. The test methods apply only to laboratory measurements.

  • Standard
    15 pages
    English language
    sale 15% off
  • Standard
    15 pages
    French language
    sale 15% off
  • Draft
    15 pages
    English language
    sale 15% off
  • Draft
    18 pages
    French language
    sale 15% off

This document specifies laboratory test facilities and equipment for sound insulation measurements of building elements, such as: —   components and materials; —   building elements; —   technical elements (small building elements); —   sound insulation improvement systems. It is applicable to laboratory test facilities with suppressed radiation from flanking elements and structural isolation between source and receiving rooms. This document specifies qualification procedures for use when commissioning a new test facility with equipment for sound insulation measurements. It is intended that these procedures be repeated periodically to ensure that there are no issues with the equipment and the test facility.

  • Standard
    39 pages
    English language
    sale 15% off
  • Standard
    40 pages
    French language
    sale 15% off
  • Draft
    39 pages
    English language
    sale 15% off
  • Draft
    42 pages
    French language
    sale 15% off

This document specifies the basic measurement procedures for airborne and impact sound insulation of building elements in laboratory test facilities.

  • Standard
    12 pages
    English language
    sale 15% off
  • Standard
    16 pages
    French language
    sale 15% off
  • Draft
    12 pages
    English language
    sale 15% off
  • Draft
    16 pages
    French language
    sale 15% off

This document specifies a laboratory method for measuring the airborne sound insulation of building products, such as walls, floors, doors, windows, shutters, façade elements, façades, glazing, small technical elements, for instance transfer air devices, airing panels (ventilation panels), outdoor air intakes, electrical raceways, transit sealing systems and combinations, for example walls or floors with linings, suspended ceilings or floating floors. The test results can be used to compare the sound insulation properties of building elements, classify elements according to their sound insulation capabilities, help design building products which require certain acoustic properties and estimate the in situ performance in complete buildings. The measurements are performed in laboratory test facilities in which sound transmission via flanking paths is suppressed. The results of measurements made in accordance with this document are not applicable directly to the field situation without accounting for other factors affecting sound insulation, such as flanking transmission, boundary conditions and total loss factor.

  • Standard
    14 pages
    English language
    sale 15% off
  • Standard
    15 pages
    French language
    sale 15% off
  • Draft
    14 pages
    English language
    sale 15% off
  • Draft
    14 pages
    French language
    sale 15% off

This document
a) defines single-number quantities for airborne sound insulation in buildings and of building
elements such as walls, floors, doors, and windows,
b) takes into consideration the different sound level spectra of various noise sources such as noise
sources inside a building and traffic outside a building, and
c) gives rules for determining these quantities from the results of measurements carried out in onethird-
octave or octave bands for example in accordance with ISO 10140-2 and ISO 16283-1.
The single-number quantities in accordance with this document are intended for rating airborne
sound insulation and for simplifying the formulation of acoustical requirements in building codes. An
additional single-number evaluation in steps of 0,1 dB is indicated for the expression of uncertainty
(except for spectrum adaptation terms). The required numerical values of the single-number quantities
are specified according to varying needs. The single-number quantities are based on results of
measurements in one-third-octave bands or octave bands.
For laboratory measurements made in accordance with ISO 10140-2, single-number quantities are
calculated using one-third-octave bands only.
The rating of results of measurements carried out over an enlarged frequency range is dealt with in
Annex B.

  • Standard
    34 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document
a) defines single-number quantities for impact sound insulation in buildings and of floors,
b) gives rules for determining these quantities from the results of measurements carried out in
one-third-octave bands in accordance with ISO 10140-3 and ISO 16283-2, and in octave bands in
accordance with that option in ISO 16283-2 for field measurements only,
c) defines single-number quantities for the impact sound reduction of floor coverings and floating
floors calculated from the results of measurements carried out in accordance with ISO 10140-3, and
d) specifies a procedure for evaluating the weighted reduction in impact sound pressure level by floor
coverings on lightweight floors.
The single-number quantities in accordance with this document are intended for rating impact
sound insulation and for simplifying the formulation of acoustical requirements in building codes. An
additional single-number evaluation in steps of 0,1 dB is indicated where it is needed for the expression
of uncertainty (except for spectrum adaptation terms). Numerical values of the single-number
quantities are specified where required for calculations.
The rating of measurements over an enlarged frequency range is given in Annex A.
A method for obtaining single-number quantities for bare heavy floors according to their performance
in combination with floor coverings is given in Annex B.
Example calculations of single-number quantities are given in Annex C.
The rating of measurements with a heavy and soft impact source (rubber ball) is given in Annex D.

  • Standard
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies procedures for assessing the measurement uncertainty of sound insulation in
building acoustics. It provides for
— a detailed uncertainty assessment;
— a determination of uncertainties by inter-laboratory tests;
— an application of uncertainties.
Furthermore, typical uncertainties are given for quantities determined according to ISO 10140 (all parts),
ISO 16283 (all parts) and ISO 717 (all parts).

  • Standard
    29 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a laboratory substitution method to determine the insertion loss without flow
of ducted, mainly absorbent, circular and rectangular silencers, as well as other duct elements for use
in ventilating and air-conditioning systems.
NOTE Laboratory measurement procedures for ducted silencers with superimposed flow are described in
ISO 7235[5].
This document is applicable to silencers where the design velocity does not exceed 15 m/s. As the
method does not include self-generated flow noise, this document is not suitable for tests on silencers
where this type of noise is of great importance for the evaluation of the silencer performance. As most
silencers, particularly in offices and dwelling, have design velocities below 15 m/s, this document can
often be a cost-efficient alternative to ISO 7235[5].
The insertion loss determined according to this document in a laboratory is not necessarily the same
as the insertion loss obtained in an installation in the field. Different sound and flow fields in the duct
yield different results. In this document, the sound field is dominated by plane wave modes. Due to the
use of regular test ducts, the results can include some flanking transmission via structural vibrations
in the duct walls that sets an upper limit to the insertion loss that can be determined.
This document is intended to be used for circular silencers with diameters of 80 mm to 2 000 mm or for
rectangular silencers with cross-sectional areas within the same range.

  • Standard
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a laboratory measurement method to determine noise radiated from a floor covering on a standard concrete floor when excited by a standard tapping machine.

  • Standard
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document a) defines single-number quantities for impact sound insulation in buildings and of floors, b) gives rules for determining these quantities from the results of measurements carried out in one-third-octave bands in accordance with ISO 10140-3 and ISO 16283-2, and in octave bands in accordance with that option in ISO 16283-2 for field measurements only, c) defines single-number quantities for the impact sound reduction of floor coverings and floating floors calculated from the results of measurements carried out in accordance with ISO 10140-3, and d) specifies a procedure for evaluating the weighted reduction in impact sound pressure level by floor coverings on lightweight floors. The single-number quantities in accordance with this document are intended for rating impact sound insulation and for simplifying the formulation of acoustical requirements in building codes. An additional single-number evaluation in steps of 0,1 dB is indicated where it is needed for the expression of uncertainty (except for spectrum adaptation terms). Numerical values of the single-number quantities are specified where required for calculations. The rating of measurements over an enlarged frequency range is given in Annex A. A method for obtaining single-number quantities for bare heavy floors according to their performance in combination with floor coverings is given in Annex B. Example calculations of single-number quantities are given in Annex C. The rating of measurements with a heavy and soft impact source (rubber ball) is given in Annex D.

  • Standard
    23 pages
    English language
    sale 15% off
  • Standard
    23 pages
    French language
    sale 15% off
  • Draft
    23 pages
    English language
    sale 15% off
  • Draft
    23 pages
    French language
    sale 15% off

This document a) defines single-number quantities for airborne sound insulation in buildings and of building elements such as walls, floors, doors, and windows, b) takes into consideration the different sound level spectra of various noise sources such as noise sources inside a building and traffic outside a building, and c) gives rules for determining these quantities from the results of measurements carried out in one-third-octave or octave bands for example in accordance with ISO 10140-2 and ISO 16283-1. The single-number quantities in accordance with this document are intended for rating airborne sound insulation and for simplifying the formulation of acoustical requirements in building codes. An additional single-number evaluation in steps of 0,1 dB is indicated for the expression of uncertainty (except for spectrum adaptation terms). The required numerical values of the single-number quantities are specified according to varying needs. The single-number quantities are based on results of measurements in one-third-octave bands or octave bands. For laboratory measurements made in accordance with ISO 10140-2, single-number quantities are calculated using one-third-octave bands only. The rating of results of measurements carried out over an enlarged frequency range is dealt with in Annex B.

  • Standard
    26 pages
    English language
    sale 15% off
  • Standard
    28 pages
    French language
    sale 15% off
  • Draft
    26 pages
    English language
    sale 15% off
  • Draft
    28 pages
    French language
    sale 15% off

ISO 10848 (all parts) specifies measurement methods to characterize the flanking transmission of one
or several building components. This document considers only laboratory measurements.
This part of ISO 10848 specifies measurement methods to be performed in a laboratory to characterize
the acoustic radiation of a building element when mechanically or acoustically excited. The measured
quantities can be used to compare products, or to express a requirement, or as input data for prediction
methods, such as ISO 12354-1 and -2.

  • Standard
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies how to calculate:
— the uncertainty of sound absorption coefficients and equivalent sound absorption areas measured
according to ISO 354;
— the uncertainty of the practical and weighted sound absorption coefficients determined according
to ISO 11654;
— the uncertainty of the object sound absorption coefficient according to ISO 20189; and
— the uncertainty of the single number rating determined according to EN 1793-1.
Furthermore, the use of uncertainties in reporting measured or weighted sound absorption coefficients
is explained.

  • Standard
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

EN-ISO 16283-2 specifies procedures to determine the impact sound insulation using sound pressure measurements with an impact source operating on a floor or stairs in a building. These procedures are intended for room volumes in the range from 10 m3 to 250 m3 in the frequency range from 50 Hz to 5 000 Hz. The test results can be used to quantify, assess and compare the impact sound insulation in unfurnished or furnished rooms where the sound field may or may not approximate to a diffuse field.

  • Standard
    53 pages
    English language
    sale 10% off
    e-Library read for
    1 day

EN-ISO 5135 establishes general rules for the acoustic testing of air-terminal devices, air-terminal units, dampers and valves used in air diffusion and air distribution systems in order to determine sound power levels as defined in ISO 3741.

  • Standard
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies measurement methods to characterize in the laboratory the acoustic radiation of a building element when it is directly excited by an airborne or structure-borne source. It is applicable to single-leaf and double-leaf elements (see ISO 12354-1:2017 Annex F, F2). The measured quantity can be used as input data for prediction methods, such as ISO 12354-1 and ISO 12354-2, to compare products, or to express a requirement.

  • Standard
    10 pages
    English language
    sale 15% off
  • Standard
    10 pages
    French language
    sale 15% off
  • Standard
    10 pages
    French language
    sale 15% off
  • Draft
    10 pages
    English language
    sale 15% off

This document specifies procedures to determine the impact sound insulation using sound pressure measurements with an impact source operating on a floor or stairs in a building. These procedures are intended for room volumes in the range from 10 m3 to 250 m3 in the frequency range from 50 Hz to 5 000 Hz. The test results can be used to quantify, assess and compare the impact sound insulation in unfurnished or furnished rooms where the sound field may or may not approximate to a diffuse field.

  • Standard
    44 pages
    English language
    sale 15% off
  • Standard
    45 pages
    French language
    sale 15% off
  • Draft
    44 pages
    English language
    sale 15% off

This document specifies a laboratory substitution method to determine the insertion loss without flow of ducted, mainly absorbent, circular and rectangular silencers, as well as other duct elements for use in ventilating and air-conditioning systems. NOTE Laboratory measurement procedures for ducted silencers with superimposed flow are described in ISO 7235[5]. This document is applicable to silencers where the design velocity does not exceed 15 m/s. As the method does not include self-generated flow noise, this document is not suitable for tests on silencers where this type of noise is of great importance for the evaluation of the silencer performance. As most silencers, particularly in offices and dwelling, have design velocities below 15 m/s, this document can often be a cost-efficient alternative to ISO 7235[5]. The insertion loss determined according to this document in a laboratory is not necessarily the same as the insertion loss obtained in an installation in the field. Different sound and flow fields in the duct yield different results. In this document, the sound field is dominated by plane wave modes. Due to the use of regular test ducts, the results can include some flanking transmission via structural vibrations in the duct walls that sets an upper limit to the insertion loss that can be determined. This document is intended to be used for circular silencers with diameters of 80 mm to 2 000 mm or for rectangular silencers with cross-sectional areas within the same range.

  • Standard
    8 pages
    English language
    sale 15% off
  • Standard
    9 pages
    French language
    sale 15% off

This document specifies a laboratory method to facilitate the comparison of furniture ensembles and enclosures with respect to their ability to reduce the speech level of the occupant speaking inside the product. In this method, the sound power level is measured in two scenarios: 1) without the product, and 2) with the product. During scenario 1), the test signal is produced by the sound source in an empty room while the product is absent. During scenario 2), the test signal is produced by the sound source inside the product in the occupant's position. Level reduction is the difference of the sound power levels measured in the two scenarios in 1/1-octave frequency bands from 125 Hz to 8 000 Hz. Speech level reduction is a single-number quantity that expresses the corresponding reduction in A-weighted sound power level of standard speech within the entire frequency range from 125 Hz to 8 000 Hz. The method is applicable for entire furniture ensembles or enclosures, which form a unity that serves one or several occupants, and which are also used to provide improved speech privacy. This method is not intended for single components used in workstations, such as a screen, a storage unit, a table, a luminaire, a cupboard, a bookshelf, a standard chair, a wall absorber or a ceiling absorber.

  • Standard
    14 pages
    English language
    sale 15% off
  • Standard
    15 pages
    French language
    sale 15% off
  • Draft
    14 pages
    English language
    sale 15% off

This document specifies how to calculate: — the uncertainty of sound absorption coefficients and equivalent sound absorption areas measured according to ISO 354; — the uncertainty of the practical and weighted sound absorption coefficients determined according to ISO 11654; — the uncertainty of the object sound absorption coefficient according to ISO 20189; and — the uncertainty of the single number rating determined according to EN 1793‑1. Furthermore, the use of uncertainties in reporting measured or weighted sound absorption coefficients is explained.

  • Standard
    8 pages
    English language
    sale 15% off
  • Standard
    8 pages
    French language
    sale 15% off
  • Draft
    8 pages
    English language
    sale 15% off

This document specifies procedures for assessing the measurement uncertainty of sound insulation in building acoustics. It provides for — a detailed uncertainty assessment; — a determination of uncertainties by inter-laboratory tests; — an application of uncertainties. Furthermore, typical uncertainties are given for quantities determined according to ISO 10140 (all parts), ISO 16283 (all parts) and ISO 717 (all parts).

  • Standard
    21 pages
    English language
    sale 15% off
  • Standard
    21 pages
    French language
    sale 15% off

This European Standard assigns sound insulation values to all transparent, translucent and opaque glass products, described in the European Standards for basic, special basic or processed glass products, when intended to be used in glazed assemblies in buildings, and which exhibit properties of acoustic protection, either as a prime intention or as a supplementary characteristic.
This document outlines the procedure, by which glass products may be rated, according to their acoustic performance which enables assessment of compliance with the acoustic requirements of buildings.
Rigorous technical analysis of measurement data remains an option, but this standard is intended to enable the derivation of simpler indices of performance, which can be adopted with confidence by non-specialists.
By adopting the principles of this standard the formulation of acoustic requirements in Building Codes and for product specification to satisfy particular needs for glazing is simplified.
It is recognised that the acoustic test procedures contained within EN ISO 140-1 and EN ISO 140-3 relate only to glass panes and their combinations. Although the same principles should be followed as closely as possible, it is inevitable that some compromises are necessary, because of the bulkier construction of other glazing types, e.g. glass blocks, paver units, channel-shaped glass, structural glazing and structural sealant glazing. Guidelines on how to adapt the test procedures for these glazing types are offered in Clause 4.
All the considerations of this standard relate to panes of glass/glazing alone. Incorporation of them into windows may cause changes in acoustic performance as a result of other influences, e.g. frame design, frame material, glazing material/method, mounting method, air tightness, etc. Measurements of the sound insulation of complete windows (glass and frame) may be undertaken to resolve such issues.

  • Standard
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard assigns sound insulation values to all transparent, translucent and opaque glass products, described in the European Standards for basic, special basic or processed glass products, when intended to be used in glazed assemblies in buildings, and which exhibit properties of acoustic protection, either as a prime intention or as a supplementary characteristic.
This document outlines the procedure, by which glass products may be rated, according to their acoustic performance which enables assessment of compliance with the acoustic requirements of buildings.
Rigorous technical analysis of measurement data remains an option, but this standard is intended to enable the derivation of simpler indices of performance, which can be adopted with confidence by non-specialists.
By adopting the principles of this standard the formulation of acoustic requirements in Building Codes and for product specification to satisfy particular needs for glazing is simplified.
It is recognised that the acoustic test procedures contained within EN ISO 140-1 and EN ISO 140-3 relate only to glass panes and their combinations. Although the same principles should be followed as closely as possible, it is inevitable that some compromises are necessary, because of the bulkier construction of other glazing types, e.g. glass blocks, paver units, channel-shaped glass, structural glazing and structural sealant glazing. Guidelines on how to adapt the test procedures for these glazing types are offered in Clause 4.
All the considerations of this standard relate to panes of glass/glazing alone. Incorporation of them into windows may cause changes in acoustic performance as a result of other influences, e.g. frame design, frame material, glazing material/method, mounting method, air tightness, etc. Measurements of the sound insulation of complete windows (glass and frame) may be undertaken to resolve such issues.

  • Standard
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies how screens, furniture and single objects intended for interior use are assessed with regard to sound absorption and specifies the evaluation of sound attenuation for floor screens. It also specifies under which circumstances various interior products for offices, schools and other public spaces are considered as plane absorbers or as discrete single objects. A product considered as a single object and intended for interior use is measured according to ISO 354 and evaluated by its equivalent sound absorption area or object sound absorption coefficient in octave bands. This document defines interior products and single objects and it comprises additional information regarding measurements and assessment of single objects. The sound absorption as specified in this document can be used to calculate: a) reverberation time characteristics in rooms; b) room acoustic parameters using ray tracing software.

  • Standard
    28 pages
    English language
    sale 15% off

The goal of this document is to indicate how to present the uncertainty data determined by EN ISO 12999-1 in a test report of the Sound reduction index R of a building product or a building system complying with EN ISO 717-1 and EN ISO 10140-2:2010, Figure B1.

  • Technical report
    6 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The purpose of this document is to indicate how to present the uncertainty data determined by EN ISO 12999-1 in a laboratory test report of the Sound reduction index R of a building product or a building system, determined in accordance with EN ISO 717-1 and EN ISO 10140-2:2010, Figure B.1. It is planned to include this information in EN ISO 10140-2.

  • Technical report
    6 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 10848 (all parts) specifies measurement methods to characterize the flanking transmission of one
or several building components.
This document specifies laboratory and field measurements of buildings for Type B elements (defined
in ISO 10848-1) when the junction has a substantial influence.
Laboratory measurements are used to quantify the performance of the junction with suppressed
flanking transmission from the laboratory structure. Field measurements are used to characterize
the in situ performance and it is not usually possible to suppress unwanted flanking transmission
sufficiently; hence, the results can only be considered representative of the performance of that junction
when installed in that particular building structure.
This document is referred to in ISO 10848-1:2017, 4.5 as being a supporting part to the frame document
and applies to Type B elements that are structurally connected as defined in ISO 10848-1.
The measured quantities can be used to compare different products, or to express a requirement, or as
input data for prediction methods, such as ISO 12354-1 and ISO 12354-2.
The relevant quantity to be measured is selected according to ISO 10848-1:2017, 4.5. The performance
of the building components is expressed either as an overall quantity for the combination of elements
and junction (such as Dn,f,ij and/or Ln,f,ij and/or Lne0,f,ij) or as the normalized direction-average velocity
level difference Dv,ij,n of a junction. Dn,f,ij, Ln,f,ij, Lne0,f,ij and Dv,ij,n depend on the actual dimensions of
the elements.

  • Standard
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 10848 (all parts) specifies measurement methods to characterize the flanking transmission of one
or several building components. These measurements are performed in a laboratory test facility or in
the field.
The performance of the building components is expressed either as an overall quantity for the
combination of elements and junction (such as the normalized flanking level difference and/or
normalized flanking impact sound pressure level) or as the vibration reduction index of a junction or
the normalized direction-average vibration level difference of a junction.
Two approaches are used for structure-borne sound sources in buildings, a normalized flanking
equipment sound pressure level and a transmission function that can be used to estimate sound
pressure levels in a receiving room due to structure-borne excitation by service equipment in a source
room. The former approach assumes that flanking transmission is limited to one junction (or no
junction if the element supporting the equipment is the separating element), and the latter considers
the combination of direct (if any) and all flanking transmission paths.
This document contains definitions, general requirements for test elements and test rooms, and
measurement methods. Guidelines are given for the selection of the quantity to be measured, depending
on the junction and the types of building elements involved. Other parts of ISO 10848 specify the
application for different types of junction and building elements.
The quantities characterizing the flanking transmission can be used to compare different products, or
to express a requirement, or as input data for prediction methods, such as ISO 12354-1 and ISO 12354-2.

  • Standard
    43 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 10848 (all parts) specifies measurement methods to characterize the flanking transmission of one
or several building components. This document considers only laboratory measurements.
The measured quantities can be used to compare different products, or to express a requirement, or
as input data for prediction methods, such as ISO 12354-1 and ISO 12354-2. However, the measured
quantities Dn,f, Ln,f and Lne0,f only represent the performance with the dimensions for the test specimens
described in this document.
This document is referred to in ISO 10848-1:2017, 4.5 as being a supporting part of the frame document.
It applies to Type B elements as defined in ISO 10848-1, such as suspended ceilings, access floors,
light uninterrupted façades or floating floors. The transmission from one room to another can occur
simultaneously through the test element and via the plenum (if any). For measurements made according
to this document, the total sound transmission is determined and it is not possible to separate the two
kinds of transmission.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 10848 (all parts) specifies measurement methods to characterize the flanking transmission of one
or several building components.
This document specifies laboratory and field measurements of buildings where at least one of the
elements that form the construction under test is a Type A element (defined in ISO 10848-1).
Laboratory measurements are used to quantify the performance of the junction with suppressed
flanking transmission from the laboratory structure. Field measurements are used to characterize
the in situ performance and it is not usually possible to suppress unwanted flanking transmission
sufficiently; hence, the results are primarily representative of the performance of that junction when
installed in that particular building structure.
The measured quantities can be used to compare different products, or to express a requirement, or as
input data for prediction methods, such as ISO 12354-1 and ISO 12354-2.

  • Standard
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This draft European Standard describes calculation models designed to estimate the airborne sound insulation between adjacent rooms in buildings, primarily using measured data which characterize direct or indirect flanking transmission by the participating building elements, and theoretically derived methods of sound propagation in structural elements.
A detailed model is described for calculation in frequency bands, in the frequency range 1/3 octave 100 - 3 150 Hz according to EN ISO 717-1, possibly extended down to 1/3 octave 50 Hz if element data and junction data are available (see Annex I); the single number rating can be determined from the calculation results. A simplified model with a restricted field of application is deduced from this, calculating directly the single number rating, using the single number ratings of the elements; a method to determine uncertainty is proposed for the simplified model (see Annex K).
This document describes the principles of the calculation scheme, lists the relevant quantities and defines its applications and restrictions. It is intended for acoustical experts and provides the framework for the development of application documents and tools for other users in the field of building construction, taking into account local circumstances.
The calculation models described use the most general approach for engineering purposes, with a clear link to measurable quantities that specify the performance of building elements. The known limitations of these calculation models are described in this document. Users should, however, be aware that other calculation models also exist, each with their own applicability and restrictions.
The models are based on experience with predictions for dwellings; they could also be used for other types of buildings provided the construction systems and dimensions of elements are not too different from those in dwellings.
The 2000 edition of this standard has been revised with greater details for application to lightweight constructions (typically steel or wood framed lightweight elements as opposed to heavier masonry or concrete elements). When the first edition of the standard was published, there was a necessity for giving tables of data; but now more experimental data are available, so some of these tables have been removed.

  • Standard
    102 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard – translation
    95 pages
    Slovenian language
    sale 10% off
    e-Library read for
    1 day

Revision of EN 12354-3 taking into account of N 510 "Results of the 5 years review of En 12354-3
and the report of WG 2 (N 520).
This document describes calculation models designed to estimate the airborne sound insulation between rooms in buildings, primarily using measured data which characterize direct or indirect flanking transmission by the participating building elements and theoretically derived methods of sound propagation in structural elements.
A detailed model is described for calculation in frequency bands ; the single number rating can be determined from the calculation results. A simplified model with a restricted field of application is deduced from this, calculating directly the single number rating, using the single number ratings of the elements.
This document describes the principles of the calculation scheme, lists the relevant quantities and defines its applications and restrictions. It is intended for acoustical experts and provides the framework for the development of application documents and tools for other users in the field of building construction, taking into account local circumstances.
The calculation models described use the most general approach for engineering purposes, with a clear link to measurable quantities that specify the performance of building elements. The known limitations of these calculation models are described in this document. Users should, however, be aware that other calculation models also exist, each with their own applicability and restrictions.
The models are based on experience with predictions for dwellings ; they could also be used for other types of buildings provided the construction systems and dimensions of elements are not too different from those in dwellings.

  • Standard
    37 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard – translation
    32 pages
    Slovenian language
    sale 10% off
    e-Library read for
    1 day

This draft European standard describes a calculation model for the sound power level radiated by the envelope of a building due to airborne sound inside that building, primarily by means of measured sound pressure levels inside the building and measured data which characterize the sound transmission by the relevant elements and openings in the building envelope. These sound power levels, together with those of other sound sources in or in front of the building envelope, form the basis for the calculation of the sound pressure level at a chosen distance from a building as a measure for the acoustic performance of buildings.
The prediction of the inside sound pressure level from knowledge of the indoor sound sources is outside the scope of this draft European standard.
The prediction of the outdoor sound propagation is outside the scope of this draft European standard.
NOTE   For simple propagation conditions an approach is given for the estimation of the sound pressure level in  the informative Annex E.
This draft European standard describes the principles of the calculation model, lists the relevant quantities and defines its applications and restrictions. It is intended for acoustical experts and provides the framework for the development of application documents and tools for other users in the field of building construction, taking into account local circumstances.
This revised edition has been updated mainly for normative references, and otherwise kept as it was in the first edition.

  • Standard
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard – translation
    30 pages
    Slovenian language
    sale 10% off
    e-Library read for
    1 day

This draft European Standard specifies calculation models designed to estimate the impact sound insulation between rooms in buildings, primarily on the bases of measured data which characterizes direct or indirect flanking transmission by the participating building elements and theoretically derived methods of sound propagation in structural elements.
A detailed model is described for calculation in frequency bands, in the frequency range 1/3 octave 100 Hz - 3 150 according to EN ISO 717 1, possibly extended down to 1/3 octave 50 Hz if element data and junction data are available (see Annex E); the single number rating of buildings can be determined from the calculation results. A simplified model with a restricted field of application is deduced from this, calculating directly the single number rating, using the single number ratings of the elements; the uncertainty on the apparent impact sound pressure level calculated using the simplified model can be determined according to the method described in prEN 12354 1:2016, Annex K (see Clause 5).
This draft European Standard describes the principles of the calculation scheme, lists the relevant quantities and defines its applications and restrictions. It is intended for acoustical experts and provides the framework for the development of application documents and tools for other users in the field of building construction, taking into account local circumstances.
The calculation models described use the most general approach for engineering purposes, with a clear link to measurable quantities that specify the performance of building elements. The known limitations of these calculation models are described in this standard. Users should, however, be aware that other calculation models also exist, each with their own applicability and restrictions.
The models are based on experience with prediction for dwellings; they could also be used for other types of buildings provided the construction systems and dimensions of elements are not too different from those in dwellings.
The 2000 edition of this standard has been revised with greater details for application to lightweight constructions (typically steel or wood framed lightweight elements as opposed to heavier masonry or concrete elements).

  • Standard
    54 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard – translation
    53 pages
    Slovenian language
    sale 10% off
    e-Library read for
    1 day

ISO 10848 (all parts) specifies measurement methods to characterize the flanking transmission of one or several building components.
ISO 10848-4:2017 specifies laboratory and field measurements of buildings where at least one of the elements that form the construction under test is a Type A element (defined in ISO 10848‑1).
Laboratory measurements are used to quantify the performance of the junction with suppressed flanking transmission from the laboratory structure. Field measurements are used to characterize the in situ performance and it is not usually possible to suppress unwanted flanking transmission sufficiently; hence, the results are primarily representative of the performance of that junction when installed in that particular building structure.
The measured quantities can be used to compare different products, or to express a requirement, or as input data for prediction methods, such as ISO 12354‑1 and ISO 12354‑2.

  • Standard
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 10848 (all parts) specifies measurement methods to characterize the flanking transmission of one or several building components.
ISO 10848-3:2017 specifies laboratory and field measurements of buildings for Type B elements (defined in ISO 10848‑1) when the junction has a substantial influence.
Laboratory measurements are used to quantify the performance of the junction with suppressed flanking transmission from the laboratory structure. Field measurements are used to characterize the in situ performance and it is not usually possible to suppress unwanted flanking transmission sufficiently; hence, the results can only be considered representative of the performance of that junction when installed in that particular building structure.
ISO 10848-3:2017 is referred to in ISO 10848‑1:2017, 4.5 as being a supporting part to the frame document and applies to Type B elements that are structurally connected as defined in ISO 10848‑1.
The measured quantities can be used to compare different products, or to express a requirement, or as input data for prediction methods, such as ISO 12354‑1 and ISO 12354‑2.
The relevant quantity to be measured is selected according to ISO 10848‑1:2017, 4.5. The performance of the building components is expressed either as an overall quantity for the combination of elements and junction (such as Dn,f,ij and/or Ln,f,ij and/or Lne0,f,ij) or as the normalized direction-average velocity level difference of a junction. Dn,f,ij, Ln,f,ij, Lne0,f,ij and depend on the actual dimensions of the elements.

  • Standard
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 10848 (all parts) specifies measurement methods to characterize the flanking transmission of one or several building components. These measurements are performed in a laboratory test facility or in the field.
The performance of the building components is expressed either as an overall quantity for the combination of elements and junction (such as the normalized flanking level difference and/or normalized flanking impact sound pressure level) or as the vibration reduction index of a junction or the normalized direction-average vibration level difference of a junction.
Two approaches are used for structure-borne sound sources in buildings, a normalized flanking equipment sound pressure level and a transmission function that can be used to estimate sound pressure levels in a receiving room due to structure-borne excitation by service equipment in a source room. The former approach assumes that flanking transmission is limited to one junction (or no junction if the element supporting the equipment is the separating element), and the latter considers the combination of direct (if any) and all flanking transmission paths.
ISO 10848-1:2017 contains definitions, general requirements for test elements and test rooms, and measurement methods. Guidelines are given for the selection of the quantity to be measured, depending on the junction and the types of building elements involved. Other parts of ISO 10848 specify the application for different types of junction and building elements.
The quantities characterizing the flanking transmission can be used to compare different products, or to express a requirement, or as input data for prediction methods, such as ISO 12354‑1 and ISO 12354‑2.

  • Standard
    43 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 10848 (all parts) specifies measurement methods to characterize the flanking transmission of one or several building components. This document considers only laboratory measurements.
The measured quantities can be used to compare different products, or to express a requirement, or as input data for prediction methods, such as ISO 12354‑1 and ISO 12354‑2. However, the measured quantities Dn,f, Ln,f and Lne0,f only represent the performance with the dimensions for the test specimens described in this document.
ISO 10848-2:2017 is referred to in ISO 10848‑1:2017, 4.5 as being a supporting part of the frame document. It applies to Type B elements as defined in ISO 10848‑1, such as suspended ceilings, access floors, light uninterrupted façades or floating floors. The transmission from one room to another can occur simultaneously through the test element and via the plenum (if any). For measurements made according to this document, the total sound transmission is determined and it is not possible to separate the two kinds of transmission.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    14 pages
    English language
    sale 15% off
  • Standard
    14 pages
    French language
    sale 15% off