This document specifies a method for the determination of the time-weighted average mass concentration of sulfuric acid and phosphoric acid in workplace air by ion chromatography. The anions are detected by conductivity. The method is applicable to the personal sampling of airborne particles, as defined in ISO 7708, and to static (area) sampling. The method does not apply to the determination of sulfur trioxide. The procedure does not differentiate between the acids and their corresponding salts if both are present in the workplace air. The procedure does not differentiate between phosphoric acid and diphosphorus pentoxide (phosphoric anhydride) if both are present in the workplace air.

  • Standard
    22 pages
    English language
    sale 15% off
  • Standard
    23 pages
    French language
    sale 15% off

This document specifies performance requirements and test methods under prescribed laboratory conditions for the evaluation of diffusive samplers (see Reference [1]) and of procedures using these samplers for the determination of gases and vapours in workplace atmospheres (see Reference [2]). This document is applicable to diffusive samplers and measuring procedures using these samplers, such as ISO 16200‑2 and ISO 16017‑2, in which sampling and analysis are carried out in separate stages. This document is not applicable to — diffusive samplers which are used for the direct determination of concentrations, and — diffusive samplers which rely on sorption into a liquid. This document addresses requirements for method developers and/or manufacturers. NOTE For the purposes of this document a manufacturer can be any commercial or non-commercial entity.

  • Standard
    39 pages
    English language
    sale 15% off
  • Standard
    43 pages
    French language
    sale 15% off
  • Draft
    39 pages
    English language
    sale 15% off
  • Standard
    43 pages
    English language
    sale 15% off
  • Standard
    46 pages
    French language
    sale 15% off
  • Draft
    44 pages
    English language
    sale 15% off
  • Draft
    46 pages
    French language
    sale 15% off

IEC 62990-2:2021 gives guidance on the selection, installation, use and maintenance of electrical equipment used for the measurement of toxic gases and vapours in workplace atmospheres. The primary purpose of such equipment is to ensure safety of personnel and property by providing an indication of the concentration of a toxic gas or vapour and warning of its presence. This document is applicable to equipment whose purpose is to provide an indication, alarm or other output function to give a warning of the presence of a toxic gas or vapour in the atmosphere and in some cases to initiate automatic or manual protective actions. It is applicable to equipment in which the sensor automatically generates an electrical signal when gas is present. For the purposes of this document, equipment includes: a) fixed equipment; b) transportable equipment, and c) portable equipment. This document is intended to cover equipment defined within IEC 62990-1, but can provide useful information for equipment not covered by that document.

  • Standard
    122 pages
    English language
    sale 15% off
  • Draft
    57 pages
    English language
    sale 15% off

The method described in this document quantifies the absolute exposure to mineral oil vapours and droplets, within a concentration range from 0,5 mg/m3 to 125 mg/m3, in the inhalable fraction of the workplace air. This document contains comprehensive information and instructions on the equipment and chemicals to be used. This method is applicable for water soluble oils and metal working fluids.

  • Standard
    24 pages
    English language
    sale 15% off
  • Draft
    24 pages
    English language
    sale 15% off

This document specifies performance requirements and test methods under prescribed laboratory conditions for the evaluation of pumped samplers used in conjunction with an air sampling pump and of procedures using these samplers for the determination of gases and vapours in workplace atmospheres. This document addresses requirements for method developers and/or manufacturers. NOTE 1 For the purposes of this document, a manufacturer can be any commercial or non-commercial entity. NOTE 2 For the sampling of semi-volatile compounds which can appear as a mixture of vapours and airborne particles in workplace atmospheres see EN 13936. This document is applicable to pumped samplers and measuring procedures using these samplers in which sampling and analysis are carried out in separate stages. This document is not applicable to: — pumped samplers which are used for the direct determination of concentrations, for example, length-of-stain detector tubes; — samplers which rely on sorption into a liquid, and subsequent analysis of the solution (bubblers).

  • Standard
    37 pages
    English language
    sale 15% off
  • Standard
    42 pages
    French language
    sale 15% off
  • Draft
    37 pages
    English language
    sale 15% off
  • Draft
    42 pages
    French language
    sale 15% off

This document specifies a method for collecting samples of airborne particulate matter for subsequent determination of metals and metalloids using inductively coupled plasma — atomic emission spectrometry (ICP-AES). Samples obtained using the method described herein can also be subsequently analysed for elemental composition by other instrumental methods, such as atomic absorption spectrometry (AAS) or inductively coupled plasma mass spectrometry (ICP-MS). The method is not applicable to the sampling of mercury, which is present in air in the vapour phase at ambient temperatures; inorganic compounds of metals and metalloids that are permanent gases, e.g. arsine (AsH3); or inorganic compounds of metals and metalloids that are present in the vapour phase at ambient temperatures, e.g. arsenic trioxide (As2O3). NOTE Although the method does not describe a means of collecting inorganic compounds of metals and metalloids that are present in the vapour phase, in most instances this is relatively easily to achieve by using a back-up filter which has been pre-treated to trap the compound(s) of interest, e.g. a back-up paper pad impregnated with sodium carbonate is suitable for collecting arsenic trioxide (see ISO 11041[2]). The method is applicable to personal sampling of the inhalable, thoracic or respirable fraction of airborne particles, as defined in ISO 7708, and to static sampling. This document excludes sampling of surfaces or bulk materials. Guidance on collection of samples for surfaces may be found in ASTM D7659[7].

  • Standard
    17 pages
    English language
    sale 15% off
  • Standard
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    18 pages
    French language
    sale 15% off

This document specifies a number of suitable methods for preparing test solutions from samples of airborne particulate matter collected using the method specified in ISO 15202‑1, for subsequent determination of metals and metalloids by ICP‑AES using the method specified in ISO 15202‑3. It contains information about the applicability of the methods with respect to the measurement of metals and metalloids for which limit values have been set. The methods can also be used in the measurement of some metals and metalloids for which limit values have not been set but no information about its applicability is provided in this case. NOTE The sample preparation methods described in this document are generally suitable for use with analytical techniques other than ICP‑AES, e.g. atomic absorption spectrometry (AAS) by ISO 8518[5] and ISO 11174[10] and inductively coupled plasma mass spectrometry (ICP‑MS) by ISO 30011[11]. The method specified in Annex B is applicable when making measurements for comparison with limit values for soluble metal or metalloid compounds. One or more of the sample dissolution methods specified in Annexes C through H are applicable when making measurements for comparison with limit values for total metals and metalloids and their compounds. Information on the applicability of individual methods is given in the scope of the annex in which the method is specified. The following is a non-exclusive list of metals and metalloids for which limit values have been set (see References [14] and [15]) and for which one or more of the sample dissolution methods specified in this document are applicable. However, there is no information available on the effectiveness of any of the specified sample dissolution methods for those elements in italics. Aluminium Calcium Magnesium Selenium Tungsten Antimony Chromium Manganese Silver Uranium Arsenic Cobalt Mercury Sodium Vanadium Barium Copper Molybdenum Strontium Yttrium Beryllium Hafnium Nickel Tantalum Zinc Bismuth Indium Phosphorus Tellurium Zirconium Boron Iron Platinum Thallium Caesium Lead Potassium Tin Cadmium Lithium Rhodium Titanium ISO 15202 is not applicable to the determination of elemental mercury or arsenic trioxide, since mercury vapour and arsenic trioxide vapour are not collected using the sampling method specified in ISO 15202‑1.

  • Standard
    54 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    54 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    49 pages
    English language
    sale 15% off
  • Standard
    55 pages
    French language
    sale 15% off

This document specifies a method for the sampling and analysis of airborne organic isocyanates in workplace air. This document is applicable to a wide range of organic compounds containing isocyanate groups, including monofunctional isocyanates (e.g. phenyl isocyanate), diisocyanate monomers [e.g. 1,6-hexamethylene diisocyanate (HDI), toluene diisocyanate (TDI), 4,4′-diphenylmethane diisocyanate (MDI), and isophorone diisocyanate (IPDI)], prepolymers (e.g. the biuret and isocyanurate of HDI), as well as chromatographable intermediate products formed during production or thermal breakdown of polyurethane. In mixed systems of HDI and IPDI products, it is impossible to identify and quantify low levels of IPDI monomer using this document, due to coelution of IPDI monomer with HDI-uretidinedione. It is known that the method underestimates the oligomer in MDI-based products. Total isocyanate group (NCO) is underestimated in MDI-based products by about 35 % as compared to dibutylamine titration. The method has been successfully modified to be used with LC-MS-MS for TDI monomer using an isocratic 70 % acetonitrile/30 % 10 mM ammonium formate mobile phase. The useful range of the method, expressed in moles of isocyanate group per species per sample, is approximately 1 × 10−10 to 2 × 10−7. The instrumental detection limit for the monomers using both ultraviolet (UV) detection and fluorescence (FL) detection is about 2 ng monomer per sample. The useful limit of detection for the method using reagent impregnated filters is about 10 ng to 20 ng monomer per sample for both UV and FL detection. For a 15 l sample, this corresponds to 0,7 µg/m−3 to 1,4 µg/m−3. For impinger samples, which require solid phase extraction, experience has shown that the useful limit of detection is about 30 ng to 80 ng monomer per sample.

  • Standard
    30 pages
    English language
    sale 15% off
  • Standard
    36 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies performance requirements and test methods for the evaluation of procedures for measuring metals and metalloids in airborne particles sampled onto a suitable collection substrate. This document specifies a method for estimating the uncertainties associated with random and systematic errors and combining them to calculate the expanded uncertainty of the measuring procedure as a whole, as prescribed in ISO 20581. This document is applicable to measuring procedures in which sampling and analysis is carried out in separate stages, but it does not specify performance requirements for collection, transport and storage of samples, since these are addressed in EN 13205-1 and ISO 15767. This document does not apply to procedures for measuring metals or metalloids present as inorganic gases or vapours (e.g. mercury, arsenic) or to procedures for measuring metals and metalloids in compounds that could be present as a particle/vapour mixture (e.g. arsenic trioxide).

  • Standard
    37 pages
    English language
    sale 15% off
  • Standard
    39 pages
    French language
    sale 15% off

This document is a standard for the analysis by Fourier-Transform Infrared (FTIR) of respirable crystalline silica (RCS) in samples of air collected on collection substrates (i.e. filters or foams). Three analytical approaches are described for whom the dust from the sample collection substrate is a) analysed directly on sampled filter, b) recovered, treated and deposited onto another filter for analysis, or c) recovered, treated and pressed into a potassium bromide (KBr) pellet for analysis. This document provides information on the instrumental parameters, the sensitivity of different sampling apparatus, the use of different filters and sample treatment to remove interference. In this document the expression RCS includes the most common polymorphs quartz and cristobalite. This document excludes the less common polymorphs of crystalline silica, such as tridymite. Under certain circumstances (i.e. low filter dust loads, low silica content), the analytical approach described in this method cannot fulfil the expanded uncertainty requirements of ISO 20581. Guidance for calculation of uncertainty for measurements of RCS is given in ISO 24095.

  • Standard
    30 pages
    English language
    sale 15% off
  • Standard
    36 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO/TS 21623:2017 describes a systematic approach to assess potential occupational risks related to nano-objects and their agglomerates and aggregates (NOAA) arising from the production and use of nanomaterials and/or nano-enabled products. This approach provides guidance to identify exposure routes, exposed body parts and potential consequences of exposure with respect to skin uptake, local effects and inadvertent ingestion. ISO/TS 21623:2017 also considers occupational use of products containing NOAA by professionals, e.g. beauticians applying personal care products, cosmetics or pharmaceuticals, but does not apply to deliberate or prescribed exposure to these products by consumers. ISO/TS 21623:2017 is aimed at occupational hygienists, researchers and other safety professionals to assist recognition of potential dermal exposure and its potential consequences.

  • Technical specification
    34 pages
    English language
    sale 15% off

ISO 20581:2016 specifies general performance requirements for procedures for the determination of the concentration of chemical agents in workplace atmospheres. These requirements apply to all steps of measuring procedures regardless of the physical form of the chemical agent (gas, vapour, airborne particles), measuring procedures with separate sampling and analytical methods, and direct-reading devices. ISO 20581:2016 specifies requirements that have to be fulfilled by measuring procedures when tested under prescribed laboratory conditions due to a wide range of environmental conditions encountered in practice.

  • Standard
    16 pages
    English language
    sale 15% off

ISO 18158:2016 specifies terms and definitions that are related to the assessment of workplace exposure (see 2.1.5.1) to chemical and biological agents (see 2.1.1.1). These are either general terms or are specific to physical and chemical processes of air sampling, the analytical method (see 2.3.3), or method performance. The terms included are those that have been identified as being fundamental because their definition is necessary to avoid ambiguity and ensure consistency of use. ISO 18158:2016 is applicable to all International Standards, ISO Technical Reports, ISO Technical Specifications, and ISO Guides related to workplace atmospheres.

  • Standard
    29 pages
    English language
    sale 15% off
  • Standard
    34 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    34 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 17733:2015 specifies a procedure for determination of the time-weighted average mass concentration of mercury vapour and inorganic mercury compounds in workplace air. Mercury vapour is collected on a solid sorbent using either a diffusive badge or a pumped sorbent tube. Particulate inorganic mercury compounds, if present, are collected on a quartz fibre filter. Samples are analysed using either cold vapour atomic absorption spectrometry (CVAAS) or cold vapour atomic fluorescence spectrometry (CVAFS) after acid dissolution of the mercury collected. This International Standard is applicable to the assessment of personal exposure to mercury vapour and/or particulate inorganic mercury compounds in air for comparison with long-term or short-term exposure limits for mercury and inorganic mercury compounds and for static (area) sampling. The lower limit of the working range of the procedure is the quantification limit. This is determined by the sampling and analysis methods selected by the user, but it is typically in the range 0,01 µg to 0,04 µg of mercury (see 13.1). The upper limit of the working range of the procedure is determined by the capacity of the diffusive badge, sorbent tube or filter used for sample collection, but it is at least 30 µg of mercury (see 13.2). The concentration range of mercury in air for which this International Standard is applicable is determined in part by the sampling method selected by the user, but it is also dependent on the air sample volume. The diffusive badge method is not applicable to measurements of mercury vapour when chlorine is present in the atmosphere, e.g. in chloralkali works, but chlorine does not interfere with the pumped sorbent tube method (see 13.12.1). Gaseous organomercury compounds could cause a positive interference in the measurement of mercury vapour (see 13.12.2). Similarly, particulate organomercury compounds and gaseous organomercury compounds adsorbed onto airborne particles could cause a positive interference in the measurement of particulate inorganic mercury compounds (see 13.12.3).

  • Standard
    54 pages
    English language
    sale 15% off
  • Standard
    61 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    60 pages
    French language
    sale 15% off
  • Standard
    60 pages
    French language
    sale 15% off

This part of ISO 16258 specifies the analysis of respirable crystalline silica (RCS) in samples of air
collected on 25 mm-filters by X-ray diffraction, when using an analytical approach where the dust on
the air sample filter is directly analysed by the instrument. This part of ISO 16258 includes information
on the instrumental parameters, sensitivity of different sampling apparatus, uses of different filters
and correction for absorption effects. In this part of ISO 16258, the expression RCS includes the most
common polymorphs quartz and cristobalite. The less common polymorphs of crystalline silica, such
as tridymite, are not included within the scope of this part of ISO 16258 because a standard reference
material is not available. Under certain circumstances (i.e. low filter dust loads, low silica content), the
analytical approach described in this method may not fulfil the expanded uncertainty requirements of
EN 482.[5] Guidance for calculation of uncertainty for measurements of RCS is given in ISO 24095.

  • Standard
    26 pages
    English language
    sale 15% off
  • Standard
    32 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    27 pages
    French language
    sale 15% off

ISO 16258-2:2015 specifies the analysis of RCS in samples of air collected on collection substrates (i.e. filters or foams) by X-ray diffraction, when using an analytical approach where dust from the sample collection substrate (i.e. filter or foam) is recovered, treated and deposited on another filter for analysis by the instrument. This part of ISO 16258 includes information on the instrumental parameters, sensitivity of different sampling apparatus, the use of different filters, sample treatment to remove interference and correction for absorption effects. In this part of ISO 16258, the expression respirable crystalline silica includes the most common polymorphs quartz and cristobalite. The less common polymorphs of crystalline silica, such as tridymite, are not included within the scope of this part of ISO 16258 because a standard reference material is not available. Under certain circumstances (i.e. low filter dust loads, low silica content), the analytical approach described in this method may not fulfil the expanded uncertainty requirements of EN 482[7]. Guidance for calculation of uncertainty for measurements of RCS is given in ISO 24095.

  • Standard
    30 pages
    English language
    sale 15% off
  • Standard
    36 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    33 pages
    French language
    sale 15% off

ISO 17621:2015 specifies requirements and test methods under prescribed laboratory conditions for length-of-stain detector tubes and their associated pump (detector tube measurement system) used for short-term measurements of the concentration of specified chemical agents in workplace air. ISO 17621:2015 is not applicable to measurements made to demonstrate compliance with long-term limit values to personal exposure with a reference period of more than 15 min.

  • Standard
    25 pages
    English language
    sale 15% off
  • Standard
    25 pages
    French language
    sale 15% off

ISO 8672:2014 specifies the determination of the number concentration of airborne inorganic fibres by phase contrast optical microscopy using the membrane filter method in workplace atmospheres, as defined by the counting criteria given in this document.

  • Standard
    31 pages
    English language
    sale 15% off
  • Standard
    36 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 17734-2:2013 gives general guidance for the sampling and analysis of airborne amines and aminoisocyanates in workplace air. It is strongly recommended that the determination of amines and aminoisocyanates is made together with the determination of isocyanates in air, using DBA as a reagent (see ISO 17734-1). The method can be used for simultaneous determinations of amines, such as 4,4'-methylenediphenyldiamine (4,4'-MDA), 2,4- and 2,6-toluenediamine (2,4- and 2,6-TDA), and 1,6-hexamethylenediamine (1,6-HDA), and compounds containing both isocyanate and amine groups, such as 4,4'-methylenediphenyl aminoisocyanate (4,4'-MAI), 2,4-, 4,2-, and 2,6-toluene aminoisocyanate (2,4-, 4,2-, and 2,6-TAI), and 1,6-hexamethylene aminoisocyanate (1,6-HAI). The method is suitable for collecting amines and aminoisocyanates in both the gas and particle phases. The instrumental detection limit for the amines is about 5 nmol/sample and for the aminoisocyanate, it is about 0,3 nmol/sample. For a 15 l air sample, this corresponds to 0,4 ng⋅m?3 for TDA and 0,03 ng⋅m?3 for TAI.

  • Standard
    28 pages
    English language
    sale 15% off
  • Standard
    33 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 17734-1:2013 gives general guidance for the sampling and analysis of airborne isocyanates in workplace air. When amines and aminoisocyanates are suspected to be emitted (e.g. from thermal degradation of PUR), it is recommended that, in addition to isocyanates, the amines and aminoisocyanates in the air are determined, using DBA and ethyl chloroformate as reagents (see ISO 17734-2). The method is suitable for the determination of a wide range of different isocyanates in both the gas and particle phases. Typical monofunctional isocyanates that can be determined are isocyanic acid (ICA), methyl isocyanate (MIC), ethyl isocyanate (EIC), propyl isocyanate (PIC), butyl isocyanate (BIC), and phenyl isocyanate (PhI). Typical monomeric diisocyanates include 1,6-hexamethylene diisocyanate (HDI), 2,4- and 2,6-toluene diisocyanate (TDI), 4,4'-methylenediphenyl diisocyanate (MDI), 1,5-naphthyl diisocyanate (NDI), isophorone diisocyanate (IPDI), and 4,4'-dicyclohexylmethane diisocyanate (HMDI). Multifunctional isocyanates that can be determined are typically oligomers in polymeric MDI, biuret-, isocyanurate-, and allophanate-adducts, and prepolymeric forms of isocyanates. The instrumental detection limit for aliphatic isocyanates is about 5 nmol/sample and for aromatic isocyanates, it is about 0,2 nmol/sample. For a 15 l air sample, this corresponds to 0,6 ng∙m?3 for HDI and 0,02 ng∙m?3 for TDI. The useful range, for a 5 l air sample, of the method is approximately 0,001 µg∙m?3 to 200 mg∙m?3 for TDI.

  • Standard
    33 pages
    English language
    sale 15% off
  • Standard
    38 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 13137:2013 specifies performance requirements for battery powered pumps used for personal sampling of chemical and biological agents in workplace air. It also specifies test methods in order to determine the performance characteristics of such pumps under prescribed laboratory conditions. ISO 13137:2013 is applicable to battery powered pumps having a nominal volume flow rate above 10 ml ⋅ min−1, as used with combinations of sampler and collection substrate for sampling of gases, vapours, dusts, fumes, mists and fibres. ISO 13137:2013 is primarily intended for flow-controlled pumps.

  • Standard
    31 pages
    English language
    sale 15% off
  • Standard
    33 pages
    French language
    sale 15% off

ISO 17091:2013 specifies a method for the determination of the time-weighted average mass concentration of lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), and calcium dihydroxide [Ca(OH)2] in workplace air by collection of the particulate hydroxides on a filter and analysis of the corresponding cations using ion chromatography. For aerosol sampling, the method is applicable to the personal sampling of the inhalable fraction of airborne particles, as defined in ISO 7708, and to static (area) sampling. The method is applicable to the determination of masses of 0,005 mg to at least 2,5 mg of lithium per sample and 0,01 mg to at least 5 mg of sodium, potassium, and calcium per sample. The concentration range of particulate LiOH, NaOH, KOH, and Ca(OH)2 in air for which the measuring procedure is applicable is determined by the sampling method selected by the user. For a 1 m3 air sample, the working range is approximately 0,002 mg m−3 to at least 20 mg m−3 for all four hydroxides. For a 30 l air sample, the lower limit of the working range is approximately 0,1 mg m−3 for all four hydroxides. The procedure does not allow differentiation between the hydroxides and their corresponding salts if both are present in the air. If the cations are present alone in the form of hydroxides, the method is specific for these basic compounds. In other circumstances, the results obtained represent the highest concentration of the hydroxides that could be present in the sampled air.

  • Standard
    28 pages
    English language
    sale 15% off
  • Standard
    30 pages
    French language
    sale 15% off

This International Standard gives general guidance for the sampling and analysis of airborne toluene diisocyanate (TDI) in workplace atmospheres. The procedure specified in this International Standard is especially suitable for short (15 min) and long-term (4 h) sampling and analysis of 2,4- and 2,6-TDI vapours. The upper limit for this method is approximately 85 µg of TDI per sample. This is a conservative upper limit based on the requirement of maintaining a sufficient amount of reagent on the coated glass fibre filter while permitting a 4 h sample to be collected at 1 l/min from an atmosphere containing 50 nl/l of TDI. The quantitation limits for this method are 0,039 µg for 2,4-TDI and 0,034 μg for 2,6-TDI using a fluorescence detector. These limits, for a 15-min sample collected at 1 l/min, are equivalent to 0,36 nl/l for 2,4-TDI, and 0,32 nl/l for 2,6-TDI. For a 4 h sample collected at 1 l/min, the limits are equivalent to 0,022 nl/l for 2,4-TDI and 0,020 nl/l for 2,6-TDI. The commercial availability of the specified reagents, the use of common analytical instrumentation, and the current widespread use of the method make this standard method ideally suited for the determination of TDI in workplace environments.

  • Standard
    20 pages
    English language
    sale 15% off
  • Standard
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO/TR 17737 provides industrial hygienists, employers and workers with a broad overview of isocyanates, their uses in industry, methods of measurement and guidance on choosing the appropriate sampling strategy. While not all issues can be addressed here in detail, ISO/TR 17737 discusses areas of concern to alert the industrial hygienist, employer and worker involved with the use of isocyanates to the importance of sampling and the key issues involved in choosing a sampling strategy for their workplace, and directs them to seek further information on the topic(s) of concern.

  • Technical report
    10 pages
    English language
    sale 15% off
  • Technical report
    10 pages
    French language
    sale 15% off

ISO 13138:2012 specifies sampling conventions to define idealized samplers for estimating the deposition of non-volatile, non-hygroscopic, non-fibrous aerosols in five specific loci of the respiratory tract. The five loci consist of the anterior and posterior areas of the nasal passages, the ciliated and non-ciliated parts of the tracheobronchial area, and the alveolar (gas exchange) region. The conventions are separated into three independent sampling efficiencies defined in terms of thermodynamic diameter characterizing the diffusive (Brownian) motion of sub-micrometre particles and four efficiencies in terms of aerodynamic diameter 0,1 μm characterizing deposition by impaction, interception or gravitational settling. Each conventional curve has been developed as an average of 12 deposition curves corresponding to 12 breathing conditions ranging from sitting to heavy exercise, male vs female, and breathing mode (mouth vs nasal breathing).

  • Standard
    17 pages
    English language
    sale 15% off
  • Standard
    17 pages
    French language
    sale 15% off

ISO/TR 14294:2011 provides general considerations for the assessment of dermal exposure in workplaces. It offers guidance on dermal exposure assessment and the commonly used approaches for measuring dermal exposure. An understanding of the advantages and limitations of each approach assists in the selection of the appropriate method(s) to meet the assessment objective. ISO/TR 14294:2011, however, is not intended to provide expert guidance, such as in the case of exposure scenarios or chemical agents. ISO/TR 14294:2011 is intended to assist occupational hygiene practitioners and researchers in developing a dermal exposure assessment strategy in agreement with its intended purpose. More importantly, it promotes adaptation of a consistent approach to assessing dermal exposure, and provides a framework for the assessment and validation of method performance. ISO/TR 14294:2011 describes the requirements against which sampling methods for determining dermal exposure need to be assessed; methodologies and specifications are proposed for the following procedures (not all requirements may be applicable to all methods): a) sampling efficiency; b) recovery efficiency; c) sample stability; d) capacity; e) bias, precision, uncertainty; f) core information; g) contextual information.

  • Technical report
    45 pages
    English language
    sale 15% off
  • Technical report
    48 pages
    French language
    sale 15% off

ISO 28439:2011 provides guidelines for the determination of the number concentration and size distribution of ultrafine aerosols and nanoaerosols by use of mobility particle sizers (also called differential mobility analysers). Only the particle fraction of the aerosol is considered. For ultrafine aerosols and nanoaerosols, exposure metrics such as the number and surface area concentration are important. ISO 28439:2011 also gives guidelines for the determination of workplace exposure to ultrafine aerosols and nanoaerosols. Specifically, the differential mobility analysing system (DMAS), now available from several vendors, is discussed. Principles of operation, problems of sampling in the workplace environment, calibration, equipment maintenance, measurement uncertainty, and reporting of measurement results are covered. Potential problems and limitations are described, which need to be addressed when limit values are fixed and compliance measurements carried out.

  • Standard
    15 pages
    English language
    sale 15% off
  • Standard
    16 pages
    French language
    sale 15% off

ISO 17736:2010 gives general guidelines for the sampling and analysis of airborne isocyanates in workplace air. ISO 17736:2010 is appropriate for organic compounds containing free isocyanate functional groups and is specific for the quantification of monomers, polymers and prepolymers, vapours and aerosols. Differential air sampling is performed with a segregating device which can show the physical state of the isocyanates analysed as found in the field. This capacity, however, may show limitations for given situations, e.g. when aerosols collected on the first filter contain free monomer that migrates to the second filter and is then quantified as vapour phase isocyanate. The determination of aromatic monomers includes toluene diisocyanate (TDI) and 4,4'-diisocyanato-diphenylmethane (MDI). Aliphatic monomers include isophorone diisocyanate (IPDI), 4,4'-methylene bis-(cyclohexyl isocyanate) (HMDI) and 1,6-hexamethylene diisocyanate (HDI). Isocyanate oligomers and prepolymers can also be determined using this method. The double-filter method is designed to determine short-term (15 min) exposure concentrations of organic isocyanates in a workplace environment by personal monitoring or by fixed location monitoring. However, if the exposure is expected to be in vapour form only, then sampling time can be extended to 8 h. Since the filter is derivatized in the field immediately after sampling, loss of isocyanate aerosol because of its reaction with other chemicals is negligible except for very fast-reacting isocyanate systems such as foam spraying of MDI in polyurethane applications. The method is suitable for the measurement of airborne organic isocyanates in the NCO equivalent concentration range of 0,01 µg/sample to 2,1 µg/sample, corresponding to approximately 0,67 µg/m3 to 140 µg/m3 for a 15 l sample volume. This range brackets about eight times the current established threshold limit value (TLV) of 5 ppb for monomers set by many national authorities.

  • Standard
    27 pages
    English language
    sale 15% off

ISO 30011:2010 specifies a procedure for the use of quadrupole inductively coupled plasma mass spectrometry (ICP‑MS) for analysing test solutions prepared from samples of airborne particulate matter collected as specified in ISO 15202‑1. Method development, performance checks, and a routine analysis method are specified. Test solutions for analysis by ISO 30011:2010 are prepared as specified in ISO 15202‑2. ISO 30011:2010 is applicable to the assessment of workplace exposure to metals and metalloids for comparison with limit values.

  • Standard
    34 pages
    English language
    sale 15% off
  • Standard
    37 pages
    French language
    sale 15% off

ISO 21438-3:2010 specifies a method for the determination of the time-weighted average mass concentration of soluble particulate fluorides and hydrofluoric acid (HF) in workplace air by collection of the particulate fluorides on a pre-filter and HF on an alkali-impregnated filter and analysis by ion chromatography. The method is only applicable to determination of particulate fluorides that are soluble using the sample preparation procedure specified. For aerosol sampling, the method is applicable to the personal sampling of the inhalable fraction of airborne particles, as defined in ISO 7708, and to static (area) sampling. The method is applicable to the determination of masses of 0,005 mg to at least 1,25 mg of particulate fluorides per sample and 0,012 5 mg to at least 1,2 mg of HF per sample. The concentration range of particulate fluorides and HF in air for which the measuring procedure is applicable is determined by the sampling method selected by the user. For a 120 l air sample, the working range is approximately 0,04 mg m-3 to at least 10 mg m-3 for particulate fluorides and approximately 0,13 mg m-3 to at least 10 mg m-3 for HF. HF can react with co-sampled particulate matter on the pre-filter, causing an interference on the measured concentration.

  • Standard
    29 pages
    English language
    sale 15% off
  • Standard
    31 pages
    French language
    sale 15% off

ISO 21438-2:2009 specifies a method for the determination of the time-weighted average mass concentration of hydrogen chloride (HCl) gas and hydrochloric acid mist, hydrogen bromide (HBr) vapour and hydrobromic acid mist and nitric acid (HNO3) vapour and mist in workplace air by collection on an alkali-impregnated quartz fibre filter and analysis by ion chromatography. For mist sampling, the method is applicable to the personal sampling of the inhalable fraction of airborne particles and to static (area) sampling. The analytical method is applicable to the determination of masses of 0,01 mg to 2,5 mg of HCl, HBr and HNO3 per sample. The range of concentrations of HCl, HBr and HNO3 in air for which the measuring procedure is applicable is determined by the sampling method selected by the user. For a 240-litre air sample, the working range is approximately 0,04 mg/m3 to 10 mg/m3 for HCl, HBr and HNO3. The procedure is intended to differentiate between the acids and their corresponding salts. If both are present in the air, particulate salts are trapped on a pre-filter. Co-sampled particulate matter trapped on the pre-filter and/or deposited on the walls of the sampler may be analysed, if desired. Acids can react with co-sampled particulate matter on the pre-filter, causing interference with the measurement of the acid concentration.

  • Standard
    29 pages
    English language
    sale 15% off
  • Standard
    31 pages
    French language
    sale 15% off

Specifies a procedure for the range of approximately 1 mg/m3 to 50 mg/m3. Substances which are known to have an effect on the instrument reading are indicated. The procedure is suitable for personal, breathing-zone sampling as well as for the general area sampling.

  • Standard
    1 page
    English language
    sale 15% off
  • Standard
    1 page
    French language
    sale 15% off
  • Corrigendum
    1 page
    English language
    sale 10% off
    e-Library read for
    1 day

Specifies a method for concentrations greater than 10 mg/m. The method is suitable for personal, breathing-zone sampling as well as for the general area sampling. Information on performance characteristics is given. In applications requiring better precision or freedom from interferences, the use of classical chemical or instrumental methods is recommended.

  • Standard
    1 page
    English language
    sale 15% off
  • Corrigendum
    1 page
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 15767:2009 provides recommendations for controlling the analytical uncertainty associated with aerosol collection medium instability, where collection medium or collection substrate includes any article used to collect particles (e.g. filter or foam material) as well as those supporting elements which must be analysed by weighing. ISO 15767:2009 is applicable to results compiled both from the literature and, if necessary and feasible, through laboratory experiment. Expected uncertainty associated with given aerosol capture methods is quantified where possible. Recommendations as to materials to be used are given. Means of minimizing uncertainty arising from instability are provided. Recommendations for the weighing procedure are given. A procedure for estimating weighing uncertainty is described. Finally, recommendations are given for the reporting of measured mass, including an uncertainty component and limits of detection and quantification.

  • Standard
    23 pages
    English language
    sale 15% off
  • Standard
    28 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    25 pages
    French language
    sale 15% off

ISO 16702:2007 gives general guidance for the sampling and analysis of airborne organic isocyanate (NCO) compounds in workplace air. ISO 16702:2007 is appropriate for a wide range of organic compounds containing isocyanate functional groups, including isocyanate monomers and prepolymers. Monomers containing a single isocyanate moiety (e.g. methyl isocyanate, ethyl isocyanate, phenyl isocyanate, hexyl isocyanate) are produced during thermal degradation of polyurethanes, i.e. flame bonding and laser cutting. Isocyanate polymers, also called polyisocyanates, homopolymers, oligomers or prepolymers, are derived from the diisocyanate monomers by self-condensation or reaction with polyols. Polymeric diisocyanates are widely used in the polyurethanes, paints and coatings, and adhesives industries. ISO 16702:2007 is appropriate for measuring any product containing free isocyanate groups. It was developed primarily for the commonly used methylenebis(phenylisocyanate) (MDI), 1,6-(diisocyanato)hexane (HDI), and toluene diisocyanate (TDI) and their oligomers and polymers. It has also been used for isophorone diisocyanate (IPDI), hydrogenated methylenebis(phenylisocyanate) (HMDI), and naphthyldiisocyanate (NDI), and their oligomers and polymers. The method is used to determine time-weighted average concentrations of organic isocyanates in workplace atmospheres, and is suitable for sampling over periods in the range 0,5 min to 8 h. The method is designed for personal monitoring, but can also be used for fixed location monitoring by suitable modification. The method is suitable for the measurement of airborne organic isocyanates in the concentration range from approximately 0,1 µg/m3 to 140 µg/m3 for a 15 l sample volume.

  • Standard
    35 pages
    English language
    sale 15% off
  • Standard
    41 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    37 pages
    French language
    sale 15% off

ISO 16107:2007 specifies methods for evaluation of sampler performance in terms of workplace conditions: wind speed, humidity, temperature, atmospheric pressure, and analyte variation. The concise set of experiments specified aims to minimize cost to the user. The evaluation is limited to conditions commonly encountered in personal sampling in the indoor workplace setting, namely wind speeds of up to 0,5 m/s and for sampling periods typically from 2 h to 8 h. Static or area sampling, unlike personal sampling where movement of the subject is significant, may sometimes be subject to sampling-rate reduction due to stagnation at very low wind speeds. ISO 16107:2007 therefore does not apply to wind speeds of less than 0,1 m/s relative to static samplers. Samplers are also tested for compliance with the manufacturer's stated limits on capacity, possibly in the presence of interfering compounds. Given a suitable exposure chamber, the sampler evaluation protocol can be extended to cover sampler use for other sampling periods and conditions. ISO 16107:2007 indicates how to measure diffusive sampler uncertainty for characterizing concentration estimates obtained subsequent to the evaluation. It is impractical continually to re-evaluate diffusive sampler performance under various environmental conditions prevailing during application.

  • Standard
    17 pages
    English language
    sale 15% off
  • Standard
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 20552:2007 specifies a procedure for determination of the mass concentration of mercury vapour in workplace air using a method of gold-amalgam collection with analysis by either cold vapour atomic absorption spectrometry (CVAAS) or cold vapour atomic fluorescence spectrometry (CVAFS). The procedure specifies a number of sampling methods for different applications. The procedure is suitable for making short-term measurements (e.g. 15 min) when sampling at a flow rate of between 100 ml per min and 1 000 ml per min. For assessment of long-term exposure, such as 8 h, this procedure can be used with sampling flow rate of 100 ml per min in workplaces where the concentration of mercury vapour is expected to be lower than 20 micrograms per cubic metre. If the expected concentration of mercury vapour is higher than 20 micrograms per cubic metre, it is necessary to use the procedure prescribed in ISO 17733. ISO 20552:2007 is unsuitable for making measurements of mercury vapour in air when chlorine is present in the atmosphere, e.g. in chloralkali works. Gaseous organo-mercury compounds can cause a positive interference.

  • Standard
    24 pages
    English language
    sale 15% off

ISO/TR 27628:2007 contains guidelines on characterizing occupational nanoaerosol exposures and represents the current state-of-the-art, with an emphasis on nanometre-diameter particles. Background information is provided on the mechanisms of nanoaerosol formation and transportation within an occupational setting and on industrial processes associated with nanoaerosol exposure. Exposure metrics appropriate to nanoaerosols are discussed, and specific methods of characterizing exposures with reference to these metrics are covered. Specific information is provided on methods for bulk aerosol characterization and single particle analysis.

  • Technical report
    34 pages
    English language
    sale 15% off
  • Technical report
    38 pages
    French language
    sale 15% off

ISO 16740:2005 specifies a method for the determination of the time-weighted average mass concentration of hexavalent chromium in workplace air. Separate sample preparation methods are specified for the extraction of soluble and insoluble hexavalent chromium. The method for insoluble hexavalent chromium can also be used to prepare samples for determination of total hexavalent chromium, if desired. ISO 16740:2005 is applicable to the personal sampling of the inhalable fraction of airborne particles, as defined in ISO 7708, and to static (area) sampling. The analytical method is applicable to the determination of masses of 0,01 micrograms to 10 micrograms of hexavalent chromium per sample, without dilution. The concentration range of hexavalent chromium in air for which the measuring procedure is applicable is determined by the sampling method selected by the user. For a 1 cubic metre air sample, without sample dilution, the working range is approximately 0,01 micrograms per cubic metre to 10 micrograms per cubic metre.

  • Standard
    40 pages
    English language
    sale 15% off
  • Standard
    46 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    42 pages
    French language
    sale 15% off

ISO 15202-3:2004 prescribes a procedure for the use of inductively coupled plasma atomic emission spectrometry for analysing test solutions prepared as prescribed in ISO 15202-2 from samples of airborne particulate matter collected as prescribed in ISO 15202-1. Method development, performance checks and a routine analysis method are prescribed. The procedure suffers from no significant spectral interferences, provided that suitable analytical wavelengths are used. However, inaccurate background correction and/or inadequate matrix-matching can adversely affect results. ISO 15202-3:2004 is applicable to the following non-exclusive list of metals and metalloids for which limit values have been set; however, there is no information available on the effectiveness of any of the sample dissolution methods specified in ISO 15202-2 for those elements in italics: aluminium, antimony, arsenic, barium, beryllium, bismuth, boron, caesium, cadmium, calcium, chromium, cobalt, copper, hafnium, indium, iron, lead, lithium, magnesium, manganese, mercury, molybdenum, nickel, phosphorus, platinum, potassium, rhodium, selenium, silver, sodium, strontium, tantalum, tellurium, thallium, tin, titanium, tungsten, uranium, vanadium, yttrium, zinc and zirconium. ISO 15202-3:2004 is not applicable to determination of elemental mercury, since mercury vapour is not collected using the sampling method specified in ISO 15202-1. The results obtained may be used for the assessment of workplace exposure to metals and metalloids for comparison with limit values.

  • Standard
    37 pages
    English language
    sale 15% off
  • Standard
    42 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    40 pages
    French language
    sale 15% off
  • Standard
    30 pages
    English language
    sale 15% off
  • Standard
    30 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    32 pages
    French language
    sale 15% off
  • Standard
    27 pages
    English language
    sale 15% off
  • Standard
    27 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    27 pages
    French language
    sale 15% off

This part of ISO 16200 gives general guidance for the sampling and analysis of volatile organic compounds (VOCs) in air. This part of ISO 16200 is applicable to a wide range of VOCs, including hydrocarbons, halogenated hydrocarbons, esters, glycol ethers, ketones and alcohols. A number of devices and sorbents are recommended for the sampling of these VOCs, each sorbent having a different range of applicability. NOTE Activated coconut shell charcoal is frequently used. Very polar compounds may require derivatization; very low boiling compounds will only be partially retained by the sorbents and can only be estimated qualitatively. Semi-volatile compounds will be fully retained by the sorbents, but may only be partially recovered. This part of ISO 16200 is valid for the measurement of airborne vapours of VOCs in a concentration range of approximately 1 mg/m3 to 1000 mg/m3 individual organic for an exposure time of 8 h. The upper limit of the useful range is set by the sorptive capacity of the sorbent used and, subject to dilution of the analysed solution, by the linear dynamic range of the gas chromatograph column and detector or by the sample splitting capability of the analytical instrumentation used. The lower limit of the useful range depends on the noise level of the detector and on blank levels of analyte and/or interfering artefacts on the sampling devices or in the desorption solvent. Artefacts are typically sub-nanogram for activated charcoal, but higher levels of aromatic hydrocarbons have been noted in some batches.

  • Standard
    32 pages
    English language
    sale 15% off
  • Standard
    32 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Gives a method by hydrid generation for the atomic absorption spectrometric determination of the mass concentration of particulate arsenic, arsenic compounds and arsenic trioxide vapour in workplace air. Applicable to the determination of mass concentrations of approximately 100 ng to 125 g of arsenic per sample. Not suitable for the determination of arsenic in the form of metal arsenides.

  • Standard
    20 pages
    English language
    sale 15% off
  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Specifies methods for the determination of the mass concentration of particulate cadmium and cadmium compounds in workplace air by electrothermal atomic absorption spectrometric method (ETAAS) applicable to the determination of mass concentrations of 10 ng to 600 ng Cadmium per sample or flame atomic absorption spectrometric method (FAAS), applicable to the determination of mass concentrations of 0,15 g to 96 g Cadmium per sample.

  • Standard
    15 pages
    English language
    sale 15% off
  • Standard
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    16 pages
    French language
    sale 15% off
  • Standard
    16 pages
    French language
    sale 15% off

Defines sampling conventions for particle size fractions for use in assessing possible health effects of airborne particles in the workplace and ambient environment. Defines conventions for the inhalable, thoracic and respirable fractions; extrathoracic and tracheobronchial conventions may be calculated from the defined conventions. The conventions should not be used in association with limit values defined in other terms, for example for limit values of fibres defined in terms of their length and diameter.

  • Standard
    9 pages
    English language
    sale 15% off
  • Standard
    9 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    9 pages
    French language
    sale 15% off
  • Standard
    9 pages
    French language
    sale 15% off

Specifies a method for the measurement of the concentrations of airborne vapours in the range from approx. 1 mg/m^3 to 1 000 mg/m^3 when sampling 10 litres of air. Annexes A, B and C form an integral part of this standard. Annex D is for information only.

  • Standard
    12 pages
    English language
    sale 15% off
  • Standard
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    12 pages
    French language
    sale 15% off
  • Standard
    12 pages
    French language
    sale 15% off

Specifies a method for the measurement of the concentrations of airborne vapours in the range from approx. 1 mg/m^3 to 1 000 mg/m^3 when sampling 10 litres of air. Annexes A, B and C form an integral part of this standard. Annex D is for information only.

  • Standard
    12 pages
    English language
    sale 15% off
  • Standard
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    12 pages
    French language
    sale 15% off
  • Standard
    12 pages
    French language
    sale 15% off

Specifies a method for concentrations greater than 10 mg/m^3. The method is suitable for personal, breathing-zone sampling as well as for the general area sampling. Information on performance characteristics is given. In applications requiring better precision or freedom from interferences, the use of classical chemical or instrumental methods is recommended.

  • Standard
    6 pages
    English language
    sale 15% off
  • Standard
    6 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    6 pages
    French language
    sale 15% off
  • Standard
    6 pages
    French language
    sale 15% off