This document specifies general requirements for the use and evaluation of physical and biological performance of volumetric sampling devices applied for assessing bioaerosols in the workplace.
This document lists the criteria for the selection of microbial strains that can be used for the evaluation of biological performance of samplers.
This document also describes a bioaerosol test chamber suited for assessing the biological performance of bioaerosol sampling devices.
This document is not applicable for clean room measurements.

  • Standard
    23 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    23 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies terms and definitions that are related to the assessment of workplace exposure to chemical and biological agents. These are either general terms or are specific to physical and chemical processes of air sampling, the analytical method or method performance.
The terms included are those that have been identified as being fundamental because their definition is necessary to avoid ambiguity and ensure consistency of use.

  • Standard
    36 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    36 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document gives guidance on the selection, installation, use and maintenance of electrical
equipment used for the measurement of toxic gases and vapours in workplace atmospheres.
The primary purpose of such equipment is to ensure safety of personnel and property by
providing an indication of the concentration of a toxic gas or vapour and warning of its presence.
This document is applicable to equipment whose purpose is to provide an indication, alarm or
other output function to give a warning of the presence of a toxic gas or vapour in the
atmosphere and in some cases to initiate automatic or manual protective actions. It is applicable
to equipment in which the sensor automatically generates an electrical signal when gas is
present.
For the purposes of this document, equipment includes:
a) fixed equipment;
b) transportable equipment, and
c) portable equipment.
This document is intended to cover equipment defined within IEC 62990-1, but can provide
useful information for equipment not covered by that document.

  • Standard
    65 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    58 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    43 pages
    English language
    sale 15% off
  • Standard
    46 pages
    French language
    sale 15% off
  • Draft
    44 pages
    English language
    sale 15% off
  • Draft
    46 pages
    French language
    sale 15% off

This document specifies methods for the quantitative measurement of airborne endotoxins and gives general requirements for sampling on filters, transportation, storage as well as the analysis of samples.
This document provides also guidelines for the assessment of workplace exposure to airborne endotoxins.

  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62990-2:2021 gives guidance on the selection, installation, use and maintenance of electrical equipment used for the measurement of toxic gases and vapours in workplace atmospheres. The primary purpose of such equipment is to ensure safety of personnel and property by providing an indication of the concentration of a toxic gas or vapour and warning of its presence. This document is applicable to equipment whose purpose is to provide an indication, alarm or other output function to give a warning of the presence of a toxic gas or vapour in the atmosphere and in some cases to initiate automatic or manual protective actions. It is applicable to equipment in which the sensor automatically generates an electrical signal when gas is present. For the purposes of this document, equipment includes: a) fixed equipment; b) transportable equipment, and c) portable equipment. This document is intended to cover equipment defined within IEC 62990-1, but can provide useful information for equipment not covered by that document.

  • Standard
    122 pages
    English language
    sale 15% off
  • Draft
    57 pages
    English language
    sale 15% off

The method described in this document quantifies the absolute exposure to mineral oil vapours and droplets, within a concentration range from 0,5Â mg/m3 to 125Â mg/m3, in the inhalable fraction of the workplace air. This document contains comprehensive information and instructions on the equipment and chemicals to be used. This method is applicable for water soluble oils and metal working fluids.

  • Standard
    24 pages
    English language
    sale 15% off
  • Draft
    24 pages
    English language
    sale 15% off

This European Standard specifies general requirements for the performance of procedures for the determination of the concentration of chemical agents in workplace atmospheres as required by the Chemical Agents Directive 98/24/EC. The requirements given apply to all measuring procedures, irrespective of the physical form of the chemical agent (gas, vapour, airborne particles), the sampling method and the analytical method used. This European Standard is applicable to all steps of a measuring procedure,
measuring procedures with separate sampling and analysis steps, and direct-reading devices.

  • Standard
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies performance and design requirements for air quality control systems for operator enclosures and their monitoring devices. The design specifications are universal in their application and do not contemplate specific mining environments. They are intended to meet identified parameters of both pressurization and respirable particulate and carbon dioxide concentrations. This document also specifies test methods to assess such parameters and provides operational and maintenance instructions. Recommendations are made for operational integration of the air quality control system. Gases and vapours that can be a hazard in the work environment outside of the operator enclosure are excluded from this document.

  • Standard
    22 pages
    English language
    sale 15% off
  • Draft
    22 pages
    English language
    sale 15% off

The purpose of this document is to allow users to determine the fine fraction with the calculation
method. It also describes the assumptions and preconditions to be met in order for this method
to be valid. This calculation method is applicable only after experiments have shown that the
results are accurate and consistently equal or higher than the results from sedimentation, as
described in Part 2, for that particular bulk material.
For preparation of the sample and determination of crystalline silica by XRD and FTIR
the users
can refer to Part 1.
An informative annex describes a specific method for the evaluation of the FF recommended for
diatomaceous earth bulk materials. Due to the internal porosity of diatomaceous earth, the
general instructions given in this part of the standard are adapted in order to take into account
the material’s effective density.
This document is applicable for bulk materials that contain particles in the size range from 0,1
μm to 125 μm satisfying with the criteria given in this part and Part 2. The current industrial
minerals within the scope of this method are: quartz, clay, kaolin, talc, feldspar, mica,
cristobalite, vermiculite, diatomaceous earth, barite and andalusite. The method may be
applicable to other bulk materials, following full investigation and validation.

  • Standard
    40 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The purpose of this document is to allow users to evaluate bulk materials with regard to the
amount of fine fraction of potentially hazardous substances, especially crystalline silica. This Part
1 describes the requirements and choice of test method. It provides the user with guidance on
how to select the method as well as the preparation of the sample and determination of
crystalline silica by XRD and FTIR.
This document is applicable for bulk materials that contain particles in the size range from 0,1
μm to 125 μm satisfying with the criteria given in Part 2 and Part 3 of this document series. The
current industrial minerals within the scope of this method are: quartz, clay, kaolin, talc, feldspar,
mica, cristobalite, vermiculite, diatomaceous earth, barite and andalusite. The method may be
applicable to other bulk materials, following full investigation and validation.

  • Standard
    33 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The purpose of this document is to allow users to determine a sizeweighted fine fraction by the
sedimentation method. The method in this part uses a liquid sedimentation technique to
separate the fine fraction, which is then analysed for its substance of interest, e.g. crystalline
silica.
Informative annexes within this document describe specific methods for the evaluation of FF for
specific bulk materials.
This document is applicable for bulk materials that contain particles in the size range from 0,1
μm to 125 μm satisfying with the criteria given in this part and Part 3 of the document series. The
current industrial minerals within the scope of this method are: quartz, clay, kaolin, talc, feldspar,
mica, cristobalite, vermiculite, diatomaceous earth, barite and andalusite. The method may be
applicable to other bulk materials, following full investigation and validation.

  • Standard
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies performance requirements and test methods under prescribed laboratory conditions for the evaluation of pumped samplers used in conjunction with an air sampling pump and of procedures using these samplers for the determination of gases and vapours in workplace atmospheres.
This document addresses requirements for method developers and/or manufacturers.
NOTE 1 For the purposes of this document, a manufacturer can be any commercial or non-commercial entity.
NOTE 2 For the sampling of semi-volatile compounds which can appear as a mixture of vapours and airborne
particles in workplace atmospheres see EN 13936.
This document is applicable to pumped samplers and measuring procedures using these samplers in which sampling and analysis are carried out in separate stages.
This document is not applicable to:
— pumped samplers which are used for the direct determination of concentrations, for example, length-of-stain detector tubes;
— samplers which rely on sorption into a liquid, and subsequent analysis of the solution (bubblers).

  • Standard
    46 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies performance requirements and test methods under prescribed laboratory conditions for the evaluation of pumped samplers used in conjunction with an air sampling pump and of procedures using these samplers for the determination of gases and vapours in workplace atmospheres. This document addresses requirements for method developers and/or manufacturers. NOTE 1 For the purposes of this document, a manufacturer can be any commercial or non-commercial entity. NOTE 2 For the sampling of semi-volatile compounds which can appear as a mixture of vapours and airborne particles in workplace atmospheres see EN 13936. This document is applicable to pumped samplers and measuring procedures using these samplers in which sampling and analysis are carried out in separate stages. This document is not applicable to: — pumped samplers which are used for the direct determination of concentrations, for example, length-of-stain detector tubes; — samplers which rely on sorption into a liquid, and subsequent analysis of the solution (bubblers).

  • Standard
    37 pages
    English language
    sale 15% off
  • Standard
    42 pages
    French language
    sale 15% off
  • Draft
    37 pages
    English language
    sale 15% off
  • Draft
    42 pages
    French language
    sale 15% off

This document specifies a method for collecting samples of airborne particulate matter for subsequent determination of metals and metalloids using inductively coupled plasma — atomic emission spectrometry (ICP-AES). Samples obtained using the method described herein can also be subsequently analysed for elemental composition by other instrumental methods, such as atomic absorption spectrometry (AAS) or inductively coupled plasma mass spectrometry (ICP-MS).
The method is not applicable to the sampling of mercury, which is present in air in the vapour phase at ambient temperatures; inorganic compounds of metals and metalloids that are permanent gases, e.g. arsine (AsH3); or inorganic compounds of metals and metalloids that are present in the vapour phase at ambient temperatures, e.g. arsenic trioxide (As2O3).
NOTE Although the method does not describe a means of collecting inorganic compounds of metals and metalloids that are present in the vapour phase, in most instances this is relatively easily to achieve by using a back-up filter which has been pre-treated to trap the compound(s) of interest, e.g. a back-up paper pad impregnated with sodium carbonate is suitable for collecting arsenic trioxide (see ISO 11041[2]).
The method is applicable to personal sampling of the inhalable, thoracic or respirable fraction of airborne particles, as defined in ISO 7708, and to static sampling.
This document excludes sampling of surfaces or bulk materials. Guidance on collection of samples for surfaces may be found in ASTM D7659[7].

  • Standard
    17 pages
    English language
    sale 15% off
  • Standard
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    18 pages
    French language
    sale 15% off

This document specifies a number of suitable methods for preparing test solutions from samples of airborne particulate matter collected using the method specified in ISO 15202‑1, for subsequent determination of metals and metalloids by ICP‑AES using the method specified in ISO 15202‑3. It contains information about the applicability of the methods with respect to the measurement of metals and metalloids for which limit values have been set. The methods can also be used in the measurement of some metals and metalloids for which limit values have not been set but no information about its applicability is provided in this case.
NOTE The sample preparation methods described in this document are generally suitable for use with analytical techniques other than ICP‑AES, e.g. atomic absorption spectrometry (AAS) by ISO 8518[5] and ISO 11174[10] and inductively coupled plasma mass spectrometry (ICP‑MS) by ISO 30011[11].
The method specified in Annex B is applicable when making measurements for comparison with limit values for soluble metal or metalloid compounds.
One or more of the sample dissolution methods specified in Annexes C through H are applicable when making measurements for comparison with limit values for total metals and metalloids and their compounds. Information on the applicability of individual methods is given in the scope of the annex in which the method is specified.
The following is a non-exclusive list of metals and metalloids for which limit values have been set (see References [14] and [15]) and for which one or more of the sample dissolution methods specified in this document are applicable. However, there is no information available on the effectiveness of any of the specified sample dissolution methods for those elements in italics.
Aluminium
Calcium
Magnesium
Selenium
Tungsten
Antimony
Chromium
Manganese
Silver
Uranium
Arsenic
Cobalt
Mercury
Sodium
Vanadium
Barium
Copper
Molybdenum
Strontium
Yttrium
Beryllium
Hafnium
Nickel
Tantalum
Zinc
Bismuth
Indium
Phosphorus
Tellurium
Zirconium
Boron
Iron
Platinum
Thallium
Caesium
Lead
Potassium
Tin
Cadmium
Lithium
Rhodium
Titanium
ISO 15202 is not applicable to the determination of elemental mercury or arsenic trioxide, since mercury vapour and arsenic trioxide vapour are not collected using the sampling method specified in ISO 15202‑1.

  • Standard
    54 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    54 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    49 pages
    English language
    sale 15% off
  • Standard
    55 pages
    French language
    sale 15% off

This document specifies a method for collecting samples of airborne particulate matter for subsequent determination of metals and metalloids using inductively coupled plasma — atomic emission spectrometry (ICP-AES). Samples obtained using the method described herein can also be subsequently analysed for elemental composition by other instrumental methods, such as atomic absorption spectrometry (AAS) or inductively coupled plasma mass spectrometry (ICP-MS). The method is not applicable to the sampling of mercury, which is present in air in the vapour phase at ambient temperatures; inorganic compounds of metals and metalloids that are permanent gases, e.g. arsine (AsH3); or inorganic compounds of metals and metalloids that are present in the vapour phase at ambient temperatures, e.g. arsenic trioxide (As2O3). NOTE Although the method does not describe a means of collecting inorganic compounds of metals and metalloids that are present in the vapour phase, in most instances this is relatively easily to achieve by using a back-up filter which has been pre-treated to trap the compound(s) of interest, e.g. a back-up paper pad impregnated with sodium carbonate is suitable for collecting arsenic trioxide (see ISO 11041[2]). The method is applicable to personal sampling of the inhalable, thoracic or respirable fraction of airborne particles, as defined in ISO 7708, and to static sampling. This document excludes sampling of surfaces or bulk materials. Guidance on collection of samples for surfaces may be found in ASTM D7659[7].

  • Standard
    17 pages
    English language
    sale 15% off
  • Standard
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    18 pages
    French language
    sale 15% off

This document specifies a number of suitable methods for preparing test solutions from samples of airborne particulate matter collected using the method specified in ISO 15202‑1, for subsequent determination of metals and metalloids by ICP‑AES using the method specified in ISO 15202‑3. It contains information about the applicability of the methods with respect to the measurement of metals and metalloids for which limit values have been set. The methods can also be used in the measurement of some metals and metalloids for which limit values have not been set but no information about its applicability is provided in this case. NOTE The sample preparation methods described in this document are generally suitable for use with analytical techniques other than ICP‑AES, e.g. atomic absorption spectrometry (AAS) by ISO 8518[5] and ISO 11174[10] and inductively coupled plasma mass spectrometry (ICP‑MS) by ISO 30011[11]. The method specified in Annex B is applicable when making measurements for comparison with limit values for soluble metal or metalloid compounds. One or more of the sample dissolution methods specified in Annexes C through H are applicable when making measurements for comparison with limit values for total metals and metalloids and their compounds. Information on the applicability of individual methods is given in the scope of the annex in which the method is specified. The following is a non-exclusive list of metals and metalloids for which limit values have been set (see References [14] and [15]) and for which one or more of the sample dissolution methods specified in this document are applicable. However, there is no information available on the effectiveness of any of the specified sample dissolution methods for those elements in italics. Aluminium Calcium Magnesium Selenium Tungsten Antimony Chromium Manganese Silver Uranium Arsenic Cobalt Mercury Sodium Vanadium Barium Copper Molybdenum Strontium Yttrium Beryllium Hafnium Nickel Tantalum Zinc Bismuth Indium Phosphorus Tellurium Zirconium Boron Iron Platinum Thallium Caesium Lead Potassium Tin Cadmium Lithium Rhodium Titanium ISO 15202 is not applicable to the determination of elemental mercury or arsenic trioxide, since mercury vapour and arsenic trioxide vapour are not collected using the sampling method specified in ISO 15202‑1.

  • Standard
    54 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    54 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    49 pages
    English language
    sale 15% off
  • Standard
    55 pages
    French language
    sale 15% off

This document specifies performance requirements and test methods for the evaluation of procedures for measuring metals and metalloids in airborne particles sampled onto a suitable collection substrate.
This document specifies a method for estimating the uncertainties associated with random and systematic errors and combining them to calculate the expanded uncertainty of the measuring procedure as a whole, as prescribed in ISO 20581.
This document is applicable to measuring procedures in which sampling and analysis is carried out in separate stages, but it does not specify performance requirements for collection, transport and storage of samples, since these are addressed in EN 13205-1 and ISO 15767.
This document does not apply to procedures for measuring metals or metalloids present as inorganic gases or vapours (e.g. mercury, arsenic) or to procedures for measuring metals and metalloids in compounds that could be present as a particle/vapour mixture (e.g. arsenic trioxide).

  • Standard
    45 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies performance requirements and test methods for the evaluation of procedures for measuring metals and metalloids in airborne particles sampled onto a suitable collection substrate.
This document specifies a method for estimating the uncertainties associated with random and systematic errors and combining them to calculate the expanded uncertainty of the measuring procedure as a whole, as prescribed in ISO 20581.
This document is applicable to measuring procedures in which sampling and analysis is carried out in separate stages, but it does not specify performance requirements for collection, transport and storage of samples, since these are addressed in EN 13205-1 and ISO 15767.
This document does not apply to procedures for measuring metals or metalloids present as inorganic gases or vapours (e.g. mercury, arsenic) or to procedures for measuring metals and metalloids in compounds that could be present as a particle/vapour mixture (e.g. arsenic trioxide).

  • Standard
    45 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies general requirements for the measurement of microorganisms and microbial compounds. This European Standard provides also guidelines for the assessment of workplace exposure to airborne micro-organisms including the determination of total number and culturable number of micro-organisms and microbial compounds in the workplace atmosphere.

  • Standard
    42 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies general requirements for the measurement of microorganisms and microbial compounds.
This document provides also guidelines for the assessment of workplace exposure to airborne microorganisms including the determination of total number and culturable number of microorganisms and microbial compounds in the workplace atmosphere.
This document does not apply to the measurement of viruses.

  • Standard
    42 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for the sampling and analysis of airborne organic isocyanates in
workplace air.
This document is applicable to a wide range of organic compounds containing isocyanate groups,
including monofunctional isocyanates (e.g. phenyl isocyanate), diisocyanate monomers [e.g.
1,6-hexamethylene diisocyanate (HDI), toluene diisocyanate (TDI), 4,4′-diphenylmethane diisocyanate
(MDI), and isophorone diisocyanate (IPDI)], prepolymers (e.g. the biuret and isocyanurate of HDI), as
well as chromatographable intermediate products formed during production or thermal breakdown of
polyurethane.
In mixed systems of HDI and IPDI products, it is impossible to identify and quantify low levels of IPDI
monomer using this document, due to coelution of IPDI monomer with HDI-uretidinedione.
It is known that the method underestimates the oligomer in MDI-based products. Total isocyanate
group (NCO) is underestimated in MDI-based products by about 35 % as compared to dibutylamine
titration.
The method has been successfully modified to be used with LC-MS-MS for TDI monomer using an
isocratic 70 % acetonitrile/30 % 10 mM ammonium formate mobile phase.
The useful range of the method, expressed in moles of isocyanate group per species per sample, is
approximately 1 × 10−10 to 2 × 10−7. The instrumental detection limit for the monomers using both
ultraviolet (UV) detection and fluorescence (FL) detection is about 2 ng monomer per sample. The
useful limit of detection for the method using reagent impregnated filters is about 10 ng to 20 ng
monomer per sample for both UV and FL detection. For a 15 l sample, this corresponds to 0,7 μg/m−3 to
1,4 μg/m−3. For impinger samples, which require solid phase extraction, experience has shown that the
useful limit of detection is about 30 ng to 80 ng monomer per sample.

  • Standard
    30 pages
    English language
    sale 15% off
  • Standard
    36 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document is a standard for the analysis by Fourier-Transform Infrared (FTIR) of respirable
crystalline silica (RCS) in samples of air collected on collection substrates (i.e. filters or foams). Three
analytical approaches are described for whom the dust from the sample collection substrate is
a) analysed directly on sampled filter,
b) recovered, treated and deposited onto another filter for analysis, or
c) recovered, treated and pressed into a potassium bromide (KBr) pellet for analysis.
This document provides information on the instrumental parameters, the sensitivity of different
sampling apparatus, the use of different filters and sample treatment to remove interference. In this
document the expression RCS includes the most common polymorphs quartz and cristobalite.
This document excludes the less common polymorphs of crystalline silica, such as tridymite.
Under certain circumstances (i.e. low filter dust loads, low silica content), the analytical approach
described in this method cannot fulfil the expanded uncertainty requirements of ISO 20581. Guidance
for calculation of uncertainty for measurements of RCS is given in ISO 24095.

  • Standard
    30 pages
    English language
    sale 15% off
  • Standard
    36 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 16639:2017 provides best practices and performance-based criteria for the use of air sampling devices and systems, including retrospective samplers and continuous air monitors. Specifically, this document covers air sampling program objectives, design of air sampling and monitoring programs to meet program objectives, methods for air sampling and monitoring in the workplace, and quality assurance to ensure system performance toward protecting workers against unnecessary inhalation exposures.
The primary purpose of the surveillance of airborne activity concentrations in the workplace is to evaluate and mitigate inhalation hazards to workers in facilities where these can become airborne. A comprehensive surveillance program can be used to
- determine the effectiveness of administrative and engineering controls for confinement,
- measure activity concentrations of radioactive substances,
- alert workers to high activity concentrations in the air,
- aid in estimating worker intakes when bioassay methods are unavailable,
- determine signage or posting requirements for radiation protection, and
- determine appropriate protective equipment and measures.
Air sampling techniques consist of two general approaches. The first approach is retrospective sampling, in which the air is sampled, the collection medium is removed and taken to a radiation detector system and analysed for radioactive substance, and the concentration results made available at a later time. In this context, the measured air concentrations are evaluated retrospectively. The second approach is continuous real-time air monitoring so that workers can be warned that a significant release of airborne radioactivity may have just occurred. In implementing an effective air sampling program, it is important to achieve a balance between the two general approaches. The specific balance depends on hazard level of the work and the characteristics of each facility.
A special component of the second approach which can apply, if properly implemented, is the preparation of continuous air monitoring instrumentation and protocols. This enables radiation protection monitoring of personnel that have been trained and fitted with personal protective equipment (PPE) that permit pre-planned, defined, extended stay time in elevated concentrations of airborne radioactive substances. Such approaches can occur either as part of a planned re-entry of a contaminated area following an accidental loss of containment for accident assessment and recovery, or part of a project which involves systematic or routine access to radioactive substances (e.g. preparing process material containing easily aerosolized components), or handling objects such as poorly characterized waste materials that may contain radioactive contaminants that could be aerosolized when handled during repackaging. In this special case, the role of continuous air monitoring is to provide an alert to health physics personnel that the air concentrations of concern have exceeded a threshold such that the planned level of protection afforded by PPE has been or could be exceeded. This level would typically be many 10's or 100's of times higher than the derived air concentration (DAC) established for unprotected workers. The monitoring alarm or alert would therefore be designed not to be confused with the normal monitoring alarm, and the action taken in response would be similarly targeted at the specific site and personnel involved.
The air sampling strategy should be designed to minimize internal exposures and balanced with social, technical, economic, practical, and public policy considerations that are associated with the use of the radioactive substance.

  • Standard
    41 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard provides the methodology for measuring the dustiness of bulk materials that contain or release nano-objects or submicrometer particles, under standard and reproducible conditions and specifies for that purpose the continuous drop method.
In addition, this European Standard specifies the selection of instruments and devices and the procedures for calculating and presenting the results. It also gives guidelines on the evaluation and reporting of the data.
The methodology described in this European Standard enables
a)   the measurement of the respirable and inhalable dustiness mass fractions,
b)   the measurement of the number-based dustiness index of respirable particles in the size range from about 10 nm to 1 000 nm,
c)   the measurement of the number-based emission rate of respirable particles in the size range from about 10 nm to 1 000 nm,
d)   the measurement of the number-based size distribution of the released aerosol in the size range from about 10 nm to 10 µm, and
e)   the collection of released airborne particles in the respirable fraction for subsequent observations and analysis by analytical electron microscopy.
This European Standard is applicable to the testing of a wide range of bulk materials including powders, granules or pellets containing or releasing nano-objects or submicrometer particles in either unbound, bound uncoated and coated forms.
This European Standard is applicable to all bulk materials containing nanoparticles or releasing nanoparticles while being handled.
NOTE 1   Currently no number-based classification scheme in terms of dustiness indices or emission rates have been established. Eventually, when a large number of measurement data has been obtained, the intention is to revise this European Standard and to introduce such a classification scheme, if applicable.
NOTE 2   The methods specified in this European Standard have not been evaluated for nanofibers and nanoplates.

  • Standard
    24 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard provides the methodology for measuring and characterizing the dustiness of bulk materials that contain or release nano-objects or submicrometer particles, under standard and reproducible conditions and specifies for that purpose the vortex shaker method.
In addition, this European Standard specifies the selection of instruments and devices and the procedures for calculating and presenting the results. It also gives guidelines on the evaluation and reporting of the data.
The methodology described in this European Standard enables
a)   the measurement of the respirable dustiness mass fraction,
b)   the determination of the mass-based dustiness index of respirable particles in the size range from about 10 nm to 1 000 nm;
c)   the determination of the number-based dustiness index of respirable particles in the size range from about 10 nm to 1 000 nm;
d)   the determination of the number-based emission rate of respirable particles in the size range from about 10 nm to 1 000 nm;
e)   the determination of the number size distribution of the released respirable aerosol in the size range from about 10 nm to 10 µm;
f)   the collection of released airborne particles in the respirable fraction for subsequent observations and analysis by electron microscopy.
This European Standard is applicable to the testing of a wide range of bulk materials including nanomaterials in powder form.
NOTE 1    With slightly different configurations of the method specified in this European Standard, dustiness of a series of carbon nanotubes has been investigated ([5] to 10]). On the basis of this published work, it can be assumed that the vortex shaker method is also applicable to nanofibres and nanoplates.
This European Standard is not applicable to millimetre-sized granules or pellets containing nano-objects in either unbound, bound uncoated and coated forms.
NOTE 2   This comes from the configuration of the vortex shaker apparatus and the small test sample required. Eventually, if future work provides accurate and repeatable data demonstrating that this is possible, the intention is to revise the European Standard and to introduce this application.
NOTE 3   As observed in the pre-normative research Project [4], the vortex shaker method specified in this European Standard provides a more energetic aerosolization than the rotating drum, the continuous drop and the small rotating drum specified in prEN 17199-2:2018 [1], prEN 17199-3:2018 [2] and prEN 17199-4:2018 [3], respectively. It can better simulate high energy dust dispersion operations or processes where vibration is applied or even describe a worst case scenario in a workplace, including the (non-recommended) practice of cleaning contaminated worker coveralls and dry work surfaces with compressed air.
NOTE 4   Currently no classification scheme in terms of dustiness indices or emission rates has been established according to te vortex shaker method. Eventually, when a large number of measurement data has been obtained, the intention is to revise the European Standard and to introduce such a classification scheme, if applicable.

  • Standard
    37 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard provides the methodology for measuring and characterizing the dustiness of bulk materials that contain or release nano-objects or submicrometer particles, under standard and reproducible conditions and specifies for that purpose the small rotating drum method.
In addition, this European Standard specifies the selection of instruments and devices and the procedures for calculating and presenting the results. It also gives guidelines on the evaluation and reporting of the data.
The methodology described in this European Standard enables
a)   the measurement of the respirable dustiness mass fraction,
b)   the measurement of the number-based dustiness index of respirable particles in the size range from about 10 nm to 1 000 nm,
c)   the measurement of the number-based size distribution of the released aerosol in the size range from about 10 nm to 10 µm,
d)   the quantification of the initial dustiness emission rate and the time to reach 50 % of the total particle number released during testing, and
e)   the characterization of the aerosol from its particle size distribution and the morphology and chemical composition of its particles.
This European Standard is applicable to the testing of a wide range of bulk materials including powders, granules or pellets containing or releasing nano-objects or submicrometer particles in either unbound, bound uncoated and coated forms.
NOTE 1   Currently no number based classification scheme in terms of particle number and emission rate has been established for powder dustiness. Eventually, when a large number of measurement data has been obtained, the intention is to revise the European Standard and to introduce such a classification scheme, if applicable.
NOTE 2   The small rotating drum method has been applied to test the dustiness of a range of materials including nanoparticle oxides, nanoflakes, organoclays, clays, carbon black, graphite, carbon nanotubes, organic pigments, and pharmaceutical active ingredients. The method has thereby been proven to enable testing of a many different materials that can contain nanomaterials as the main component.

  • Standard
    27 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard provides the methodology for measuring and characterizing the dustiness of a bulk material that contains or releases nano-objects or submicrometer particles. In addition, it specifies the environmental conditions, the sample handling procedure and the method of calculating and presenting the results. Guidance is given on the choice of method to be used.
The methodology described in this European Standard enables
a)   the quantification of dustiness in terms of health-related index mass fractions,
b)   the quantification of dustiness in terms of an index number and an emission rate, and
c)   the characterization of the aerosol from its particle size distribution and the morphology and chemical composition of its particles.
NOTE 1   Currently, no number-based classification scheme in terms of particle number has been established for particle dustiness release. Eventually, when a large enough number of measurement data has been obtained, the intention is to revise this European Standard and to introduce a number-based classification scheme.
This European Standard is applicable to all bulk materials, including powders, granules or pellets, containing or releasing nano-objects or submicrometer particles.
NOTE 2   The vortex shaker method specified in part 5 of this European Standard has not yet been evaluated for pellets and granules.
NOTE 3   The rotating drum and continuous drop methods have not yet been evaluated for nanofibres and nanoplates.
This European Standard does not provide methods for assessing the release of particles during handling or mechanical reduction of machining (e.g. crushing, cutting, sanding, sawing) of solid nanomaterials (e.g. nanocomposites).

  • Standard
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard provides the methodology for measuring the dustiness of bulk materials that contain or release nano-objects or submicrometer particles, under standard and reproducible conditions and specifies for that purpose the rotating drum method.
In addition, this European Standard specifies the selection of instruments and devices and the procedures for calculating and presenting the results. It also gives guidelines on the evaluation and reporting of the data.
The methodology described in this European Standard enables
a)   the measurement of the respirable, thoracic and inhalable dustiness mass fractions,
b)   the measurement of the number-based dustiness index of respirable particles in the size range from about 10 nm to 1 000 nm,
c)   the measurement of the number-based emission rate of respirable particles in the size range from about 10 nm to 1 000 nm,
d)   the measurement of the number-based size distribution of the released aerosol in the size range from about 10 nm to 10 µm, and
e)   the collection of released airborne particles in the respirable fraction for subsequent observations and analysis by analytical electron microscopy.
This European Standard is applicable to the testing of a wide range of bulk materials including powders, granules or pellets containing or releasing nano-objects or submicrometer particles in either unbound, bound uncoated and coated forms.
NOTE 1   Currently no number-based classification scheme in terms of dustiness indices or emission rates have been established. Eventually, when a large number of measurement data has been obtained, the intention is to revise this European Standard and to introduce such a classification scheme, if applicable.
NOTE 2   The method specified in this European Standard has not been investigated for the measurement of the dustiness of bulk materials containing nanofibres and nanoplates in terms of number-based dustiness indices or emission rates. However, there is no reason to believe that the number-based dustiness indices or emission rates could not be measured with the rotating drum using the set-up described in this European Standard.

  • Standard
    24 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 16639:2017 provides guidelines and performance criteria for sampling airborne radioactive substances in the workplace. Emphasis is on health protection of workers in the indoor environment.
ISO 16639:2017 provides best practices and performance-based criteria for the use of air sampling devices and systems, including retrospective samplers and continuous air monitors. Specifically, this document covers air sampling program objectives, design of air sampling and monitoring programs to meet program objectives, methods for air sampling and monitoring in the workplace, and quality assurance to ensure system performance toward protecting workers against unnecessary inhalation exposures.
The primary purpose of the surveillance of airborne activity concentrations in the workplace is to evaluate and mitigate inhalation hazards to workers in facilities where these can become airborne. A comprehensive surveillance program can be used to
-      determine the effectiveness of administrative and engineering controls for confinement,
-      measure activity concentrations of radioactive substances,
-      alert workers to high activity concentrations in the air,
-      aid in estimating worker intakes when bioassay methods are unavailable,
-      determine signage or posting requirements for radiation protection, and
-      determine appropriate protective equipment and measures.
Air sampling techniques consist of two general approaches. The first approach is retrospective sampling, in which the air is sampled, the collection medium is removed and taken to a radiation detector system and analysed for radioactive substance, and the concentration results made available at a later time. In this context, the measured air concentrations are evaluated retrospectively. The second approach is continuous real-time air monitoring so that workers can be warned that a significant release of airborne radioactivity may have just occurred. In implementing an effective air sampling program, it is important to achieve a balance between the two general approaches. The specific balance depends on hazard level of the work and the characteristics of each facility.
A special component of the second approach which can apply, if properly implemented, is the preparation of continuous air monitoring instrumentation and protocols. This enables radiation protection monitoring of personnel that have been trained and fitted with personal protective equipment (PPE) that permit pre-planned, defined, extended stay time in elevated concentrations of airborne radioactive substances. Such approaches can occur either as part of a planned re-entry of a contaminated area following an accidental loss of containment for accident assessment and recovery, or part of a project which involves systematic or routine access to radioactive substances (e.g. preparing process material containing easily aerosolized components), or handling objects such as poorly characterized waste materials that may contain radioactive contaminants that could be aerosolized when handled during repackaging. In this special case, the role of continuous air monitoring is to provide an alert to health physics personnel that the air concentrations of concern have exceeded a threshold such that the planned level of protection afforded by PPE has been or could be exceeded. This level would typically be many 10's or 100's of times higher than the derived air concentration (DAC) established for unprotected workers. The mo

  • Standard
    41 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies a strategy to perform representative measurements of exposure by
inhalation to chemical agents in order to demonstrate the compliance with occupational exposure limit
values (OELVs).
This European Standard is not applicable to OELVs with reference periods less than 15 min.

  • Standard
    55 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies a strategy to perform representative measurements of exposure by inhalation to chemical agents in order to demonstrate the compliance with occupational exposure limit values (OELVs).
This European Standard is not applicable to OELVs with reference periods less than 15 min.

  • Standard
    55 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for the sampling and analysis of airborne organic isocyanates in workplace air. This document is applicable to a wide range of organic compounds containing isocyanate groups, including monofunctional isocyanates (e.g. phenyl isocyanate), diisocyanate monomers [e.g. 1,6-hexamethylene diisocyanate (HDI), toluene diisocyanate (TDI), 4,4′-diphenylmethane diisocyanate (MDI), and isophorone diisocyanate (IPDI)], prepolymers (e.g. the biuret and isocyanurate of HDI), as well as chromatographable intermediate products formed during production or thermal breakdown of polyurethane. In mixed systems of HDI and IPDI products, it is impossible to identify and quantify low levels of IPDI monomer using this document, due to coelution of IPDI monomer with HDI-uretidinedione. It is known that the method underestimates the oligomer in MDI-based products. Total isocyanate group (NCO) is underestimated in MDI-based products by about 35 % as compared to dibutylamine titration. The method has been successfully modified to be used with LC-MS-MS for TDI monomer using an isocratic 70 % acetonitrile/30 % 10 mM ammonium formate mobile phase. The useful range of the method, expressed in moles of isocyanate group per species per sample, is approximately 1 × 10−10 to 2 × 10−7. The instrumental detection limit for the monomers using both ultraviolet (UV) detection and fluorescence (FL) detection is about 2 ng monomer per sample. The useful limit of detection for the method using reagent impregnated filters is about 10 ng to 20 ng monomer per sample for both UV and FL detection. For a 15 l sample, this corresponds to 0,7 µg/m−3 to 1,4 µg/m−3. For impinger samples, which require solid phase extraction, experience has shown that the useful limit of detection is about 30 ng to 80 ng monomer per sample.

  • Standard
    30 pages
    English language
    sale 15% off
  • Standard
    36 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document describes the methodology for measuring and characterizing the dustiness of bulk materials that contain or release respirable NOAA or other respirable particles, under standard and reproducible conditions and specifies for that purpose the vortex shaker method.
This document specifies the selection of instruments and devices and the procedures for calculating and presenting the results. It also gives guidelines on the evaluation and reporting of the data.
The methodology described in this document enables
a)   the measurement of the respirable dustiness mass fraction,
b)   the measurement of the number-based dustiness index of respirable particles in the particle size range from about 10 nm to about 1 µm,
c)   the measurement of the number-based emission rate of respirable particles in the particle size range from about 10 nm to about 1 µm,
d)   the measurement of the number-based particle size distribution of the released respirable aerosol in the particle size range from about 10 nm to 10 µm,
e)   the collection of released airborne particles in the respirable fraction for subsequent observations and analysis by electron microscopy.
This document is applicable to the testing of a wide range of bulk materials including nanomaterials in powder form.
NOTE 1    With slightly different configurations of the method specified in this document, dustiness of a series of carbon nanotubes has been investigated ([5] to [10]). On the basis of this published work, it can be assumed that the vortex shaker method is also applicable to nanofibres and nanoplates.
This document is not applicable to millimetre-sized granules or pellets containing nano-objects in either unbound, bound uncoated and coated forms.
NOTE 2   The restrictions with regard to the application of the vortex shaker method on different kinds of nanomaterials result from the configuration of the vortex shaker apparatus as well as from the small size of the test sample required. Eventually, if future work will be able to provide accurate and repeatable data demonstrating that an extension of the method applicability is possible, the intention is to revise this document and to introduce further cases of method application.
NOTE 3   As observed in the pre-normative research project [4], the vortex shaker method specified in this document provides a more energetic aerosolization than the rotating drum, the continuous drop and the small rotating drum methods specified in FprEN 17199 2 [1], FprEN 17199 3 [2] and FprEN 17199 4 [3], respectively. The vortex shaker method can better simulate high energy dust dispersion operations or processes where vibration or shaking is applied or even describe a worst case scenario in a workplace, including the (non-recommended) practice of cleaning contaminated worker coveralls and dry work surfaces with compressed air.
NOTE 4   Currently no classification scheme in terms of dustiness indices or emission rates has been established according to the vortex shaker method. Eventually, when a large number of measurement data has been obtained, the intention is to revise the document and to introduce such a classification scheme, if applicable.

  • Standard
    37 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides the methodology for measuring the dustiness of bulk materials that contain or release respirable NOAA or other respirable particles, under standard and reproducible conditions and specifies for that purpose the rotating drum method.
This document specifies the selection of instruments and devices and the procedures for calculating and presenting the results. It also gives guidelines on the evaluation and reporting of the data.
The methodology described in this document enables
a)   the measurement of the respirable, thoracic and inhalable dustiness mass fractions,
b)   the measurement of the number-based dustiness index of respirable particles in the particle size range from about 10 nm to about 1 µm,
c)   the measurement of the number-based emission rate of respirable particles in the particle size range from about 10 nm to about 1 µm,
d)   the measurement of the number-based particle size distribution of the released aerosol in the particle size range from about 10 nm to about 10 µm, and
e)   the collection of released airborne particles in the respirable fraction for subsequent observations and analysis by analytical electron microscopy.
NOTE 1   The particle size range described above is based on the equipment used during the pre-normative research [4].
This document is applicable to the testing of a wide range of bulk materials including powders, granules or pellets containing or releasing respirable NOAA or other respirable particles in either unbound, bound uncoated and coated forms.
NOTE 2   Currently no number-based classification scheme in terms of dustiness indices or emission rates have been established. Eventually, when a large number of measurement data has been obtained, the intention is to revise this document and to introduce such a classification scheme, if applicable.
NOTE 3   The method specified in this document has not been investigated for the measurement of the dustiness of bulk materials containing nanofibres and nanoplates in terms of number-based dustiness indices or emission rates. However, there is no reason to believe that the number-based dustiness indices or emission rates could not be measured with the rotating drum method using the set-up described in this document.

  • Standard
    24 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides the methodology for measuring and characterizing the dustiness of a bulk material that contains or releases respirable NOAA and other respirable particles. In addition, it specifies the environmental conditions, the sample handling procedure and the method of calculating and presenting the results. Guidance is given on the choice of method to be used.
The methodology described in this document enables:
a)   the quantification of dustiness in terms of health related dustiness mass fractions,
b)   the quantification of dustiness in terms of a number-based dustiness index  and a number-based emission rate, and
c)   the characterization of the aerosol from its particle size distribution and the morphology and chemical composition of its particles.
NOTE 1   Currently, no number-based classification scheme in terms of particle number has been established for particle dustiness release. Eventually, when a large enough number of measurement data has been obtained, the intention is to revise this document and to introduce a number-based classification scheme.
This document is applicable to all bulk materials, including powders, granules or pellets, containing or releasing respirable NOAA ad other respirable particles.
NOTE 2   The vortex shaker method specified in part 5 of this standard series has not yet been evaluated for pellets and granules.
NOTE 3   The rotating drum and continuous drop methods have not yet been evaluated for nanofibres and nanoplates.
This document does not provide methods for assessing the release of particles during handling or mechanical reduction by machining (e.g. crushing, cutting, sanding, sawing) of  nanocomposites.

  • Standard
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document describes the methodology for measuring and characterizing the dustiness of bulk materials that contain or release respirable NOAA or other respirable particles, under standard and reproducible conditions and specifies for that purpose the small rotating drum method.
This document specifies the selection of instruments and devices and the procedures for calculating and presenting the results. It also gives guidelines on the evaluation and reporting of the data.
The methodology described in this document enables
a)   the measurement of the respirable dustiness mass fraction,
b)   the measurement of the number-based dustiness index of respirable particles in the particle size range from about 10 nm to about 1 µm,
c)   the measurement of the initial number-based emission rate and the time to reach 50 % of the total particle number released during testing,
d)   the measurement of the number-based particle size distribution of the released aerosol in the particle size range from about 10 nm to about 10 µm,
e)   the collection of released airborne particles in the respirable dustiness mass fraction for subsequent observations and analysis by analytical electron microscopy.
NOTE 1   The particle size range described above is based on the equipment used during the pre-normative research [8].
This document is applicable to the testing of a wide range of bulk materials including powders, granules or pellets containing or releasing respirable NOAA or other respirable particles in either unbound, bound uncoated and coated forms.
NOTE 2   Currently no number-based classification scheme in terms of particle number and emission rate has been established for powder dustiness. Eventually, when a large number of measurement data has been obtained, the intention is to revise the document and to introduce such a classification scheme, if applicable.
NOTE 3   The small rotating drum method has been applied to test the dustiness of a range of materials including nanoparticle oxides, nanoflakes, organoclays, clays, carbon black, graphite, carbon nanotubes, organic pigments, and pharmaceutical active ingredients. The method has thereby been proven to enable testing of a many different materials that can contain nanomaterials as the main component.

  • Standard
    27 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides the methodology for measuring the dustiness of bulk materials that contain or release respirable NOAA or other respirable particles, under standard and reproducible conditions and specifies for that purpose the continuous drop method.
This document specifies the selection of instruments and devices and the procedures for calculating and presenting the results. It also gives guidelines on the evaluation and reporting of the data.
The methodology described in this document enables
a)   the measurement of the respirable and, optionally, the inhalable dustiness mass fractions,
b)   the measurement of the number-based dustiness index of particles in the particle size range from about 10 nm to  about 1 µm,
c)   the measurement of the number-based emission rate of particles in the particle size range from about 10 nm to about 1 µm,
d)   the measurement of the number-based particle size distribution of the released aerosol in the particle size range from about 10 nm to about 10 µm, and
e)   the collection of released airborne particles in the respirable dustiness mass fraction for subsequent observations and analysis by analytical electron microscopy.
This document is applicable to the testing of a wide range of bulk materials including powders, granules or pellets containing or releasing respirable NOAA or other respirable particles in either unbound, bound uncoated and coated forms.
NOTE 1   Currently no number-based classification scheme in terms of dustiness indices or emission rates have been established. Eventually, when a large number of measurement data has been obtained, the intention is to revise this document and to introduce such a classification scheme, if applicable.
NOTE 2   The methods specified in this document have not been evaluated for nanofibers and nanoplates.

  • Standard
    24 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard provides a guideline on the implications fo choice of particle metric to express the exposure to nanoaerosols, presents the principles of operation, advantages and disadvantages of various techniques that measure these aerosol metrics and desribes potential problems and limitations.

  • Standard
    40 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard describes different levels of assessment of inhalation exposure to nano-objects and their agglomerates and aggregates (NOAA), as well as the evaluation of the results either as stand-alone assessment or embedded in a tiered approach framework.
While the focus of this European Standard is on the assessment of nano-objects, the approach is applicable for exposure to the associated agglomerates and aggregates, i.e. NOAA, and particles released from nano composites and nano-enabled products.

  • Standard
    56 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard provides guidelines to assess workplace exposure by inhalation of nano-objects and their aggregates and agglomerates (NOAA). It contains guidance on the sampling and measurement strategies to adopt and methods for data evaluation.
While the focus of this document is on the assessment of nano-objects, the approach is also applicable for exposure to the associated aggregates and agglomerates, i.e. NOAA, and particles released from nanocomposites and nano-enabled products.

  • Standard
    56 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies the use of different metrics for the measurement of exposure by inhalation of NOAA during a basic assessment and a comprehensive assessment, respectively, as described in EN 17058 [1].
This document demonstrates the implications of choice of particle metric to express the exposure by inhalation to airborne NOAA, e.g. released from nanomaterials  and present the principles of operation, advantages and disadvantages of various techniques that measure the different aerosol metrics.
Potential problems and limitations are described and need to be addressed when occupational exposure limit values might be adopted in the future and compliance measurements will be carried out.
Specific information is mainly given for the following metrics/measurement techniques:
-   Number/Condensation Particle Counters by optical detection;
-   Number size distribution/differential mobility analysing systems by electrical mobility;
-   Surface area/electrical charge on available particle surface;
-   Mass/chemical analyses (e.g. Inductively Coupled Plasma atomic Mass Spectrometry (ICP-MS), X-Ray Fluorescence (XRF)) on size-selective samples (e.g. by impaction or diffusion).
This document is intended for those responsible for selecting measurement methods for occupational exposure to airborne NOAA.

  • Standard
    40 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies performance requirements and test methods for the evaluation of procedures for measuring metals and metalloids in airborne particles sampled onto a suitable collection substrate. This document specifies a method for estimating the uncertainties associated with random and systematic errors and combining them to calculate the expanded uncertainty of the measuring procedure as a whole, as prescribed in ISO 20581. This document is applicable to measuring procedures in which sampling and analysis is carried out in separate stages, but it does not specify performance requirements for collection, transport and storage of samples, since these are addressed in EN 13205-1 and ISO 15767. This document does not apply to procedures for measuring metals or metalloids present as inorganic gases or vapours (e.g. mercury, arsenic) or to procedures for measuring metals and metalloids in compounds that could be present as a particle/vapour mixture (e.g. arsenic trioxide).

  • Standard
    37 pages
    English language
    sale 15% off
  • Standard
    39 pages
    French language
    sale 15% off

This document is a standard for the analysis by Fourier-Transform Infrared (FTIR) of respirable crystalline silica (RCS) in samples of air collected on collection substrates (i.e. filters or foams). Three analytical approaches are described for whom the dust from the sample collection substrate is a) analysed directly on sampled filter, b) recovered, treated and deposited onto another filter for analysis, or c) recovered, treated and pressed into a potassium bromide (KBr) pellet for analysis. This document provides information on the instrumental parameters, the sensitivity of different sampling apparatus, the use of different filters and sample treatment to remove interference. In this document the expression RCS includes the most common polymorphs quartz and cristobalite. This document excludes the less common polymorphs of crystalline silica, such as tridymite. Under certain circumstances (i.e. low filter dust loads, low silica content), the analytical approach described in this method cannot fulfil the expanded uncertainty requirements of ISO 20581. Guidance for calculation of uncertainty for measurements of RCS is given in ISO 24095.

  • Standard
    30 pages
    English language
    sale 15% off
  • Standard
    36 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This CEN Technical Specification describes a systematic approach to assess potential occupational risks to nano-objects, and their agglomerates and aggregates (NOAA) arising from the production and use of nanomaterials and/or nano-enabled products. This approach provides guidance to identify exposure routes, exposed body parts and potential consequences of exposure with respect to skin uptake, local effects and inadvertent ingestion.
This Technical Specification also considers occupational use of nano-enabled personal care products, cosmetics and pharmaceuticals, but excludes deliberate or prescribed exposure to these products.
This Technical Specification is aimed at occupational hygienists, health and safety professionals, and researchers to assist recognization of potential risks, and their control.

  • Technical specification
    42 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This International Standard specifies a procedure for determination of the time-weighted average mass
concentration of mercury vapour and inorganic mercury compounds in workplace air. Mercury vapour
is collected on a solid sorbent using either a diffusive badge or a pumped sorbent tube. Particulate
inorganic mercury compounds, if present, are collected on a quartz fibre filter. Samples are analysed
using either cold vapour atomic absorption spectrometry (CVAAS) or cold vapour atomic fluorescence
spectrometry (CVAFS) after acid dissolution of the mercury collected.
This International Standard is applicable to the assessment of personal exposure to mercury vapour
and/or particulate inorganic mercury compounds in air for comparison with long-term or short-term
exposure limits for mercury and inorganic mercury compounds and for static (area) sampling.
The lower limit of the working range of the procedure is the quantification limit. This is determined
by the sampling and analysis methods selected by the user, but it is typically in the range 0,01 μg to
0,04 μg of mercury (see 13.1). The upper limit of the working range of the procedure is determined by
the capacity of the diffusive badge, sorbent tube or filter used for sample collection, but it is at least
30 μg of mercury (see 13.2). The concentration range of mercury in air for which this International
Standard is applicable is determined in part by the sampling method selected by the user, but it is also
dependent on the air sample volume.
The diffusive badge method is not applicable to measurements of mercury vapour when chlorine is
present in the atmosphere, e.g. in chloralkali works, but chlorine does not interfere with the pumped
sorbent tube method (see 13.12.1). Gaseous organomercury compounds could cause a positive
interference in the measurement of mercury vapour (see 13.12.2). Similarly, particulate organomercury
compounds and gaseous organomercury compounds adsorbed onto airborne particles could cause a
positive interference in the measurement of particulate inorganic mercury compounds (see 13.12.3).

  • Standard
    54 pages
    English language
    sale 15% off
  • Standard
    61 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    60 pages
    French language
    sale 15% off
  • Standard
    60 pages
    French language
    sale 15% off

This part of ISO 16258 specifies the analysis of RCS in samples of air collected on collection substrates
(i.e. filters or foams) by X-ray diffraction, when using an analytical approach where dust from the
sample collection substrate (i.e. filter or foam) is recovered, treated and deposited on another filter
for analysis by the instrument. This part of ISO 16258 includes information on the instrumental
parameters, sensitivity of different sampling apparatus, the use of different filters, sample treatment
to remove interference and correction for absorption effects. In this part of ISO 16258, the expression
respirable crystalline silica includes the most common polymorphs quartz and cristobalite. The less
common polymorphs of crystalline silica, such as tridymite, are not included within the scope of this
part of ISO 16258 because a standard reference material is not available. Under certain circumstances
(i.e. low filter dust loads, low silica content), the analytical approach described in this method may not
fulfil the expanded uncertainty requirements of EN 482[7]. Guidance for calculation of uncertainty for
measurements of RCS is given in ISO 24095.

  • Standard
    30 pages
    English language
    sale 15% off
  • Standard
    36 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    33 pages
    French language
    sale 15% off

This International Standard specifies terms and definitions that are related to the assessment of
workplace exposure (see 2.1.5.1) to chemical and biological agents (see 2.1.1.1). These are either
general terms or are specific to physical and chemical processes of air sampling, the analytical method
(see 2.3.3), or method performance.
The terms included are those that have been identified as being fundamental because their definition is
necessary to avoid ambiguity and ensure consistency of use.
This International Standard is applicable to all International Standards, ISO Technical Reports, ISO
Technical Specifications, and ISO Guides related to workplace atmospheres.

  • Standard
    29 pages
    English language
    sale 15% off
  • Standard
    34 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    34 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of ISO 16258 specifies the analysis of respirable crystalline silica (RCS) in samples of air
collected on 25 mm-filters by X-ray diffraction, when using an analytical approach where the dust on
the air sample filter is directly analysed by the instrument. This part of ISO 16258 includes information
on the instrumental parameters, sensitivity of different sampling apparatus, uses of different filters
and correction for absorption effects. In this part of ISO 16258, the expression RCS includes the most
common polymorphs quartz and cristobalite. The less common polymorphs of crystalline silica, such
as tridymite, are not included within the scope of this part of ISO 16258 because a standard reference
material is not available. Under certain circumstances (i.e. low filter dust loads, low silica content), the
analytical approach described in this method may not fulfil the expanded uncertainty requirements of
EN 482.[5] Guidance for calculation of uncertainty for measurements of RCS is given in ISO 24095.

  • Standard
    26 pages
    English language
    sale 15% off
  • Standard
    32 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    27 pages
    French language
    sale 15% off