This document specifies concepts and principles to establish a methodology for specifying level of information need and information deliveries in a consistent way when using building information modelling (BIM).
This document specifies the characteristics of different levels used for defining the detail and extent of information required to be exchanged and delivered throughout the life cycle of built assets. It gives guidelines for principles required to specify information needs.
The concepts and principles in this document can be applied for a general information exchange and while in progress, for a generally agreed way of information exchange between parties in a collaborative work process, as well as for an appointment with specified information delivery.
This document is applicable to the whole life cycle of any built asset, including strategic planning, initial design, engineering, development, documentation and construction, day-to-day operation, maintenance, refurbishment, repair and end-of-life.

  • Draft
    26 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies concepts and principles to establish a methodology for specifying level of information need and information deliveries in a consistent way when using building information modelling (BIM). This document specifies the characteristics of different levels used for defining the detail and extent of information required to be exchanged and delivered throughout the life cycle of built assets. It gives guidelines for principles required to specify information needs. The concepts and principles in this document can be applied for a general information exchange and while in progress, for a generally agreed way of information exchange between parties in a collaborative work process, as well as for an appointment with specified information delivery. This document is applicable to the whole life cycle of any built asset, including strategic planning, initial design, engineering, development, documentation and construction, day-to-day operation, maintenance, refurbishment, repair and end-of-life.

  • Standard
    23 pages
    English language
    sale 15% off
  • Standard
    24 pages
    French language
    sale 15% off

This document specifies requirements for defining structure and content for library objects to support
project inception, brief, design, tendering, construction, operations, use and demolition, supporting the
development of information throughout the process, in connection with building information modelling
(BIM) and the organization of the objects into libraries.
This document does the following:
— Establishes requirements for defining template objects, generic objects and product objects in datadriven
library and design processes.
— Establishes requirements for graphical symbols and other graphic conventions for use on drawings for the
built environment, giving principles and definitions for the symbolic and simplified visual presentation
of objects. It also describes a rationale of symbolism which establishes rules for the design of graphical
symbols and other graphic conventions and gives recommendations for the application of those rules
and the ways in which symbolism should be used.
— Defines the purposes of characterizing the shape and measurement of library objects.
— Defines the purposes of specifying and assessing properties for library objects. It defines the information
appropriate for specific uses, including specification of the desired outcome (typically by designers and
engineers) and the selection of identified products (typically by contractors and subcontractors). It also
gives recommendations for the application of assemblies in integrated BIM working.
— Refers to the Industry Foundation Classes (IFC) schema as a common object model.
This document is applicable to all professionals and service providers who produce and use library
objects with generic and product-specific information. This group includes, but is not limited to, product
manufacturers and suppliers, library authors, designers and engineers, contractors, owners, maintainers
and commissioners.

  • Standard
    47 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of prEN 1993-1-13
1.1.1   General
(1) This document gives supplementary provisions that extend the application of EN 1993-1-1 and EN 1993 1 5 to the design of rolled and welded steel sections with various shapes of web openings. The following cases are considered:
—   rolled or welded beams with widely spaced web openings;
—   rolled or welded beams with closely spaced web openings;
—   cellular beams with circular openings made by cutting and re-welding two parts of steel sections that may be different in dimensions;
—   beams with hexagonal and sinusoidal openings made by cutting and re-welding two parts of steel sections that may be different in dimensions.
(2) This document applies to uniform members with I or H profiles, which are symmetric about the weak axis. It does not apply to non-prismatic or curved beams although the same principles can apply.
(3) This document applies to steel beams with web openings that are subjected to sagging (positive) and to beams that are also subjected to hogging (negative) bending moments.
(4) This document covers the verification of the resistance at the openings and their effect on the global behaviour of the beam, including lateral torsional buckling.
(5) Alternative methods are presented for beams with circular openings and with sinusoidal openings in which the forces and resistances are calculated by increments around or along the openings and which are suitable for computer methods.
(6) This document applies to web slenderness, hw/tw, not exceeding 121ε. The local checks at and between adjacent openings apply to web slenderness up to this limit. Tension field action of plate girders is not part of the scope.
NOTE   The limit of 121ε corresponds to the section classification for a symmetric steel section and is used as a convenient limit for the application of this document, including asymmetric sections. The material parameter ε is defined in prEN 1993-1-1:2020, 5.2.5 (2).
(7) This document does not cover fatigue. In case of fatigue, EN 1993-1-9 applies.
(8) This document does not cover fire design. For the design in case of fire, EN 1993-1-2 applies.
(9) This document does not cover the buckling verification of members with web openings under axial force.
1.1.2   Shapes of openings
(1) The different shapes of openings that are considered in this document are shown in Figure 1.1.
Figure 1.1...
1.1.3   Stiffened openings
(1) This document also covers openings in the web of beams that are reinforced by longitudinal stiffeners and/or transverse stiffeners on one or both sides of the web, see Figure 1.2.
NOTE   The National Annex can give rules for alternative types of stiffener.
Figure 1.2...
1.2   Assumptions
(1) Unless specifically stated, EN 1990, EN 1991 (all parts) and EN 1993-1-1 apply.
(2) The design methods given in EN 1993-1-13 are applicable if
—   the execution quality is as specified in EN 1090-2, and
—   the construction materials and products used are as specified in the relevant parts of EN 1993 (all parts), or in the relevant material and product specifications.

  • Standard
    47 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document is applicable to construction processes where the usual surveyor’s control points are to be used not only for geometry control, but other applications such as laser scanning, localization of autonomous vehicles, photogrammetry, or VR/AR applications.
It provides a framework for making accurate survey point information available to digital applications and other trades. This includes the layout of markers, a naming convention for markers and a common digital interface for the read-out-data of markers.
The document builds on existing standards and conventions and collates them where applicable.
The document is intended to be used on construction sites and in existing buildings by planners (architects, civil engineers,…), surveyors, construction companies, software providers, UXV operators, BIM stakeholders, and on site machines/devices/systems.
The survey point information may be utilised not only during the construction but also during maintenance throughout the life of the facility.

  • Technical report
    24 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of prEN 1993-1-3
(1) This document provides rules for structural design of cold-formed steel members and sheeting.
(2) This document applies to cold-formed steel products made from coated or uncoated hot- or cold-rolled sheet or strip, which have been cold-formed by processes such as roll-forming or press braking. It also covers sheeting and members which are curved during fabrication by continuous bending or roll-forming. Sheeting which has the curvature created by crushing the inner flanges is not included. This document is also applicable to the design of profiled steel sheeting for composite steel and concrete slabs at the construction stage, see EN 1994. The execution of steel structures made of cold-formed steel members and sheeting is covered in EN 1090 4. Provisions for bolted connections are provided in EN 1090 2.
NOTE   The rules in prEN 1993 1 3 complement the rules in other parts of EN 1993 1.
(3) Methods are also given for stressed-skin design, using steel sheeting as a structural diaphragm.
(4) This document does not apply to cold-formed circular and rectangular structural hollow sections supplied to EN 10219, for which reference is made to EN 1993 1 1 and EN 1993 1 8.
(5) This document provides methods for design by calculation and for design assisted by testing. The methods for design by calculation apply only within the stated ranges of material properties and geometric proportions, for which sufficient experience and test evidence is available. These limitations do not apply to design assisted by testing.
1.2   Assumptions
(1) Unless specifically stated, EN 1990, EN 1991 (all parts) and EN 1993 1 1 apply.
(2) The design methods given in prEN 1993 1 3 are applicable if:
-   the execution quality is as specified in EN 1090 4, the execution quality of bolted connections is as specified in EN 1090 2, and
-   the construction materials and products are as specified in the relevant parts of EN 1993 (all parts), or in the relevant material and product specifications.
(2) EN 1993 is intended to be used in conjunction with:
-   the parts of EN 1992 to EN 1999 where steel structures or steel components are referred to within those documents;
-   EN, EAD and ETA standards for construction products relevant to steel structures.

  • Standard
    209 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of prEN 1993-1-2
(1) This document provides rules for the design of steel structures for the accidental situation of fire exposure. This Part of EN 1993 only identifies differences from, or supplements to, normal temperature design.
(2) This document applies to steel structures required to fulfil a loadbearing function.
(3) This document does not include rules for separating function.
(4) This document gives principles and application rules for the design of structures for specified requirements in respect of the aforementioned function and the levels of performance.
(5) This document applies to structures, or parts of structures, that are within the scope of EN 1993 1 1 and are designed accordingly.
(6) This document is intended to be used in conjunction with EN 1991-1-2, EN 1993-1-1, EN 1993 1-3, EN 1993-1-4, EN 1993-1-5, EN 1993-1-6, EN 1993-1-7, EN 1993-1-8, EN 1993-1-11, EN 1993-1-13 or EN 1993-1-14.
1.2   Assumptions
(1) Unless specifically stated, EN 1990, EN 1991(all parts) and EN 1993-1-1 apply.
(2) The design methods given in prEN 1993-1-2 are applicable if
-   the execution quality is as specified in EN 1090-2 and/or EN 1090-4, and
-   the construction materials and products used are as specified in prEN 1993-1-1:2020, Table 5.1 and Table 5.2 and in prEN 1993-1-3:2022, Table 5.1 and Table 5.2, or in the relevant material and product specifications.
(3) In addition to the general assumptions of EN 1990 the following assumptions apply:
-   the choice of the relevant design fire scenario is made by appropriate qualified and experienced personnel, or is given by the relevant national regulation;
-   any fire protection measure taken into account in the design will be adequately maintained.

  • Standard
    97 pages
    English language
    sale 10% off
    e-Library read for
    1 day

(1) EN 1993-1-5 gives design requirements of stiffened and unstiffened plates which are subject to inplane
forces.
(2) Effects due to shear lag, in-plane load introduction and plate buckling for I-section girders and box
girders are covered. Also covered are plated structural components subject to in-plane loads as in tanks and
silos. The effects of out-of-plane loading are outside the scope of this document.
NOTE 1: The rules in this part complement the rules for class 1, 2, 3 and 4 sections, see EN 1993-1-1.
NOTE 2: For the design of slender plates which are subject to repeated direct stress and/or shear and also
fatigue due to out-of-plane bending of plate elements (breathing) see EN 1993-2 and EN 1993-6.
NOTE 3: For the effects of out-of-plane loading and for the combination of in-plane effects and out-of-plane
loading effects see EN 1993-2 and EN 1993-1-7.
NOTE 4: Single plate elements may be considered as flat where the curvature radius r satisfies:
t
a
r
2
³ (1.1)
where a is the panel width
t is the plate thickness

  • Standard
    82 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1991 1 2
(1)   The methods given in this Eurocode are applicable to buildings and civil engineering works, with a fire load related to the building and its occupancy.
(2)   EN 1991 1 2 deals with thermal and mechanical actions on structures exposed to fire. It is intended to be used in conjunction with the fire design Parts of EN 1992 to EN 1996 and EN 1999 which give rules for designing structures for fire resistance.
(3)   EN 1991 1 2 contains thermal actions either nominal or physically based. More data and models for physically based thermal actions are given in annexes.
(4)   EN 1991 1 2 does not cover the assessment of the damage of a structure after a fire.
(5)   EN 1991 1 2 does not cover supplementary requirements concerning, for example:
-   the possible installation and maintenance of sprinkler systems;
-   conditions on occupancy of building or fire compartment;
-   the use of approved insulation and coating materials, including their maintenance.
1.2   Assumptions
(1)   In addition to the general assumptions of EN 1990 the following assumptions apply:
-   any active and passive fire protection systems taken into account in the design will be adequately maintained;
-   the choice of the relevant design fire scenario is made by appropriate qualified and experienced personnel, or is given by the relevant national regulation.

  • Standard
    75 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document supports the data quality assessment and selection of data for product-level Environmental Product Declarations (EPD) according to the core product category rules of EN 15804 and for the environmental performance assessment of buildings according to prEN 15978 1 in a consistent way. It can also be used to assess and select data for the environmental assessment of civil engineering works.
It defines data quality requirements with respect to temporal, technological and geographic representativeness for the data used to calculate the LCA based indicator results of the EPD and for construction works when applying EPD, life cycle inventory data or other LCA based information and generates a hierarchy to support the selection of the most appropriate data with regard to data quality. It also addresses the reporting of data quality at product and building level.

  • Standard
    86 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1993 1 8
(1) This document gives design methods for the design of joints subject to predominantly static loading using all steel grades from S235 up to and including S700 unless otherwise stated in individual clauses.
1.2   Assumptions
(1) The assumptions of EN 1990 and EN 1993-1-1 apply to this document.
(2) The design methods given in this part of EN 1993 are applicable when the quality of construction is as specified in EN 1090 2 or EN 1090 4, and that the construction materials and products used are those specified in the relevant parts of EN 1993, or in the relevant material and product specifications.

  • Standard
    216 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies requirements for defining structure and content for library objects to support project inception, brief, design, tendering, construction, operations, use and demolition, supporting the development of information throughout the process, in connection with building information modelling (BIM) and the organization of the objects into libraries.
This document does the following:
Establishes requirements for defining template objects, generic objects and product objects in data-driven library and design processes.
Establishes requirements for graphical symbols and other graphic conventions for use on drawings for the built environment, giving principles and definitions for the symbolic and simplified visual presentation of objects. It also describes a rationale of symbolism which establishes rules for the design of graphical symbols and other graphic conventions and gives recommendations for the application of those rules and the ways in which symbolism should be used.
Defines the purposes of characterizing the shape and measurement of library objects.
Defines the purposes of specifying and assessing properties for library objects. It defines the information appropriate for specific uses, including specification of the desired outcome (typically by designers and engineers) and the selection of identified products (typically by contractors and subcontractors). It also gives recommendations for the application of assemblies in integrated BIM working.
Refers to the Industry Foundation Classes (IFC) schema as a common object model.
This document is applicable to all professionals and service providers who produce and use library objects with generic and product-specific information. This group includes, but is not limited to, product manufacturers and suppliers, library authors, designers and engineers, contractors, owners, maintainers and commissioners.

  • Standard
    47 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies requirements for defining structure and content for library objects to support project inception, brief, design, tendering, construction, operations, use and demolition, supporting the development of information throughout the process, in connection with building information modelling (BIM) and the organization of the objects into libraries. This document does the following: Establishes requirements for defining template objects, generic objects and product objects in data-driven library and design processes. Establishes requirements for graphical symbols and other graphic conventions for use on drawings for the built environment, giving principles and definitions for the symbolic and simplified visual presentation of objects. It also describes a rationale of symbolism which establishes rules for the design of graphical symbols and other graphic conventions and gives recommendations for the application of those rules and the ways in which symbolism should be used. Defines the purposes of characterizing the shape and measurement of library objects. Defines the purposes of specifying and assessing properties for library objects. It defines the information appropriate for specific uses, including specification of the desired outcome (typically by designers and engineers) and the selection of identified products (typically by contractors and subcontractors). It also gives recommendations for the application of assemblies in integrated BIM working. Refers to the Industry Foundation Classes (IFC) schema as a common object model. This document is applicable to all professionals and service providers who produce and use library objects with generic and product-specific information. This group includes, but is not limited to, product manufacturers and suppliers, library authors, designers and engineers, contractors, owners, maintainers and commissioners.

  • Standard
    37 pages
    English language
    sale 15% off
  • Standard
    40 pages
    French language
    sale 15% off

1.1   Scope of prEN 1993-1-3
(1) This document provides rules for structural design of cold-formed steel members and sheeting.
(2) This document applies to cold-formed steel products made from coated or uncoated hot- or cold-rolled sheet or strip, which have been cold-formed by processes such as roll-forming or press braking. It also covers sheeting and members which are curved during fabrication by continuous bending or roll-forming. Sheeting which has the curvature created by crushing the inner flanges is not included. This document is also applicable to the design of profiled steel sheeting for composite steel and concrete slabs at the construction stage, see EN 1994. The execution of steel structures made of cold-formed steel members and sheeting is covered in EN 1090 4. Provisions for bolted connections are provided in EN 1090 2.
NOTE   The rules in prEN 1993 1 3 complement the rules in other parts of EN 1993 1.
(3) Methods are also given for stressed-skin design, using steel sheeting as a structural diaphragm.
(4) This document does not apply to cold-formed circular and rectangular structural hollow sections supplied to EN 10219, for which reference is made to EN 1993 1 1 and EN 1993 1 8.
(5) This document provides methods for design by calculation and for design assisted by testing. The methods for design by calculation apply only within the stated ranges of material properties and geometric proportions, for which sufficient experience and test evidence is available. These limitations do not apply to design assisted by testing.
1.2   Assumptions
(1) Unless specifically stated, EN 1990, EN 1991 (all parts) and EN 1993 1 1 apply.
(2) The design methods given in prEN 1993 1 3 are applicable if:
-   the execution quality is as specified in EN 1090 4, the execution quality of bolted connections is as specified in EN 1090 2, and
-   the construction materials and products are as specified in the relevant parts of EN 1993 (all parts), or in the relevant material and product specifications.
(2) EN 1993 is intended to be used in conjunction with:
-   the parts of EN 1992 to EN 1999 where steel structures or steel components are referred to within those documents;
-   EN, EAD and ETA standards for construction products relevant to steel structures.

  • Standard
    209 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of FprEN 1993-1-8
(1) FprEN 1993-1-8 provides rules for structural design of joints subject to predominantly static loading using all steel grades from S235 up to and including S700, unless otherwise stated in individual clauses.
NOTE   As an alternative to the design rules provided in Clause 9, the design rules given in CEN/TR 1993-1-801 "Eurocode 3: Design of steel structures - Part 1 801: Hollow section joints design according to the component method" can be used.
(2) The provisions in this document apply to steels complying with the requirements given in EN 1993 1 1 and to material thickness greater than or equal to 3 mm, unless otherwise stated in individual clauses.
1.2   Assumptions
(1) Unless specifically stated, EN 1990, EN 1991 (all parts) and the other relevant parts of EN 1993-1 (all parts) apply.
(2) The design methods given in FprEN 1993-1-8 are applicable if:
-   the execution quality is as specified in EN 1090-2,
and
-   the construction materials and products used are as specified in the relevant parts of EN 1993 (all parts), or in the relevant material and product specifications.

  • Standard
    216 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of prEN 1993-1-2
(1) This document provides rules for the design of steel structures for the accidental situation of fire exposure. This Part of EN 1993 only identifies differences from, or supplements to, normal temperature design.
(2) This document applies to steel structures required to fulfil a loadbearing function.
(3) This document does not include rules for separating function.
(4) This document gives principles and application rules for the design of structures for specified requirements in respect of the aforementioned function and the levels of performance.
(5) This document applies to structures, or parts of structures, that are within the scope of EN 1993 1 1 and are designed accordingly.
(6) This document is intended to be used in conjunction with EN 1991-1-2, EN 1993-1-1, EN 1993 1-3, EN 1993-1-4, EN 1993-1-5, EN 1993-1-6, EN 1993-1-7, EN 1993-1-8, EN 1993-1-11, EN 1993-1-13 or EN 1993-1-14.
1.2   Assumptions
(1) Unless specifically stated, EN 1990, EN 1991(all parts) and EN 1993-1-1 apply.
(2) The design methods given in prEN 1993-1-2 are applicable if
-   the execution quality is as specified in EN 1090-2 and/or EN 1090-4, and
-   the construction materials and products used are as specified in prEN 1993-1-1:2020, Table 5.1 and Table 5.2 and in prEN 1993-1-3:2022, Table 5.1 and Table 5.2, or in the relevant material and product specifications.
(3) In addition to the general assumptions of EN 1990 the following assumptions apply:
-   the choice of the relevant design fire scenario is made by appropriate qualified and experienced personnel, or is given by the relevant national regulation;
-   any fire protection measure taken into account in the design will be adequately maintained.

  • Standard
    97 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1993-1-5
(1) This document provides rules for structural design of stiffened and unstiffened nominally flat plates which are subject to in-plane forces.
(2) Non-uniform stress distributions due to shear lag, in-plane load introduction and plate buckling are covered. The effects of out-of-plane loading are outside the scope of this document.
NOTE 1   The rules in this part complement the rules for class 1, 2, 3 and 4 sections, see EN 1993-1-1.
NOTE 2   For the design of slender plates which are subject to repeated direct stress and/or shear and also fatigue due to out-of-plane bending of plate elements ("breathing"), see EN 1993-2 and EN 1993-6.
NOTE 3   For the effects of out-of-plane loading and for the combination of in-plane effects and out-of-plane loading effects, see EN 1993-2 and EN 1993-1-7.
(3) Single plate elements are considered as nominally flat where the curvature radius r in the direction perpendicular to the compression satisfies, as illustrated in Figure 1.1:
r≥b^2/t   (1.1)
where
b   is the panel width;
t   is the plate thickness.
Figure 1.1 - Definition of plate curvature
1.2   Assumptions
(1) Unless specifically stated, EN 1990, the EN 1991 series and EN 1993-1-1 apply.
(2) The design methods given in EN 1993-1-5 are applicable if
-   the execution quality is as specified in EN 1090-2 and
-   the construction materials and products used are as specified in the relevant parts of the EN 1993 series or in the relevant material product specifications.

  • Standard
    82 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1991 1 2
(1)   The methods given in this Eurocode are applicable to buildings and civil engineering works, with a fire load related to the building and its occupancy.
(2)   EN 1991 1 2 deals with thermal and mechanical actions on structures exposed to fire. It is intended to be used in conjunction with the fire design Parts of EN 1992 to EN 1996 and EN 1999 which give rules for designing structures for fire resistance.
(3)   EN 1991 1 2 contains thermal actions either nominal or physically based. More data and models for physically based thermal actions are given in annexes.
(4)   EN 1991 1 2 does not cover the assessment of the damage of a structure after a fire.
(5)   EN 1991 1 2 does not cover supplementary requirements concerning, for example:
-   the possible installation and maintenance of sprinkler systems;
-   conditions on occupancy of building or fire compartment;
-   the use of approved insulation and coating materials, including their maintenance.
1.2   Assumptions
(1)   In addition to the general assumptions of EN 1990 the following assumptions apply:
-   any active and passive fire protection systems taken into account in the design will be adequately maintained;
-   the choice of the relevant design fire scenario is made by appropriate qualified and experienced personnel, or is given by the relevant national regulation.

  • Standard
    75 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document supports the data quality assessment and selection of data for product-level Environmental Product Declarations (EPD) according to the core product category rules of EN 15804 and for the environmental performance assessment of buildings according to prEN 15978 1 in a consistent way. It can also be used to assess and select data for the environmental assessment of civil engineering works according to EN 17472.
It defines data quality requirements with respect to temporal, technological and geographical representativeness for the data used to calculate the Life Cycle Assessment (LCA) based indicator results of the EPD and for construction works when applying EPD, life cycle inventory data or other LCA based information, and generates a hierarchy to support the selection of the most appropriate data with regard to data quality. It also addresses the reporting of data quality at product and building level.

  • Standard
    86 pages
    English language
    sale 10% off
    e-Library read for
    1 day

(1)   This document defines imposed loads (models and representative values) associated with road traffic, pedestrian actions and rail traffic which include, when relevant, dynamic effects and centrifugal, braking and acceleration actions and actions for accidental design situations.
(2)   Imposed loads defined in this document are applicable for the design of new bridges, including piers, abutments, upstand walls, wing walls and flank walls, noise barriers, canopies etc., and their foundations. Where appropriate, the loads can also be considered as a basis for assessment or modification of existing structures in combination with complementary conditions if necessary.
(3)   The load models and values given in this document are also applicable for the design of retaining walls adjacent to roads and railway lines and the design of earthworks subject to road or rail traffic actions. This document also provides applicability conditions for specific load models.
(4)   This document is intended to be used with prEN 1990, the other parts of the EN 1991 series and the EN 1992 series to EN 1999 series for the design of structures.

  • Standard
    160 pages
    English language
    sale 10% off
    e-Library read for
    1 day

(1) This document provides simplified calculation methods to facilitate the design of the following
unreinforced masonry walls, subject to certain conditions of application:
— walls subjected to vertical and wind loading;
— walls subjected to concentrated loads;
— shear walls;
— basement walls subjected to lateral earth pressure and vertical loading;
— walls subjected to lateral loading but not subjected to vertical loading.
NOTE 1 For those types of masonry structures or parts of structures not covered by (1), the design can be based
on EN 1996-1-1.
NOTE 2 The rules given in this document are consistent with those given in EN 1996-1-1 but are more
conservative in respect of the conditions and limitations of their use.
(2) This document applies only to those masonry structures, or parts thereof, that are described in
EN 1996-1-1 and EN 1996-2.
(3) The simplified calculation methods given in this document do not cover the design of double-leaf
walls.
(4) The simplified calculation methods given in this document do not cover the design for accidental
situations.

  • Standard
    39 pages
    English language
    sale 10% off
    e-Library read for
    1 day

(1) This document deals with the design of concrete structures for the accidental situation of fire
exposure and is intended to be used in conjunction with EN 1992-1-1 and EN 1991-1-2:—1. This
document identifies differences from, or supplements to, normal temperature design.
(2) This document applies to concrete structures required to fulfil a loadbearing function, separating
function, insulation function or all of them.
(3) This document gives principles and application rules for the design of structures for specified
requirements in respect of the aforementioned functions and the levels of performance.
(4) This document applies to structures, or parts of structures, that are within the scope of
EN 1992-1-1 and are designed accordingly.

  • Standard
    88 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This standard gives the general basis for the design of structures in plain, reinforced and prestressed concrete made with normal weight, lightweight and heavyweight aggregates together with specific rules for buildings, bridges and civil engineering structures, including temporary structures, under temperature conditions between –40 °C and +100 °C generally. It complies with the principles and requirements for the safety, serviceability, durability and robustness of structures, the basis of their design and verification that are given in EN 1990 Basis of structural and geotechnical design.
EN 1992 is only concerned with the requirements for resistance, serviceability, durability, robustness and fire resistance of concrete structures. Other requirements, e.g. concerning thermal or sound insulation, are not considered.
This Part 1-1 does not cover:
− resistance to fire (see EN 1992-1-2),
− fastenings in concrete (see EN 1992-4),
− seismic design (see EN 1998),
− particular aspects of special types of civil engineering works (such as dams, pressure
vessels),
− design with galvanised reinforcing steel,
− structures made with no-fines concrete, aerated or cellular concrete, lightweight aggregate
concrete with open structure components,
− structures containing structural steel sections (see EN 1994 for composite steel-concrete
structures),
− Structural parts made of concrete with D_lower < 8 mm, unless otherwise stated in the code.

  • Standard
    402 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides requirements for the statistical distribution of material properties and dimensional parameters of structural steel products, allowing the proof of consistency of the safety approach of the properties of the product standards compared to those of the design standards for the design of steel buildings. It also describes the evaluation procedures for the verification of the compliance of structural steels with these requirements.
This document applies for the following structural steel products intended for buildings: hot rolled and welded I- and H-sections, hot rolled plates rolled on a reversing mill, sheets/plates cut from hot-rolled wide strip and hot finished and cold formed welded structural hollow sections.
It is intended to be used as a background document to support the assessment of the partial factors for steel constructions (as detailed in EN 1993-1-1).
This document can be used for neither product ordering nor certification.
NOTE   The background of statistical requirements on mechanical properties and geometrical parameters is detailed in EN 1993-1-1:2022, Annex E.

  • Technical specification
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1996-3
(1)   This document provides simplified calculation methods to facilitate the design of the following unreinforced masonry walls, subject to certain conditions of application:
-   walls subjected to vertical and wind loading;
-   walls subjected to concentrated loads;
-   shear walls;
-   basement walls subjected to lateral earth pressure and vertical loading;
-   walls subjected to lateral loading but not subjected to vertical loading.
NOTE 1   For those types of masonry structures or parts of structures not covered by (1), the design can be based on EN 1996-1-1.
NOTE 2   The rules given in this document are consistent with those given in EN 1996-1-1 but are more conservative in respect of the conditions and limitations of their use.
(2) This document applies only to those masonry structures, or parts thereof, that are described in EN 1996-1-1 and EN 1996-2.
(3) The simplified calculation methods given in this document do not cover the design of double-leaf walls.
(4) The simplified calculation methods given in this document do not cover the design for accidental situations.
1.2   Assumptions
(1) The assumptions of EN 1990 apply to this document.
(2) This document is intended to be used, for direct application, together with EN 1990, the EN 1991 series, EN 1996 1-1, EN 1996-1-2 and EN 1996-2.
(3) The rules given in this document assume that concrete floors are designed according to EN 1992-1-1.

  • Standard
    39 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1    Scope of FprEN 1992-1-1
(1)   This document gives the general basis for the design of structures in plain, reinforced and prestressed concrete made with normal weight, lightweight and heavyweight aggregates. It gives specific rules for buildings, bridges and civil engineering structures, including temporary structures; additional requirements specific to bridges are given in Annex K. The rules are valid under temperature conditions between −40 °C and +100 °C generally. This document complies with the principles and requirements for the safety, serviceability, durability and robustness of structures, the basis of their design and verification that are given in EN 1990.
(2)   This document is only concerned with the requirements for resistance, serviceability, durability, robustness and fire resistance of concrete structures. Other requirements, e.g. concerning thermal or sound insulation, are not considered.
(3)    This document does not cover:
-   resistance to fire (see EN 1992 1 2);
-   fastenings in concrete (see EN 1992 4);
-   seismic design (see EN 1998 (all parts));
-   particular aspects of special types of civil engineering works (such as dams, pressure vessels);
-   structures made with no-fines concrete, aerated or cellular concrete, lightweight aggregate concrete with open structure components;
-   structures containing steel sections considered in design (see EN 1994 (all parts)) for composite steel and concrete structures;
-   structural parts made of concrete with a smallest value of the upper sieve aggregate size Dlower < 8 mm (or if known Dmax < 8 mm) unless otherwise stated in this Eurocode.
1.2   Assumptions
(1)   The assumptions of EN 1990 apply to FprEN 1992-1-1.
(2)   It is assumed that the requirements for execution and workmanship given in EN 13670 are complied with.

  • Standard
    402 pages
    English language
    sale 10% off
    e-Library read for
    1 day

(1)   This document defines imposed loads (models and representative values) associated with road traffic, pedestrian actions and rail traffic which include, when relevant, dynamic effects and centrifugal, braking and acceleration actions and actions for accidental design situations.
(2)   Imposed loads defined in this document are applicable for the design of new bridges, including piers, abutments, upstand walls, wing walls and flank walls, noise barriers, canopies etc., and their foundations. Where appropriate, the loads can also be considered as a basis for assessment or modification of existing structures in combination with complementary conditions if necessary.
(3)   The load models and values given in this document are also applicable for the design of retaining walls adjacent to roads and railway lines and the design of earthworks subject to road or rail traffic actions. This document also provides applicability conditions for specific load models.
(4)   This document is intended to be used with prEN 1990, the other parts of the EN 1991 series and the EN 1992 series to EN 1999 series for the design of structures.

  • Standard
    160 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of prEN 1992 1 2
(1)   This document deals with the design of concrete structures for the accidental situation of fire exposure and is intended to be used in conjunction with prEN 1992 1 1 and EN 1991 1 2. This document identifies differences from, or supplements to, normal temperature design.
(2)   This document applies to concrete structures required to fulfil a loadbearing function, separating function or both.
(3)   This document gives principles and application rules for the design of structures for specified requirements in respect of the aforementioned functions and the levels of performance.
(4)   This document applies to structures, or parts of structures, that are within the scope of prEN 1992 1 1 and are designed accordingly.
(5)   The methods given in this document are applicable to normal weight concrete up to strength class C100/115 and lightweight concrete up to strength class LC50/60.
1.2   Assumptions
(1)   In addition to the general assumptions of prEN 1990 the following assumptions apply:
-   the choice of the relevant design fire scenario is made by appropriate qualified and experienced personnel or is given by the relevant national regulation;
-   any fire protection measure taken into account in the design will be adequately maintained.

  • Standard
    88 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides requirements for the statistical distribution of material properties and dimensional parameters of structural steel products, allowing the proof of consistency of the safety approach of the properties of the product standards compared to those of the design standards for the design of steel buildings. It also describes the evaluation procedures for the verification of the compliance of structural steels with these requirements.
This document applies for the following structural steel products intended for buildings: hot rolled and welded I- and H-sections, hot rolled plates rolled on a reversing mill, sheets/plates cut from hot-rolled wide strip and hot finished and cold formed welded structural hollow sections.
It is intended to be used as a background document to support the assessment of the partial factors for steel constructions (as detailed in EN 1993-1-1).
This document can be used for neither product ordering nor certification.
NOTE   The background of statistical requirements on mechanical properties and geometrical parameters is detailed in EN 1993-1-1:2022, Annex E.

  • Technical specification
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies and gives guidance on the performance and condition assessment process of
existing physical assets in the utilization stage (from commissioning to the end of life).
This document relates to assessment of physical assets within the building and civil engineering sector;
however, it can also be used in other sectors where applicable.
This document specifies a generic framework for assessment, specification of requirements, the
observation process and gathering of the required information in order to sustain informed asset
management decision making.
This document is an umbrella standard and refers to other standards for detailed methods. It does not
replace any other standard, but is an addition to provide a system for the assessment work.
NOTE 1 The references to other standards only relate to building and civil engineering works. There are no
references for production machinery and equipment, offshore, electrical and mechanical assets, mobile assets and
non-tangible assets.
NOTE 2 In this document the physical assets will be referred to as assets, except in the Clause Terms and
definitions.
The project is based on NS 3424:2012 (Standards Norway)

  • Standard
    49 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies and gives guidance on the performance and condition assessment process of existing physical assets in the utilization stage (from commissioning to the end of life).
This document relates to assessment of physical assets within the building and civil engineering sector; however, it can also be used in other sectors where applicable.
This document specifies a generic framework for assessment, specification of requirements, the observation process and gathering of the required information in order to sustain informed asset management decision making.
This document is an umbrella standard and refers to other standards for detailed methods. It does not replace any other standard, but is an addition to provide a system for the assessment work.
NOTE 1   The references to other standards only relate to building and civil engineering works. There are no references for production machinery and equipment, offshore, electrical and mechanical assets, mobile assets and non-tangible assets.
NOTE 2   In this document the physical assets will be referred to as assets, except in the Clause Terms and definitions.

  • Standard
    49 pages
    English language
    sale 10% off
    e-Library read for
    1 day

(1) This document establishes principles and requirements for the safety, serviceability, robustness and durability of structures, including geotechnical structures, appropriate to the consequences of failure.
(2) This document is intended to be used in conjunction with the other Eurocodes for the design of buildings and civil engineering works, including temporary structures.
(3) This document describes the basis for structural and geotechnical design and verification according to the limit state principle.
(4) Design and verification in this document are based primarily on the partial factor method.
NOTE 1   Alternative methods are given in the other Eurocodes for specific applications.
NOTE 2   The Annexes to this document also provide general guidance concerning the use of alternative methods.
(5) This document is applicable for:
—   structural appraisal of existing construction;
—   developing the design of repairs, improvements and alterations;
—   assessing changes of use.
(6) This document is applicable for the design of structures where materials or actions outside the scope of EN 1991 to EN 1999 are involved.
NOTE   In this case additional or amended provisions can be necessary.

  • Standard
    172 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1999-1-4
(1)P   This document gives design requirements for cold-formed trapezoidal aluminium sheeting. It applies to cold-formed aluminium products made from hot rolled or cold rolled sheet or strip that have been cold-formed by such processes as cold-rolled forming or press-breaking.
NOTE 1   The rules in this part complement the rules in other parts of EN 1999-1.
NOTE 2    The execution of aluminium structures made of cold-formed structures for roof, ceiling, floor and wall applications is covered in EN 1090-5.
(2)   This document gives methods for stressed-skin design using aluminium sheeting as a structural diaphragm.
(3)   This document does not apply to cold-formed aluminium profiles like C- and Z- profiles nor cold-formed and welded circular or rectangular hollow sections.
(4)   This document gives methods for design by calculation and for design assisted by testing. The methods for the design by calculation apply only within stated ranges of material properties and geometrical properties for which sufficient experience and test evidence is available. These limitations do not apply to design by testing.
(5)   This document does not cover load arrangement for loads during execution and maintenance.
1.2   Assumptions
(1) For the design of new structures, prEN 1999 (all parts) is intended to be used, for direct application, together with EN 1990, EN 1991, EN 1992, EN 1993, EN 1994, EN 1995, EN 1997 and EN 1998.
EN 1999 (all parts) is intended to be used in conjunction with:
-   European Standards for construction products relevant for aluminium structures
-   EN 1090-1: Execution of steel structures and aluminium structures – Part 1: Requirements for conformity assessment of structural components
-   EN 1090-5: Technical requirements for cold-formed structural aluminium elements and cold-formed structures for roof, ceiling, floor and wall applications

  • Standard
    83 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1999 1 5
(1)   EN 1999 1 5 applies to the structural design of aluminium structures, stiffened and unstiffened, that have the form of a shell of revolution or of a round panel in monocoque structures.
(2)   EN 1999 1 5 covers additional provisions to those given in the relevant parts of EN 1999 for design of aluminium structures.
NOTE    Supplementary information for certain types of shells is given in EN 1993 1 6 and the relevant application parts which include:
-   Part 3-1 for towers and masts;
-   Part 3-2 for chimneys;
-   Part 4-1 for silos;
-   Part 4-2 for tanks;
-   Part 4-3 for pipelines.
(4)   The provisions in EN 1999 1 5 apply to axisymmetric shells (cylinders, cones, spheres) and associated circular or annular plates, beam section rings and stringer stiffeners, where they form part of the complete structure.
(5)   Single shell panels (cylindrical, conical or spherical) are not explicitly covered by EN 1999 1 5. However, the provisions can be applicable if the appropriate boundary conditions are duly taken into account.
(6)   Types of shell walls covered in EN 1999 1 5 can be (see Figure 1.1):
-   shell wall constructed from flat rolled sheet with adjacent plates connected with butt welds, termed ‘isotropic’;
-   shell wall with lap joints formed by connecting adjacent plates with overlapping sections, termed lap-jointed;
-   shell wall with stiffeners attached to the outside, termed ‘externally stiffened’ irrespective of the spacing of stiffeners;
-   shell wall with the corrugations running up the meridian, termed ‘axially corrugated’;
-   shell wall constructed from corrugated sheets with the corrugations running around the shell circumference, termed ‘circumferentially corrugated’.
(7)   The provisions of EN 1999 1 5 are intended to be applied within the temperature range defined in EN 1999 1 1. The maximum temperature is restricted so that the influence of creep can be neglected. For structures subject to elevated temperatures associated with fire see EN 1999 1 2.
(8)   EN 1999 1 5 does not cover the aspect of leakage.
1.2   Assumptions
(1)   The general assumptions of EN 1990 apply.
(2)   The provisions of EN 1999 1 1 apply.
(3)   The design procedures are valid only when the requirements for execution in EN 1090 3 or other equivalent requirements are complied with.
(4)   For the design of new structures, prEN 1999 (all parts) is intended to be used, for direct application, together with EN 1990, EN 1991, EN 1992, EN 1993, EN 1994, EN 1995, EN 1997 and EN 1998.
(5)   EN 1999 (all parts) is intended to be used in conjunction with:
-   European Standards for construction products relevant for aluminium structures
-   EN 1090 1: Execution of steel structures and aluminium structures - Part 1: Requirements for conformity assessment of structural components
-   EN 1090 3: Execution of steel structures and aluminium structures – Part 3: Technical requirements for aluminium structures

  • Standard
    75 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1999-1-2
(1)   EN 1999-1-2 deals with the design of aluminium structures for the accidental situation of fire exposure and is intended to be used in conjunction with EN 1999-1-1, EN 1999-1-2, EN 1999-1-3, EN 1999-1-4 and EN 1999-1-5. This document only identifies differences from, or supplements to, normal temperature design.
(2)   EN 1999-1-2 applies to aluminium structures required to fulfil a load bearing function.
(3)   EN 1999-1-2 gives principles and application rules for the design of structures for specified requirements in respect of the aforementioned function and the levels of performance.
(4)   EN 1999-1-2 applies to structures, or parts of structures, that are within the scope of EN 1999 1 1 and are designed accordingly.
(5)   The methods given in EN 1999-1-2 are applicable to the following aluminium alloys:
EN AW-3004 - H34   EN AW-5083 - O and H12   EN AW-6063 - T5 and T6
EN AW-5005  -  O and H34   EN AW-5454 - O and H34   EN AW-6082 - T4 and T6
EN AW-5052  - H34      EN AW-6061 - T6   
(6)   The methods given in EN 1999-1-2 are applicable also to other aluminium alloy/tempers of EN 1999 1-1, if reliable material properties at elevated temperatures are available or the simplified assumptions in 5.2.1 are applied.
1.2   Assumptions
(1)   In addition to the general assumptions of EN 1990, the following assumptions apply:
-   the choice of the relevant design fire scenario is made by appropriate qualified and experienced personnel, or is given by the relevant national regulation.
-   any active and passive fire protection systems taken into account in the design will be adequately maintained.
(2)   For the design of new structures, EN 1999 is intended to be used, for direct application, together with EN 1990, EN 1991, EN 1992, EN 1993, EN 1994, EN 1995, EN 1997, EN 1998 and EN 1999.
(3)   EN 1999 is intended to be used in conjunction with:
-   European Standards for construction products relevant for aluminium structures
-   EN 1090-1, Execution of steel structures and aluminium structures - Part 1: Requirements for conformity assessment of structural components
-   EN 1090-3, Execution of steel structures and aluminium structures - Part 3: Technical requirements for aluminium structures

  • Standard
    55 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1 Scope of EN 1999-1-3
(1) This document gives the basis for the design of aluminium alloy structures subject to fatigue in the ultimate limit state.
(2) This document gives rules for:
- safe life design;
- damage tolerant design;
- design assisted by testing.
(3) This document does not cover pressurized containment vessels or pipework.
1.2 Assumptions
(1) The general assumptions of EN 1990 apply.
(2) The provisions of EN 1999-1-1 apply.
(3) EN 1999-1-3 is intended to be used in conjunction with EN 1990, EN 1991 (all parts), relevant parts in EN 1992 to EN 1999, EN 1090-1 and EN 1090-3 for requirements for execution, and ENs, EADs and ETAs for construction products relevant to aluminium structures.

  • Standard
    125 pages
    English language
    sale 10% off
    e-Library read for
    1 day

EN 1999 applies to the design of buildings and civil engineering and structural works made of aluminium. It complies with the principles and requirements for the safety and serviceability of structures, the basis of their design and verification that are given in EN 1990 – Basis of structural design.
EN 1999 is only concerned with requirements for resistance, serviceability, durability and fire resistance of aluminium structures. Other requirements, e.g. concerning thermal or sound insulation, are not considered.
EN 1999 is intended to be used in conjunction with:
—   EN 1990 Basis of structural design
—   EN 1991 Actions on structures
—   European Standards for construction products relevant for aluminium structures
—   EN 1090-1: Execution of steel structures and aluminium structures – Part 1: Requirements for conformity assessment of structural components
—   EN 1090-3: Execution of steel structures and aluminium structures – Part 3: Technical requirements for aluminium structures.
EN 1999-1-1 gives basic design rules for structures made of wrought aluminium alloys and limited guidance for cast alloys.
The following limits are recommended – if not otherwise explicitly stated in this standard:
   components with material thickness not less than 0,6 mm;
   welded components with material thickness not less than 1,5 mm;
   connections with:
—   steel bolts and pins with diameter not less than 5 mm;
—   aluminium bolts and pins with diameter not less than 8 mm;
—   rivets and thread forming screws with diameter not less than 3,9 mm

  • Standard
    371 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The digital transformation of the construction industry includes also the digital transformation of the supply chaine of construction products. With EN ISO 16739-1 exists an open language to design, transfer and maintain construction models. The construction models (e.g. of a building) contain a digital twin of real-life products. The data of these products should be transported in a digital format on the way from the factory to the building owner.
This product data should be expressed also in an easy and open way. The creators of product data files should be able to do this manually or automatically, as they like it. The users of product data should be able to use it to:
•   Express their requirements related to products
•   Describe configurable products
•   Import product data easily in the BIM models at any stage of the project (design, construction, operation)
•   Export product data easily from the BIM models at any stage of the project (design, construction, operation)
These scenarios fit in the business models of manufacturers, planners, construction companies and facility managers.
The working group 4 of CEN-TC442 has published proposals for creating new work items in the sector of CEN regarding the storage and the transport of product data in the sector of building information modelling (BIM):
EN ISO 16739-1:2018: Industry Foundation Classes (IFC) for data sharing in the construction and facility management industries- Part 1: Data schema
EN ISO 12006-3: Building construction – Organization of information about construction works – Part 3: Framework for object-oriented information
prEN ISO 23386: Building information modelling and other digital processes used in Construction – Methodology to describe, author and maintain properties in interconnected dictionaries
prEN ISO 23387: Data templates for construction works entities, Part 1:  Objects, collections, and relationships defining the general structure of data templates
This standard defines a format to negotiate product data templates, express requirements and describe configurable products and therefore fills the missing link between the product data sources (e.g. catalogs) from the manufacturers and the BIM models of the designers, builders, and owners.

  • Standard
    212 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1 Scope of FprEN 1999-1-1
(1) FprEN 1999-1-1 gives basic design rules for structures made of wrought aluminium alloys and limited guidance for cast alloys (see Clause 5 and Annex C).
This document does not cover the following, unless otherwise explicitly stated in this document:
- components with material thickness less than 0,6 mm;
- welded components with material thickness less than 1,5 mm;
- connections with:
- steel bolts and pins with diameter less than 5 mm;
- aluminium bolts and pins with diameter less than 8 mm;
- rivets and thread forming screws with diameter less than 3,9 mm.
1.2 Assumptions
(1) In addition to the general assumptions of EN 1990 the following assumptions apply:
- execution complies with EN 1090-3 and EN 1090-5;
- the mechanical properties comply with the product standards listed in 5.2.2.
(2) EN 1999 is intended to be used in conjunction with:
- European Standards for construction products relevant for aluminium structures;
- EN 1090-1, Execution of steel structures and aluminium structures - Part 1: Requirements for conformity assessment of structural components;
- EN 1090-3, Execution of steel structures and aluminium structures - Part 3: Technical requirements for aluminium structures;
- EN 1090-5, Execution of steel structures and aluminium structures - Part 5: Technical requirements for cold-formed structural aluminium elements and cold-formed structures for roof, ceiling, floor and wall applications.

  • Standard
    371 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1 Scope of EN 1999-1-3
(1) This document gives the basis for the design of aluminium alloy structures subject to fatigue in the ultimate limit state.
(2) This document gives rules for:
- safe life design;
- damage tolerant design;
- design assisted by testing.
(3) This document does not cover pressurized containment vessels or pipework.
1.2 Assumptions
(1) The general assumptions of EN 1990 apply.
(2) The provisions of EN 1999-1-1 apply.
(3) EN 1999-1-3 is intended to be used in conjunction with EN 1990, EN 1991 (all parts), relevant parts in EN 1992 to EN 1999, EN 1090-1 and EN 1090-3 for requirements for execution, and ENs, EADs and ETAs for construction products relevant to aluminium structures.

  • Standard
    125 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1999-1-4
(1)   EN 1999-1-4 gives design requirements for cold-formed trapezoidal aluminium sheeting. It applies to cold-formed aluminium products made from hot rolled or cold rolled sheet or strip that have been cold-formed by such processes as cold-rolled forming or press-breaking.
NOTE 1   The rules in this part complement the rules in other parts of EN 1999-1.
NOTE 2   The execution of aluminium structures made of cold-formed structures for roof, ceiling, floor and wall applications is covered in EN 1090-5.
(2)   EN 1999-1-4 gives methods for stressed-skin design using aluminium sheeting as a structural diaphragm.
(3)   EN 1999-1-4 does not apply to cold-formed aluminium profiles like C- and Z- profiles nor cold-formed and welded circular or rectangular hollow sections.
(4)   EN 1999-1-4 gives methods for design by calculation and for design assisted by testing. The methods for the design by calculation apply only within stated ranges of material properties and geometrical properties for which sufficient experience and test evidence is available. These limitations do not apply to design by testing.
(5)   EN 1999-1-4 does not cover load arrangement for loads during execution and maintenance.
1.2   Assumptions
(1) For the design of new structures, EN 1999 is intended to be used, for direct application, together with EN 1990, EN 1991, EN 1992, EN 1993, EN 1994, EN 1995, EN 1997 and EN 1998.
EN 1999 is intended to be used in conjunction with:
-   European Standards for construction products relevant for aluminium structures;
-   EN 1090-1, Execution of steel structures and aluminium structures - Part 1: Requirements for conformity assessment of structural components;
-   EN 1090-5, Execution of steel structures and aluminium structures - Part 5: Technical requirements for cold-formed structural aluminium elements and cold-formed structures for roof, ceiling, floor and wall applications.

  • Standard
    83 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1999-1-5
(1)   EN 1999-1-5 applies to the structural design of aluminium structures, stiffened and unstiffened, that have the form of a shell of revolution or of a round panel in monocoque structures.
(2)   EN 1999-1-5 covers additional provisions to those given in the relevant parts of EN 1999 for design of aluminium structures.
NOTE   Supplementary information for certain types of shells is given in EN 1993-1-6 and the relevant application parts of EN 1993 which include:
-   Part 3-1 for towers and masts;
-   Part 3-2 for chimneys;
-   Part 4-1 for silos;
-   Part 4-2 for tanks;
-   Part 4-3 for pipelines.
(4)   The provisions in EN 1999-1-5 apply to axisymmetric shells (cylinders, cones, spheres) and associated circular or annular plates, beam section rings and stringer stiffeners, where they form part of the complete structure.
(5)   Single shell panels (cylindrical, conical or spherical) are not explicitly covered by EN 1999-1-5. However, the provisions can be applicable if the appropriate boundary conditions are duly taken into account.
(6)   Types of shell walls covered in EN 1999-1-5 can be (see Figure 1.1):
-   shell wall constructed from flat rolled sheet with adjacent plates connected with butt welds, termed “isotropic”;
-   shell wall with lap joints formed by connecting adjacent plates with overlapping sections, termed “lap-jointed”;
-   shell wall with stiffeners attached to the outside, termed “externally stiffened” irrespective of the spacing of stiffeners;
-   shell wall with the corrugations running up the meridian, termed “axially corrugated”;
-   shell wall constructed from corrugated sheets with the corrugations running around the shell circumference, termed “circumferentially corrugated”.
[Figure 1.1 - Illustration of cylindrical shell form]
(7)   The provisions of EN 1999-1-5 are intended to be applied within the temperature range defined in EN 1999-1-1. The maximum temperature is restricted so that the influence of creep can be neglected. For structures subject to elevated temperatures associated with fire, see EN 1999-1-2.
(8)   EN 1999-1-5 does not cover the aspect of leakage.
1.2   Assumptions
(1)   The general assumptions of EN 1990 apply.
(2)   The provisions of EN 1999-1-1 apply.
(3)   The design procedures are valid only when the requirements for execution in EN 1090-3 or other equivalent requirements are complied with.
(4)   For the design of new structures, EN 1999 is intended to be used, for direct application, together with EN 1990, EN 1991, EN 1992, EN 1993, EN 1994, EN 1995, EN 1997 and EN 1998.
(5)   EN 1999 is intended to be used in conjunction with:
-   European Standards for construction products relevant for aluminium structures;
-   EN 1090-1, Execution of steel structures and aluminium structures - Part 1: Requirements for conformity assessment of structural components;
-   EN 1090-3, Execution of steel structures and aluminium structures - Part 3: Technical requirements for aluminium structures.

  • Standard
    75 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Scope of FprEN 1990
(1) This document establishes principles and requirements for the safety, serviceability, robustness and durability of structures, including geotechnical structures, appropriate to the consequences of failure.
(2) This document is intended to be used in conjunction with the other Eurocodes for the design of buildings and civil engineering works, including temporary structures.
(3) This document describes the basis for structural and geotechnical design and verification according to the limit state principle.
(4) The verification methods in this document are based primarily on the partial factor method.
NOTE 1   Alternative methods are given in the other Eurocodes for specific applications.
NOTE 2   The Annexes to this document also provide general guidance concerning the use of alternative methods.
(5) This document is also applicable for:
-   structural assessment of existing structures;
-   developing the design of repairs, improvements and alterations;
-   assessing changes of use.
NOTE   Additional or amended provisions can be necessary.
(6) This document is applicable for the design of structures where materials or actions outside the scope of EN 1991 (all parts) to EN 1999 (all parts) are involved.
NOTE   In this case, additional or amended provisions can be necessary.
1.2   Assumptions
(1) It is assumed that reasonable skill and care appropriate to the circumstances is exercised in the design, based on the knowledge and good practice generally available at the time the structure is designed.
(2) It is assumed that the design of the structure is made by appropriately qualified and experienced personnel.
(3) The design rules provided in the Eurocodes assume that:
-   execution will be carried out by personnel having appropriate skill and experience;
-   adequate control and supervision will be provided during design and execution of the works, whether in factories, plants, or on site;
-   construction materials and products will be used in accordance with the Eurocodes, in the relevant product and execution standards, and project specifications;
-   the structure will be adequately maintained;
-   the structure will be used in accordance with the design assumptions.
NOTE   Guidance on management measures to satisfy the assumptions for design and execution is given in
Annex B.

  • Standard
    172 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of EN 1999-1-2
(1)   EN 1999-1-2 deals with the design of aluminium structures for the accidental situation of fire exposure and is intended to be used in conjunction with EN 1999-1-1, EN 1999-1-2, EN 1999-1-3, EN 1999-1-4 and EN 1999-1-5. This document only identifies differences from, or supplements to, normal temperature design.
(2)   EN 1999-1-2 applies to aluminium structures required to fulfil a load bearing function.
(3)   EN 1999-1-2 gives principles and application rules for the design of structures for specified requirements in respect of the aforementioned function and the levels of performance.
(4)   EN 1999-1-2 applies to structures, or parts of structures, that are within the scope of EN 1999 1 1 and are designed accordingly.
(5)   The methods given in EN 1999-1-2 are applicable to the following aluminium alloys:
EN AW-3004 - H34   EN AW-5083 - O and H12   EN AW-6063 - T5 and T6
EN AW-5005  -  O and H34   EN AW-5454 - O and H34   EN AW-6082 - T4 and T6
EN AW-5052  - H34      EN AW-6061 - T6   
(6)   The methods given in EN 1999-1-2 are applicable also to other aluminium alloy/tempers of EN 1999 1-1, if reliable material properties at elevated temperatures are available or the simplified assumptions in 5.2.1 are applied.
1.2   Assumptions
(1)   In addition to the general assumptions of EN 1990, the following assumptions apply:
-   the choice of the relevant design fire scenario is made by appropriate qualified and experienced personnel, or is given by the relevant national regulation.
-   any active and passive fire protection systems taken into account in the design will be adequately maintained.
(2)   For the design of new structures, EN 1999 is intended to be used, for direct application, together with EN 1990, EN 1991, EN 1992, EN 1993, EN 1994, EN 1995, EN 1997, EN 1998 and EN 1999.
(3)   EN 1999 is intended to be used in conjunction with:
-   European Standards for construction products relevant for aluminium structures
-   EN 1090-1, Execution of steel structures and aluminium structures - Part 1: Requirements for conformity assessment of structural components
-   EN 1090-3, Execution of steel structures and aluminium structures - Part 3: Technical requirements for aluminium structures

  • Standard
    55 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 19650 part 4 provides detailed process and criteria for the decision points in the process of executing an information exchange within information management as defined by ISO 19650. It promotes a sustainable approach to information exchange where the immediate delivery of information does not preclude its future use.    
It is applicable to any information exchange within project stages (ISO 19650 part 2) and within in-use events (ISO 19650 part 3).  All development and information exchanges should be executed under the appropriate security controls (ISO 19650 part 5).
It supports the satisfaction of a specific EIR/AIR related to an individual information exchange of any type of information by enumerating criteria relating to completeness, compliance to formal exchange schemas, the continuity of concepts between exchanges and the elimination of spatial and specification conflicts

  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of ISO 29481 Information Delivery Manual (IDM) specifies:
• a data schema for exchanging the data required in specific data exchange scenarios during the building lifecycle in the
extensible markup language (XML) schema format.
• a classification system for IDM specifications.
This part of ISO 29481 is intended to facilitate interoperability and reusability of IDM specifications. It promotes digital collaboration
between actors in the construction process and provides a basis for accurate, reliable, repeatable and high-quality information
exchange.

  • Standard
    39 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document discusses an integrated and unified approach for data aspects, specifically for assets in the built environment, using EIF terminology.
The following data architecture (Figure 1) applies within each category.
Figure 1 - Data architecture with typology (grey areas indicating the scope of this document)
...
This document specifies:
-   a generic Top Level "M1: Data model" as common form;
-   a conceptual "L1: Data language" as common meta-model with four ‘linked data’-based concrete language bindings (SKOS, RDFS, OWL and SHACL), including:
-   a choice of RDF-based formats (to be used for all modelling and language levels);
-   a set of data modelling patterns (for identification, naming, handling of enumeration types, quantity modelling, asset decomposition, grouping, etc.).
-   a linking approach for interlinking data sets, interlinking data models and linking data sets and data models which are relevant within the built environment from many perspectives such as:
-   Building information modelling (BIM);
-   Geo-spatial information systems (GIS);
-   Systems engineering (SE)  );
-   Monitoring & control (M&C);
-   Electronic document management (EDM).
This document does not specify a knowledge model since this is already available in ISO 12006-3.
This document does not specify a meta-‘data language’ since this is already provided by the concrete RDF language bindings (being RDFS).
The scope of this document in general excludes the following:
-   Business process modelling;
-   Software implementation aspects;
-   Data packaging and transportation/transaction aspects (handled by ISO TC59/SC13 Information container for document delivery (ICDD) respectively various information delivery manual (IDM) / information exchange requirements (EIR)-related initiatives);
-   Domain-specific (here: built environment-specific) content modelling in the form of concepts, attributes and relations at end-user level (the actual ontologies themselves) beyond a generic upper ontology and modelling patterns.

  • Standard
    97 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document establishes a framework for providing specifications for the internal commissioning and implementation of building information modelling (BIM) during both delivery and operational phases. It identifies a structured approach so as to encourage clarity during development, management and checking processes for use by organizations that develop and apply these specifications. This document does not provide specific content but it does provide examples. It is applicable to buildings, infrastructure, facilities and managed landscapes, of any size or complexity.

  • Standard
    22 pages
    English language
    sale 15% off

(1) This document provides an alternative method for the stability verification of steel members under compression axial force and bending moment, with reference to EN 1993 1 1.
NOTE   For the applicability of this document, see Clause 4.
(2) The method given in this document applies to uniform steel members with double symmetric cross-section under axial compression force and bi-axial bending.

  • Technical specification
    9 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical specification
    9 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   Scope of FprCEN/TS 19101
(1) This document applies to the design of buildings, bridges and other civil engineering structures in fibre-polymer composite materials, including permanent and temporary structures. It complies with the principles and requirements for the safety, serviceability and durability of structures, the basis of their design and verification that are given in EN 1990.
NOTE   In this document, fibre-polymer composite materials are referred to as composite materials or as composites.
(2) This document is only concerned with the requirements for resistance, serviceability, durability and fire resistance of composite structures.
NOTE 1   Specific requirements concerning seismic design are not considered.
NOTE 2   Other requirements, e.g. concerning thermal or acoustic insulation, are not considered.
(3) This document gives a general basis for the design of composite structures composed of (i) composite members, or (ii) combinations of composite members and members of other materials (hybrid-composite structures), and (iii) the joints between these members.
(4) This document applies to composite structures in which the values of material temperature in members, joints and components in service conditions are (i) higher than -40 °C and (ii) lower than   - 20 °C, where   is the glass transition temperature of composite, core and adhesive materials, defined according to 5.1(1).
(5) This document applies to:
(i) composite members, i.e. profiles and sandwich panels, and
(ii) bolted, bonded and hybrid joints and their connections.
NOTE 1   Profiles and sandwich panels can be applied in structural systems such as beams, columns, frames, trusses, slabs, plates and shells.
NOTE 2   Sandwich panels include homogenous core and web-core panels. In web-core panels, the cells between webs can be filled (e.g. with foam) or remain empty (e.g. panels from pultruded profiles).
NOTE 3   This document does not apply to sandwich panels made of metallic face sheets.
NOTE 4   Built-up members can result from the assembly of two or more profiles, through bolting and/or adhesive bonding.
NOTE 5   The main manufacturing processes of composite members include pultrusion, filament winding, hand layup, resin transfer moulding (RTM), resin infusion moulding (RIM), vacuum-assisted resin transfer moulding (VARTM).
NOTE 6   This document does not apply to composite cables or special types of civil engineering works (e.g. pressure vessels, tanks or chemical storage containers).
(6) This document applies to:
(i) the composite components of composite members, i.e. composite plies, composite laminates, sandwich cores and plates or profiles, and
(ii) the components of joints or their connections, i.e. connection plates or profiles (e.g. cleats), bolts, and adhesive layers.
NOTE 1   Composite components are composed of composite materials (i.e. fibres and matrix resins) and core materials. Components of joints and their connections are also composed of composite, steel or adhesive materials.
NOTE 2   The fibre architecture of composite components can comprise a single type of fibres or a hybrid of two or more types of fibres.
NOTE 3   This document does not apply to composite components used for internal reinforcement of concrete structures (composite rebars) or strengthening of existing structures (composite rebars, strips or sheets).
(7) This document applies to composite materials, comprising:
(i) glass, carbon, basalt or aramid fibres, and
(ii) a matrix based on unsaturated polyester, vinylester, epoxy or phenolic thermoset resins.

  • Technical specification
    238 pages
    English language
    sale 10% off
    e-Library read for
    1 day