This document specifies the determination of Cr(VI) in solid waste material and soil by alkaline digestion and ion chromatography with spectrophotometric detection. This method can be used to determine Cr(VI)-mass fractions in solids higher than 0,1Â mg/kg. NOTEÂ Â Â Â Â Â In case of reducing or oxidising waste matrix no valid Cr(VI) content can be reported.

  • Standard
    24 pages
    English language
    sale 15% off
  • Standard
    25 pages
    French language
    sale 15% off
  • Draft
    24 pages
    English language
    sale 15% off
  • Draft
    25 pages
    French language
    sale 15% off

This document provides guidance on the selection and application of screening methods for assessing soil quality and waste characterization, including distribution of target parameters in soil and soil‑like material. The aim of this document is to set up criteria as to when the different kind of screening methods can be applied for the analysis of a certain parameter in soil, including soil‑like material, and waste, and which steps are required to prove their suitability. This document does not recommend any particular screening method but confirms the principles of their selection and application.

  • Standard
    23 pages
    English language
    sale 15% off
  • Standard
    25 pages
    French language
    sale 15% off
  • Draft
    23 pages
    English language
    sale 15% off
  • Draft
    23 pages
    English language
    sale 15% off
  • Draft
    25 pages
    French language
    sale 15% off

This document specifies an instrumental method for the routine determination of pH within the range pH 2 to pH 12 using a glass electrode in a 1:5 (volume fraction) suspension of soil, sludge and treated biowaste in either water (pH in H2O), in 1 mol/l potassium chloride solution (pH in KCl) or in 0,01 mol/l calcium chloride solution (pH in CaCl2). This document is applicable to all types of air-dried soil and treated biowaste samples. NOTE      For example, pretreated in accordance with ISO 11464 or EN 16179 or EN 15002.

  • Standard
    8 pages
    English language
    sale 15% off
  • Standard
    9 pages
    French language
    sale 15% off
  • Draft
    8 pages
    English language
    sale 15% off
  • Draft
    9 pages
    French language
    sale 15% off

This European Standard specifies two methods for digestion of soil, treated biowaste, sludge and waste by the use of aqua regia as digestion solution.
This European Standard is applicable for the following elements:
aluminium (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), bismuth (Bi), boron (B), cadmium (Cd), calcium (Ca), cerium (Ce), cesium (Cs), chromium (Cr), cobalt (Co), copper (Cu), dysprosium (Dy), erbium (Er), europium (Eu), gadolinium (Gd), gallium (Ga), germanium (Ge), gold (Au), hafnium (Hf), holmium (Ho), indium (In), iridium (Ir), iron (Fe), lanthanum (La), lead (Pb), lithium (Li), lutetium (Lu), magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), neodymium (Nd), nickel (Ni), palladium (Pd), phosphorus (P), platinum (Pt), potassium (K), praseodymium (Pr), rubidium (Rb), rhenium (Re), rhodium (Rh), ruthenium (Ru), samarium (Sm), scandium (Sc), selenium (Se), silicon (Si), silver (Ag), sodium (Na), strontium (Sr), sulfur (S), tellurium (Te), terbium (Tb), thallium (Tl), thorium (Th), thulium (Tm), tin (Sn), titanium (Ti), tungsten (W), uranium (U), vanadium (V), ytterbium (Yb), yttrium (Y), zinc (Zn), and zirconium (Zr).
This European Standard may also be applicable for the digestion of other elements.
Digestion with aqua regia will not necessarily accomplish total decomposition of the sample. The extracted analyte concentrations may not necessarily reflect the total content in the sample.

  • Standard
    47 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Technical Specification describes an approach for the validation of physico-chemical analytical methods for environmental matrices.
The guidance in this document addresses two different validation approaches, in increasing order of complexity. These are:
a)   method development and validation at the level of single laboratories (intra-laboratory validation);
b)   method validation at the level of several laboratories (between-laboratory or inter-laboratory validation), with a focus on methods that are sufficiently mature and robust to be applied not only by a few expert laboratories but by laboratories operating at the routine level.
The concept of these two approaches is strictly hierarchical, i.e. a method shall fulfil all criteria of the first level before it can enter the validation protocol of the second level.
This Technical Specification is applicable to the validation of a broad range of quantitative physico-chemical analytical methods for the analysis of water (including surface water, groundwater, waste water, and sediment). Analytical methods for other environmental matrices, like soil, sludge, waste, and biota can be validated in the same way. It is intended either for analytical methods aiming at substances that have recently become of interest or for test methods applying recently developed technologies.
The minimal requirements that are indispensable for the characterization of the fitness for purpose of an analytical method are: selectivity, precision, bias and measurement uncertainty. The aim of validation is to prove that these requirements are met.

  • Technical specification
    53 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical specification
    54 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies a method for quantitative determination of seven selected polychlorinated biphenyls (PCB28, PCB52, PCB101, PCB118, PCB138, PCB153 and PCB180) in soil, sludge, sediment, treated biowaste and waste and using GC-MS and GC-ECD.
The limit of detection depends on the determinants, the equipment used, the quality of chemicals used for the extraction of the sample and the clean-up of the extract.
Under the conditions specified in this European Standard, lower limit of application from 1 μg/kg (expressed as dry matter) for soils, sludge and biowaste to 10 μg/kg (expressed as dry matter) for solid waste can be achieved. For some specific samples the limit of 10 μg/kg cannot be reached.
Sludge, waste and treated biowaste may differ in properties, as well as in the expected contamination levels of PCBs and presence of interfering substances. These differences make it impossible to describe one general procedure. This European Standard contains decision tables based on the properties of the sample and the extraction and clean-up procedure to be used.
NOTE   For the analysis of PCB in insulating liquids, petroleum products, used oils and aqueous samples is referred to EN 61619, EN 12766–1 and EN ISO 6468 respectively.
The method may be applied to the analysis of other PCB congeners not specified in the scope, provided suitability is proven by proper in-house validation experiments

  • Standard
    45 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    45 pages
    English language
    sale 10% off
    e-Library read for
    1 day

2020-02-13 - waiting TC decision to skip FV.

  • Amendment
    8 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Amendment
    6 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies two methods for digestion of soil, treated biowaste, sludge and waste by the use of an aqua regia digestion. Digestion with aqua regia will not necessarily accomplish total decomposition of the sample. The extracted analyte concentrations may not necessarily reflect the total content in the sample but represent the aqua regia soluble metals under the condition of this test procedure. It is generally agreed that for environmental analysis purposes, the results are fit for the intended purpose to protect the environment. This document is applicable for the following elements: Aluminium (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), boron (B), cadmium (Cd), calcium (Ca), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), nickel (Ni), phosphorus (P), potassium (K), selenium (Se), silver (Ag), sodium (Na), strontium (Sr), sulfur (S), tellurium (Te), thallium (Tl), tin (Sn), titanium (Ti), vanadium (V), and zinc (Zn). This document can also be applied for the digestion of other elements, provided the user has verified the applicability.

  • Standard
    38 pages
    English language
    sale 15% off
  • Standard
    39 pages
    French language
    sale 15% off
  • Draft
    38 pages
    English language
    sale 15% off
  • Standard
    2 pages
    English language
    sale 15% off
  • Standard
    2 pages
    French language
    sale 15% off

This document specifies methods for the measurements of magnetic susceptibility of soils (κ) as an indicator of potential soil pollution/contamination with trace elements associated with technogenic magnetic particles (TMPs) and describes related procedures, protocols and guidelines to be applied as a screening geophysical method of determination of soil pollution with trace elements. The results of measurements are used for preparing the maps of magnetic susceptibility of soils in the area of interest. From these maps, the areas of elevated and high magnetic susceptibility indicating high trace element total pollution load are discriminated for further identification of pollutants by geochemical methods. This document is applicable to screening all TMPs-related anthropogenic emission sources including long-range transport of airborne elements, of which TMPs are carriers and indicators. Such emission sources comprise the majority of high-temperature industrial processes, where iron is present in any mineralogical form in raw materials, additives or fuels, is transformed into ferrimagnetic iron oxides (e.g. fossil solid and liquid fuels combustion, metallurgy, cement and ceramics industry, coke production, industrial waste landfills, land transport). This document is not applicable to screening anthropogenic emissions not associated with TMPs, e.g. organic pollutants or emissions from agricultural sources. NOTE 1 Copper, zinc and other non-ferrous metal ores also contain iron (in many sulfides) as this element is abundant in almost all environments. During smelting, the iron occurring in sulfides is transformed into ferrimagnetic oxides (TMPs). However, in such cases, the proportion of TMPs and related PTEs is usually less than at coal combustion or iron metallurgy, for example, and not all PTEs are physically associated and transported by TMPs. Non-airborne elements are deposited in the close proximity of the emission source, while TMPs can be used in these cases as indicators of airborne elements and of the spatial distribution of the total element deposition from a smelter in the area. In rare cases, some soils are developed on bedrock exhibiting geogenically high magnetism, which can cause false-positive results. This influence can, however, be easily indicated by measurements of magnetic susceptibility along soil profiles. This method is not applicable when the bedrock exhibits extremely high magnetic signals. NOTE 2 Such cases are rare.

  • Standard
    27 pages
    English language
    sale 15% off

ISO 16772:2004 specifies a method for the determination of mercury in an aqua regia extract of soil, obtained in accordance with ISO 11464 and ISO 11466, using cold-vapour atomic absorption spectrometry or cold-vapour atomic fluorescence spectrometry. The limit of determination of the method is at least 0,1 mg/kg.

  • Standard
    8 pages
    English language
    sale 15% off
  • Standard
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    8 pages
    French language
    sale 15% off

This International Standard specifies the quantitative determination of 16 polycyclic aromatic hydrocarbons (PAH) according to the priority list of the Environmental Protection Agency, USA (EPA, 1982). This International Standard is applicable to all types of soil (field-moist or chemically dried samples), covering a wide range of PAH contamination levels.
Under the conditions specified in this International Standard, a lower limit of application of 0,01 mg/kg
(expressed as dry matter) can be ensured for each individual PAH.

  • Standard
    17 pages
    English language
    sale 15% off
  • Standard
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    18 pages
    French language
    sale 15% off

This International Standard describes the determination of trace elements in digests or extraction solutions
from soil by inductively coupled plasma - atomic emission spectrometry (ICP-AES) for 34 elements (see
Table 1).
This multi-element determination method is applicable to soil extracts obtained with aqua regia in accordance
with ISO 11466, with DTPA in accordance with ISO 14870 or other weak extractants, or soil extracts for the
determination of total element contents using the acid digestion method of ISO 14869-1 or the fusion method
of ISO 14869-2.
The choice of calibration method depends on the extractant and can be adapted to the extractant
concentration.

  • Standard
    30 pages
    English language
    sale 15% off
  • Standard
    34 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    34 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    34 pages
    French language
    sale 15% off

This International Standard specifies a method for quantitative determination of seven polychlorinated biphenyls
and seventeen organochlorine pesticides in soil.
This International Standard is applicable to all types of soil.
Under the conditions specified in this International Standard, limits of detection of 0,1 μg/kg to 4 μg/kg (expressed
as dry matter) can be achieved.

  • Standard
    22 pages
    English language
    sale 15% off
  • Standard
    26 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    26 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    23 pages
    French language
    sale 15% off

This International Standard specifies a method for microwave-assisted extraction of elements from samples
using aqua regia as the extraction solution for the determination of elements. This method is applicable to all
types of soil and soil material.
Aqua regia extraction is suitable for the release of trace and major element fractions in soil. Aqua regia is not
suitable for the extraction of elements from refractory compounds, such as SiO2, TiO2 and Al2O3.
The extraction with aqua regia is operationally defined and will not necessarily release all elements completely.
The microwave method is generic and can be implemented using a wide variety of equipment, provided:
a) the extraction mixture ratio is unchanged;
b) the extraction temperature is known.
Solutions produced by the microwave method are suitable for analysis, for example, by using atomic
absorption spectrometry (flame: FAAS, hydride generation: HGAAS, cold vapour: CVAAS, graphite furnace;
GFAAS), inductively coupled plasma emission spectrometry (ICP/OES) and inductively coupled plasma mass
spectrometry (ICP/MS).
NOTE Due to the presence of chloride in the extraction solution, limitations for the application of analytical
techniques can occur.

  • Standard
    7 pages
    English language
    sale 15% off
  • Standard
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    7 pages
    French language
    sale 15% off

This Technical Specification specifies a method for the determination of the following elements in aqua
regia or nitric acid digests or other extraction solutions of sludge, treated biowaste and soil:
Aluminium (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), bismuth (Bi), boron
(B), cadmium (Cd), calcium (Ca), cerium (Ce), cesium (Cs), chromium (Cr), cobalt (Co), copper (Cu),
dysprosium (Dy), erbium (Er), europium (Eu), gadolinium (Gd), gallium (Ga), germanium (Ge), gold (Au),
hafnium (Hf), holmium (Ho), indium (In), iridium (Ir), iron (Fe), lanthanum (La), lead (Pb), lithium (Li),
lutetium (Lu), magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), neodymium (Nd),
nickel (Ni), palladium (Pd), phosphorus (P), platinum (Pt), potassium (K), praseodymium (Pr), rhenium
(Re), rhodium (Rh), rubidium (Rb), ruthenium (Ru), samarium (Sm), scandium (Sc), selenium (Se),
silicon (Si), silver (Ag), sodium (Na), strontium (Sr), sulfur (S), tellurium (Te), terbium (Tb), thallium
(Tl), thorium (Th), thulium (Tm), tin (Sn), titanium (Ti), tungsten (W), uranium (U), vanadium (V),
ytterbium(Yb), yttrium (Y), zinc (Zn) and zirconium (Zr).
The working range depends on the matrix and the interferences encountered.
The limit of detection is between 0,1 mg/kg dry matter and 2,0 mg/kg dry matter for most elements.
The limit of detection will be higher in cases where the determination is likely to have interferences (see
Clause 4) or in the case of memory effects (see e.g. 8.2 of ISO 17294-1:2004).

  • Standard
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical specification
    13 pages
    English language
    sale 15% off
  • Technical specification
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 13876:2013 specifies a method for quantitative determination of seven selected polychlorinated biphenyls (PCB28, PCB52, PCB101, PCB118, PCB138, PCB153, and PCB180) in sludge, treated biowaste, and soil using GC-MS and GC-ECD.

  • Standard
    29 pages
    English language
    sale 15% off
  • Standard
    34 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    34 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This draft European Standard specifies a method for quantitative determination of 17 2,3,7,8-chlorine substituted dibenzo-p-dioxins and dibenzofurans and dioxin-like polychlorinated biphenyls in sludge, treated biowaste and soil using liquid column chromatographic clean-up methods and GC/HRMS.
The analytes to be determined with this European Standard are listed in Table 1.
(...)
The limit of detection depends on the kind of sample, the congener, the equipment used and the quality of chemicals used for extraction and clean-up. Under the conditions specified in this European Standard, limits of detection better than 1 ng/kg (expressed as dry matter) can be achieved.
This method is "performance based". It is allowed to modify the method if all performance criteria given in this method are met.
NOTE   In principle this method can also be applied for sediments, mineral wastes and for vegetation. It is the responsibility of the user of this European Standard to validate the application for these matrices. For measurement in complex matrices like fly ashes adsorbed on vegetation it can be necessary to further improve the clean-up. This can also apply to sediments and mineral wastes.

  • Standard
    46 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a gas-chromatographic method for the identification and quantification of organotin compounds (OTCs) in soils as specified in Table 1.
This document is also applicable to samples from sediments, sludges and wastes (soil-like materials).
The working range depends on the detection technique used and the amount of sample taken for analysis.
The limit of quantification for each compound is about 10 μg/kg.      
Organotin cations can only be determined in accordance with this document after derivatization. The anionic part bound to the organotin cation is mainly dependent on the chemical environment and is not determined using this method. The peralkylated organotin compounds behave in a completely different way from their parent compounds. Tetraalkylated organotin compounds which are already peralkylated, such as tetrabutyltin, are determined directly without derivatization.
The properties such as particle size distribution, water content and organic matter content of the solids to be analysed using this document vary widely. Sample pretreatment is designed adequately with respect to both the properties of the organotin compounds and the matrix to be analysed.

  • Standard
    44 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This draft European Standard specifies a method for quantitative determination of 17 2,3,7,8-chlorine substituted dibenzo-p-dioxins and dibenzofurans and dioxin-like polychlorinated biphenyls in sludge, treated biowaste and soil using liquid column chromatographic clean-up methods and GC/HRMS.
The analytes to be determined with this European Standard are listed in Table 1.
(...)
The limit of detection depends on the kind of sample, the congener, the equipment used and the quality of chemicals used for extraction and clean-up. Under the conditions specified in this European Standard, limits of detection better than 1 ng/kg (expressed as dry matter) can be achieved.
This method is "performance based". It is allowed to modify the method if all performance criteria given in this method are met.
NOTE   In principle this method can also be applied for sediments, mineral wastes and for vegetation. It is the responsibility of the user of this European Standard to validate the application for these matrices. For measurement in complex matrices like fly ashes adsorbed on vegetation it can be necessary to further improve the clean-up. This can also apply to sediments and mineral wastes.

  • Standard
    46 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a gas-chromatographic method for the identification and quantification of organotin compounds (OTCs) in soils as specified in Table 1.
This document is also applicable to samples from sediments, sludges and wastes (soil-like materials).
The working range depends on the detection technique used and the amount of sample taken for analysis.
The limit of quantification for each compound is about 10 µg/kg.

  • Standard
    44 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for the determination of cation exchange capacity (CEC) and the
content of exchangeable cations (Al, Ca, Fe, K, Mg Mn, Na) in soils using a hexamminecobalt(III)chloride
solution as extractant. For soils containing calcium carbonate a calcite saturated hexamminecobalt(III)
chloride solution is specified particularly for determination of exchangeable Ca. This document is
applicable to all types of air-dry soil samples which have been prepared according to ISO 11464.

  • Standard
    30 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies the quantitative determination of 16 polycyclic aromatic hydrocarbons (PAH) (see Table 2) in sludge, soil and treated biowaste using GC-MS and HPLC-UV-DAD/FLD covering a wide range of PAH contamination levels (see also Annex B).
When using fluorescence detection, acenaphthylene cannot be measured.
(...)
The limit of detection depends on the determinants, the equipment used, the quality of chemicals used for the extraction of the sample and the clean-up of the extract.
Typically, a lower limit of application of 0,01 mg/kg (expressed as dry matter) can be ensured for each individual PAH. This depends on instrument and sample.
Sludge, soil and treated biowaste can differ in properties and also in the expected contamination levels of PAHs and presence of interfering substances. These differences make it impossible to describe one general procedure. This European Standard contains decision tables based on the properties of the sample and the extraction and clean-up procedure to be used. Two general lines are followed, an agitation procedure (shaking) or use of soxhlet/pressurized liquid extraction.
NOTE   Other PAH compounds can also be analysed with this method, provided suitability has been proven.

  • Standard
    47 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a gas-chromatographic method for the identification and quantification of organotin compounds (OTCs) in soils as specified in Table 1. This document is also applicable to samples from sediments, sludges and wastes (soil-like materials). The working range depends on the detection technique used and the amount of sample taken for analysis. The limit of quantification for each compound is about 10 µg/kg.

  • Standard
    36 pages
    English language
    sale 15% off
  • Standard
    39 pages
    French language
    sale 15% off

This document specifies a method for the determination of perchlorate in soil and soil materials. Under the conditions specified in this document, a concentration as low as 0,1 mg/kg can be determined. The working range is restricted by the ion-exchange capacity of the separator column. Dilution of the water extracts to the working range can be necessary.

  • Standard
    27 pages
    English language
    sale 15% off

This document specifies a method for rapid determination of water content in soils. The method is based on refractive index measurement of a sucrose solution after it is mixed with a soil sample. It is applicable to the determination of water content in geological or geotechnical research as well as geotechnical engineering. In addition, it can be used for commercial work in a variety of fields, e.g. agriculture and civil engineering. The working range is up to approximately 50 % moisture content. The precision of the method typically ranges between 0,5 % and 1 % and depends on the type of refractometer that is used. The result of this method is strongly influenced by soil matrices. Higher contents of clay and/or organic matter will lead to significant lower values for water content compared to standard methods such as that described in ISO 11465.

  • Standard
    6 pages
    English language
    sale 15% off
  • Standard
    6 pages
    French language
    sale 15% off

This document specifies a method for the determination of the cation exchange capacity (CEC) at the
pH of the soil and for the determination of the content of exchangeable sodium, potassium, calcium and
magnesium in soil.
This document is applicable to all types of air-dried soil samples. ISO 11464 can be used for pretreatment.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for the determination of exchangeable acidity in barium chloride
extracts of soil samples obtained according to ISO 11260.
The procedure described herein mainly concerns the determination of total exchangeable acidity by
means of a fixed pH end point titration.
Two additional and optional procedures are given, describing respectively, determinations of free H+
acidity and aluminium in the extracts.
This document is applicable to all types of air dry soil samples.

  • Standard
    13 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies the quantitative determination of 16 polycyclic aromatic hydrocarbons (PAH) (see Table 2) in sludge, soil and treated biowaste using GC-MS and HPLC-UV-DAD/FLD covering a wide range of PAH contamination levels (see also Annex B).
When using fluorescence detection, acenaphthylene cannot be measured.
The limit of detection depends on the determinants, the equipment used, the quality of chemicals used for the extraction of the sample and the clean-up of the extract.
Typically, a lower limit of application of 0,01 mg/kg (expressed as dry matter) can be ensured for each individual PAH. This depends on instrument and sample.
Sludge, soil and treated biowaste can differ in properties and also in the expected contamination levels of PAHs and presence of interfering substances. These differences make it impossible to describe one general procedure. This European Standard contains decision tables based on the properties of the sample and the extraction and clean-up procedure to be used. Two general lines are followed, an agitation procedure (shaking) or use of soxhlet/pressurized liquid extraction.
NOTE   Other PAH compounds can also be analysed with this method, provided suitability has been proven.

  • Standard
    47 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 14254:2018 specifies a method for the determination of exchangeable acidity in barium chloride extracts of soil samples obtained according to ISO 11260.
The procedure described herein mainly concerns the determination of total exchangeable acidity by means of a fixed pH end point titration.
Two additional and optional procedures are given, describing respectively, determinations of free H+ acidity and aluminium in the extracts.
ISO 14254:2018 is applicable to all types of air dry soil samples.

  • Standard
    13 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for the determination of the cation exchange capacity (CEC) at the pH of the soil and for the determination of the content of exchangeable sodium, potassium, calcium and magnesium in soil.
This document is applicable to all types of air-dried soil samples. ISO 11464 can be used for pre-treatment.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for the determination of the cation exchange capacity (CEC) at the pH of the soil and for the determination of the content of exchangeable sodium, potassium, calcium and magnesium in soil. This document is applicable to all types of air-dried soil samples. ISO 11464 can be used for pre-treatment.

  • Standard
    12 pages
    English language
    sale 15% off
  • Standard
    13 pages
    French language
    sale 15% off

ISO 14254:2018 specifies a method for the determination of exchangeable acidity in barium chloride extracts of soil samples obtained according to ISO 11260. The procedure described herein mainly concerns the determination of total exchangeable acidity by means of a fixed pH end point titration. Two additional and optional procedures are given, describing respectively, determinations of free H+ acidity and aluminium in the extracts. ISO 14254:2018 is applicable to all types of air dry soil samples.

  • Standard
    6 pages
    English language
    sale 15% off
  • Standard
    6 pages
    French language
    sale 15% off

This International Standard provides guidance on the choice of fractions and individual compounds when carrying out analysis for petroleum hydrocarbons in soils, soil materials and related materials including sediments for the purpose of assessing risks to human health, the environment and other possible receptors.

  • Standard
    32 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 11504:2017 gives guidelines with regard to the choice of fractions and individual compounds when carrying out analysis for petroleum hydrocarbons in soils, soil materials and related materials, including sediments, for the purpose of assessing risks to human health, the environment and other possible receptors. Since many products based on petroleum hydrocarbons often contain substances that are not hydrocarbons, the recommendations also encompass such compounds where relevant.
ISO 11504:2017 also includes relevant background information on which the recommendations are based together with guidance on the use of the fractions recommended in the assessment of risk.
ISO 11504:2017 does not set criteria or guidelines for use as assessment criteria, since this is typically a national or regional regulatory issue. This document also does not include recommendations as to the specific model for the exposure assessment or the specific parameter values to be used; with respect to guidance on this matter, reference is made to ISO 15800.

  • Standard
    32 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO/TR 19588:2017 provides background information on the various International (ISO), American (ASTM, EPA), and European (CEN) cyanide methods for soils, waters, effluents and wastes. It gives guidance on how to carry out fit for purpose analysis of various forms of cyanide in environmental samples, the significance of the results, how to minimize interference effects and the preservation of samples. Some information is also provided on other national and international cyanide methods.

  • Technical report
    48 pages
    English language
    sale 15% off

This European Standard specifies a method for the determination of the following elements in aqua regia, nitric acid digest solutions of sludge, treated biowaste and soil: Aluminium (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), bismuth (Bi), boron (B), cadmium (Cd), calcium (Ca), chromium (Cr), cobalt (Co), copper (Cu), gallium (Ga), indium (In), iron (Fe), lead (Pb), lithium (Li), magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), nickel (Ni), phosphorus (P), potassium (K), selenium (Se), silicon (Si), silver (Ag), sodium (Na), strontium (Sr), sulfur (S), thallium (Tl), tin (Sn), titanium (Ti), tungsten (W), uranium (U), vanadium (V), zinc (Zn) and zirconium (Zr).
The method has been validated for the elements given in Table A.1. The method is applicable for the other elements listed above, provided the user has verified the applicability.

  • Standard
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies a method for the determination of the following elements in aqua regia or nitric acid digests of sludge, treated biowaste and soil:
Aluminium (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), bismuth (Bi), boron (B), cadmium (Cd), calcium (Ca), cerium (Ce), cesium (Cs), chromium (Cr), cobalt (Co), copper (Cu), dysprosium (Dy), erbium (Er), europium (Eu), gadolinium (Gd), gallium (Ga), germanium (Ge), gold (Au), hafnium (Hf), holmium (Ho), indium (In), iridium (Ir), iron (Fe), lanthanum (La), lead (Pb), lithium (Li), lutetium (Lu), magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), neodymium (Nd), nickel (Ni), palladium (Pd), phosphorus (P), platinum (Pt), potassium (K), praseodymium (Pr), rhenium (Re), rhodium (Rh), rubidium (Rb), ruthenium (Ru), samarium (Sm), scandium (Sc), selenium (Se), silicon (Si), silver (Ag), sodium (Na), strontium (Sr), sulfur (S), tellurium (Te), terbium (Tb), thallium (Tl), thorium (Th), thulium (Tm), tin (Sn), titanium (Ti), tungsten (W), uranium (U), vanadium (V), ytterbium(Yb), yttrium (Y), zinc (Zn), and zirconium (Zr).
The working range depends on the matrix and the interferences encountered.
The method detection limit of the method is between 0,1 mg/kg dry matter and 2,0 mg/kg dry matter for most elements. The limit of detection will be higher in cases where the determination is likely to be interfered (see Clause 4) or in case of memory effects (see e.g. 8.3 of EN ISO 17294-1:2006).
The method has been validated for the elements given in Table A.1 (sludge), Table A.2 (compost) and Table A.3 (soil). The method is applicable for the other elements listed above, provided the user has verified the applicability.

  • Standard
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies a method for the determination of mercury in aqua regia or nitric acid digests of sludge, treated biowaste and soil, obtained according to EN 16173 or EN 16174 using cold-vapour atomic fluorescence spectrometry (CV-AFS). The lower working range limit is 0,003 mg/kg (dry matter basis).

  • Standard
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies a method for the determination of mercury in aqua regia or nitric acid digests of sludge, treated biowaste and soil, obtained according to EN 16173 or EN 16174 using cold-vapour atomic absorption spectrometry (CV-AAS). The lower working range limit is 0,03 mg/kg (dry matter basis).

  • Standard
    13 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 14869-3:2017 specifies a method for microwave-assisted dissolution of soil samples for determination of total element contents of Al, As, Ba, Ca, Cd, Co, Cr, Cs, Cu, Fe, Hg, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Se, Sb, Sr, Tl, V, Zn using an acid mixture of nitric acid (HNO3), hydrofluoric acid (HF) and hydrochloric acid (HCl). This method is applicable to all types of soil and soil material. The main field of application is geological and pedological survey. The acid mixture is suitable for total dissolution of element contents in soil (major, minor and trace), but some refractory compounds such as SiO2, TiO2, spinel, Al2O3 or other compounds may remain as a residue. In such a case, the use of alkaline fusion, following ISO 14869‑2, is recommended to determine the true total element content. NOTE 1 In environmental studies, usually, aqua regia extraction is applied using ISO 12914 or ISO 11466. Solutions produced by the microwave method are suitable for analysis, for example, by using atomic absorption spectrometry (FAAS, HGAAS, CVAAS, GFAAS), inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). NOTE 2 Due to the presence of chloride in the digestion solution, limitations for the application of some analytical techniques can occur.

  • Standard
    9 pages
    English language
    sale 15% off
  • Standard
    10 pages
    French language
    sale 15% off

This International Standard specifies a static headspace method for quantitative gas chromatographic
determination of volatile aromatic and halogenated hydrocarbons and selected aliphatic ethers in soil.
This International Standard is applicable to all types of soil.
The limit of quantification is dependent on the detection system used and the quality of the methanol
grade used for the extraction of the soil sample.
Under the conditions specified in this International Standard, the following limits of quantifications
apply (expressed on basis of dry matter).
Typical limit of quantification when using GC-FID:
— volatile aromatic hydrocarbons: 0,2 mg/kg;
— aliphatic ethers as methyl tert.-butyl ether(MTBE) and tert.-amyl methyl ether (TAME): 0,5 mg/kg.
Typical limit of quantification when using GC-ECD:
— volatile halogenated hydrocarbons: 0,01 mg/kg to 0,2 mg/kg.
Lower limits of quantification for some compounds can be achieved by using mass spectrometry (MS)
with selected ion detection (see Annex D).

  • Standard
    28 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This International Standard specifies a method for quantitative gas-chromatographic determination of
volatile aromatic hydrocarbons, naphthalene and volatile halogenated hydrocarbons in soil.
This International Standard is applicable to all types of soil.
NOTE In the case of unsaturated peaty soils, absorption of the extraction solution may occur.
The lower limit of quantification is dependent on the equipment used and the quality of the methanol
grade used for the extraction of the soil sample.
Under the conditions specified in this International Standard the following limits of quantification
apply (expressed on basis of dry matter):
Typical limit of quantification when using GC-FID:
— Volatile aromatic hydrocarbons: 0,1 mg/kg
Typical limit of quantification when using GC-ECD:
— Volatile halogenated hydrocarbons: 0,01 mg/kg
Lower limits of quantification for some compounds can be achieved by using mass spectrometry (MS)
with selected ion detection.

  • Standard
    27 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies a method for the determination of the following elements in aqua regia, nitric acid digest solutions of sludge, treated biowaste and soil: Aluminium (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), bismuth (Bi), boron (B), cadmium (Cd), calcium (Ca), chromium (Cr), cobalt (Co), copper (Cu), gallium (Ga), indium (In), iron (Fe), lead (Pb), lithium (Li), magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), nickel (Ni), phosphorus (P), potassium (K), selenium (Se), silicon (Si), silver (Ag), sodium (Na), strontium (Sr), sulfur (S), thallium (Tl), tin (Sn), titanium (Ti), tungsten (W), uranium (U), vanadium (V), zinc (Zn) and zirconium (Zr).
The method has been validated for the elements given in Table A.1. The method is applicable for the other elements listed above, provided the user has verified the applicability.

  • Standard
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies a method for the determination of the following elements in aqua regia or nitric acid digests of sludge, treated biowaste and soil:
Aluminium (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), bismuth (Bi), boron (B), cadmium (Cd), calcium (Ca), cerium (Ce), cesium (Cs), chromium (Cr), cobalt (Co), copper (Cu), dysprosium (Dy), erbium (Er), europium (Eu), gadolinium (Gd), gallium (Ga), germanium (Ge), gold (Au), hafnium (Hf), holmium (Ho), indium (In), iridium (Ir), iron (Fe), lanthanum (La), lead (Pb), lithium (Li), lutetium (Lu), magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), neodymium (Nd), nickel (Ni), palladium (Pd), phosphorus (P), platinum (Pt), potassium (K), praseodymium (Pr), rhenium (Re), rhodium (Rh), rubidium (Rb), ruthenium (Ru), samarium (Sm), scandium (Sc), selenium (Se), silicon (Si), silver (Ag), sodium (Na), strontium (Sr), sulfur (S), tellurium (Te), terbium (Tb), thallium (Tl), thorium (Th), thulium (Tm), tin (Sn), titanium (Ti), tungsten (W), uranium (U), vanadium (V), ytterbium(Yb), yttrium (Y), zinc (Zn), and zirconium (Zr).
The working range depends on the matrix and the interferences encountered.
The method detection limit of the method is between 0,1 mg/kg dry matter and 2,0 mg/kg dry matter for most elements. The limit of detection will be higher in cases where the determination is likely to be interfered (see Clause 4) or in case of memory effects (see e.g. 8.3 of EN ISO 17294-1:2006).
The method has been validated for the elements given in Table A.1 (sludge), Table A.2 (compost) and Table A.3 (soil). The method is applicable for the other elements listed above, provided the user has verified the applicability.

  • Standard
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies a method for the determination of mercury in aqua regia or nitric acid digests of sludge, treated biowaste and soil, obtained according to EN 16173 or EN 16174 using cold-vapour atomic absorption spectrometry (CV-AAS). The lower working range limit is 0,03 mg/kg (dry matter basis).

  • Standard
    13 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies a method for the determination of mercury in aqua regia or nitric acid digests of sludge, treated biowaste and soil, obtained according to EN 16173 or EN 16174 using cold-vapour atomic fluorescence spectrometry (CV-AFS). The lower working range limit is 0,003 mg/kg (dry matter basis).

  • Standard
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 17183:2016 specifies the procedure to screen highly contaminated soils to detect organic compounds extractable with isopropanol, including a wide range of fuels, oils, and greases. The method is useful for finding hot spots. It is applicable both in laboratories and for site screening in the field. The working range is approximately 0,01 to 0,3 in absorbance units, corresponding to approximately 500 mg/kg to 10 000 mg/kg of isopropanol-extractable organic compounds in soil. The light attenuation due to light scattering/absorption approach in this method is designed to quickly screen soil samples using calibration with the most appropriate substance(s) likely to be present on a given site to indicate the concentration levels. This screening technique is applicable for a broad spectrum of organic compounds, mainly hydrocarbons. Organic compounds are a very broadly defined mixture of compounds, which show their own specific emulsification indices (see Annex A) and a gross emulsification index in a mixture sample, defined primarily by their insolubility in water. The more insoluble the compounds (e.g. non-polar compounds), the higher the response. Hydrocarbons are generally less-reactive and have little polarity. Determination of emulsification indexes uses their non-polar nature to detect organic compounds including a wide range of hydrocarbons from about C8 to about C36. NOTE This method can also be applied to biological substances such as vegetable oils. This method is not applicable for determination of specific organic compounds or groups of compounds that may be part of a larger organic compound mixture. As with other screening techniques, it is advisable to confirm a certain percentage of both positive and negative test results, especially when near or above a regulatory action limit or when the presence of background or when interfering organic compounds such as surface active substances are suspected to be present. This method does not address the evaporation of any volatile organic compound mixtures (i.e., gasoline) during sampling, preparation and detection. Although the screening method can be used for the quantitative detection of volatile hydrocarbons, it is not intended that the method be used for the quantitative determination of volatile petroleum hydrocarbons unless evaporation during sample handling is addressed; the response factor be appropriately corrected, or the method performance be demonstrated on real samples. If emulsifiers or surface active substances (e.g. detergents) are present, significantly negatively-biased or false negative results can be obtained. If there is any evidence for the presence of surfactances in the soil, this method cannot be applied.

  • Standard
    11 pages
    English language
    sale 15% off

ISO 15009:2016 specifies a method for quantitative gas-chromatographic determination of volatile aromatic hydrocarbons, naphthalene and volatile halogenated hydrocarbons in soil.
This International Standard is applicable to all types of soil.
NOTE In the case of unsaturated peaty soils, absorption of the extraction solution may occur.
The lower limit of quantification is dependent on the equipment used and the quality of the methanol grade used for the extraction of the soil sample.
Under the conditions specified in this International Standard the following limits of quantification apply (expressed on basis of dry matter):
Typical limit of quantification when using GC-FID:
- Volatile aromatic hydrocarbons: 0,1 mg/kg
Typical limit of quantification when using GC-ECD:
- Volatile halogenated hydrocarbons: 0,01 mg/kg
Lower limits of quantification for some compounds can be achieved by using mass spectrometry (MS) with selected ion detection.

  • Standard
    27 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 22155:2016 specifies a static headspace method for quantitative gas chromatographic determination of volatile aromatic and halogenated hydrocarbons and selected aliphatic ethers in soil.
ISO 22155:2016 is applicable to all types of soil.
The limit of quantification is dependent on the detection system used and the quality of the methanol grade used for the extraction of the soil sample.
Under the conditions specified in this International Standard, the following limits of quantifications apply (expressed on basis of dry matter).
Typical limit of quantification when using GC-FID:
- volatile aromatic hydrocarbons: 0,2 mg/kg;
- aliphatic ethers as methyl tert.-butyl ether(MTBE) and tert.-amyl methyl ether (TAME): 0,5 mg/kg.
Typical limit of quantification when using GC-ECD:
- volatile halogenated hydrocarbons: 0,01 mg/kg to 0,2 mg/kg.
Lower limits of quantification for some compounds can be achieved by using mass spectrometry (MS) with selected ion detection (see Annex D).

  • Standard
    28 pages
    English language
    sale 10% off
    e-Library read for
    1 day