This standard defines:
- the basic requirements for the verification and approval of automatic machine w ave soldering for use in spacecraft hardware. The process requirements for w ave soldering of doublesided and multilayer boards are also defined.
- the technical requirements and quality assurance provisions for the manufacture and verification of manuallysoldered, high-reliability electrical connections.
- the technical requirements and quality assurance provisions for the manufacture and verification of high-reliability electronic circuits based on surface mounted device (SMD) and mixed technology.
- the acceptance and rejection criteria for high reliability manufacture of manually-soldered electrical connections intended to w ithstand normal terrestrial conditions and the vibrational g-loads and environment imposed by space flight.
- the proper tools, correct materials, design and w orkmanshipt. Workmanship standards are included to permit discrimination betw een proper and improper work.
SCOPE
This Standard defines the technical requirements and quality assurance provisions for the manufacture and verification of high-reliability electronic circuits of surface mount, through hole and solderless assemblies.
The Standard defines w orkmanship requirements, the acceptance and rejection criteria for high-reliability assemblies intended to withstand normal terrestrial conditions and the environment imposed by space flight.
The mounting and supporting of components, terminals and conductors specified in this standard applies only to assemblies designed to continuously operate over the mission w ithin the temperature limits of -55 °C to +85 °C at solder joint level.
Requirements related to printed circuit boards are contained in ECSS-Q-ST-70-60 (equivalent to EN 16602-70-60) and ECSS-Q-ST-70-12 (equivalent to EN 16602-70-12).
This Standard does not cover the qualification and acceptance of the EQM and FM equipment w ith high-reliability electronic circuits of surface mount, through hole and solderless assemblies.
This Standard does not cover verification of thermal properties for component assembly.
This Standard does not cover pressfit connectors.
The qualification and acceptance tests of equipment manufactured in accordance w ith this Standard are covered by ECSS-EST-10-03 (equivalent to EN 16603-10-03).

  • Standard
    253 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    247 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This standard addresses the requirements for performing verification by testing of space segment elements and space segment equipment on ground prior to launch. The document is applicable for tests performed on qualification models, flight models (tested at acceptance level) and protoflight models.
The standard provides:
• Requirements for test programme and test management,
• Requirements for retesting,
• Requirements for redundancy testing,
• Requirements for environmental tests,
• General requirements for functional and performance tests,
NOTE Specific requirements for functional and performance tests are not part of this standard since they are defined in the specific project documentation.
• Requirements for qualification, acceptance, and protoflight testing including qualification, acceptance, and protofight models’ test margins and duration,
• Requirements for test factors, test condition, test tolerances, and test accuracies,
• General requirements for development tests pertinent to the start of the qualification test programme,
NOTE Development tests are specific and are addressed in various engineering discipline standards.
• Content of the necessary documentation for testing activities (e.g. DRD).
Due to the specific aspects of the follow ing types of test, this Standard does not address:
• Space system testing (i.e. testing above space segment element), in particular the system validation test,
• In-orbit testing,
• Testing of space segment subsystems,
NOTE Tests of space segment subsystems are often limited to functional tests that, in some case, are run on dedicated models. If relevant, qualification tests for space segment subsystems are assumed to be covered in the relevant discipline standards.
Testing of hardware below space segment equipment levels (including assembly, parts, and components),
• Testing of stand-alone software,
NOTE For verification of flight or ground softw are, EN 16603-40 (ECSS-E-ST-40) and EN 16602-80 (ECSS-Q-ST-80) apply.
• Qualification testing of tw o-phase heat transport equipment,
NOTE For qualification testing of tw o-phase heat transport equipment, EN 16603-31-02 (ECSS-E-ST-31-02) applies.
• Tests of launcher segment, subsystem and equipment, and launch facilities,
• Tests of facilities and ground support equipment,
• Tests of ground segment.
This activity will be the update of EN16603-10-03:2014
NOTE: Parallel development of update of EN Standard and the new European TR17603-10-03.

  • Standard
    132 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    127 pages
    English language
    sale 10% off
    e-Library read for
    1 day

EMC policy and general system requirements are specified in ECSS-E-ST-20 (equivalent to EN 16603-20).
This ECSS-E-ST-20-07 (equivalent to EN 16603-20-07) Standard addresses detailed system requirements (Clause 4), general test conditions, verification requirements at system level, and test methods at subsystem and equipment level (Clause 5) as w ell as informative limits (Annex A).
Associated to this standard is ECSS-E-ST-20-06 (equivalent to EN 16603-20-06) "Spacecraft charging", w hich addresses charging control and risks arising from environmental and vehicle-induced spacecraft charging w hen ECSS-E-ST-20-07 addresses electromagnetic effects of electrostatic discharges.
Annexes A to C of ECSS-E-ST-20 document EMC activities related to ECSS-E-ST-20-07: the EMC Control Plan (Annex A) defines the approach, methods, procedures, resources, and organization, the Electromagnetic Effects Verification Plan (Annex B) defines and specifies the verification processes, analyses and tests, and the Electromagnetic Effects Verification Report (Annex C) document verification results. The EMEVP and the EMEVR are the vehicles for tailoring this standard.

  • Standard
    103 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    100 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This handbook provides additional information for the application of the Testing standard EN 16603-10-03.
This handbook will be the guideline for all space projects, related equipment and complete systems, by providing background information that aids the reader to better understand and meet the requirements of the standard.
The document would follow the flow of the Testing standard and in particular w hatever is excluded from the testing standard (see Scope of EN 16603-10-03) should also be excluded.
NOTE: EN 16603-10-03:2014 will be in parallel also updated to take into account the new TR.

  • Technical report
    267 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    265 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document identifies the clauses and requirements modified with respect to the standards CCSDS 232.1-B-2, Communications Operation Procedure-1, Issue 2, September 2010 for application in ECSS.
NOTE The recently published technical corrigendum has modified CCSDS 232.1-B-2. However, the changes are not affecting the Adoption Notice.

  • Standard
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

EN 16603-35-06 (equivalent of ECSS-E-ST-35-06) belongs to the Propulsion field of the mechanical discipline, and concerns itself with the cleanliness of propulsion components, sub-systems and systems
The standard
- defines design requirements which allow for cleaning of propulsion components sub-systems and systems and which avoid generation or unwanted collection of contamination,
- identifies cleanliness requirements (e.g. which particle / impurity / wetness level can be tolerated),
- defines requirements on cleaning to comply with the cleanliness level requirements, and the requirements on verification,
- identifies the cleanliness approach, cleaning requirements, (e.g. what needs to be done to ensure the tolerable level is not exceeded, compatibility requirements),
- identifies, specifies and defines the requirements regarding conditions under which cleaning or cleanliness verification takes place (e.g. compatibility, check after environmental test).
The standard is applicable to the most commonly used propulsion systems and their related storable propellant combinations: Hydrazine (N2H4), Mono Methyl Hydrazine (CH3N2H3), MON (Mixed Oxides of Nitrogen), Nitrogen (N2), Helium (He), Propane (C3H8), Butane (C4H10) and Xenon (Xe).
This standard is the basis for the European spacecraft and spacecraft propulsion industry to define, achieve and verify the required cleanliness levels in spacecraft propulsion systems.
This standard is particularly applicable to spacecraft propulsion as used for satellites and (manned) spacecraft and any of such projects including its ground support equipment.
External cleanliness requirements, e.g. outside of tanks, piping and aspects such as fungus and outgassing are covered by ECSS-Q-ST-70-01.
This standard may be tailored for the specific characteristic and constraints of a space project in conformance with ECSS-S-ST-00.

  • Standard
    71 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    71 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document identifies the clauses and requirements modified with respect to the standard CCSDS 231.0-B-3, TC Synchronization and Channel Coding, Issue 3, September 2017 for application in ECSS.

  • Standard
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document identifies the clauses and requirements modified w ith respect to the standard CCSDS 131.0-B-3, TM
Synchronization and Channel Coding, Issue 3, September 2017 for application in ECSS.

  • Standard
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document identifies the clauses and requirements modified with respect to the standard CCSDS 732.0-B-3, AOS Space Data Link Protocol, Issue 3, September 2015 for application in ECSS.

  • Standard
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document identifies the clauses and requirements modified w ith respect to the standard CCSDS 131.0-B-3, TM Synchronization and Channel Coding, Issue 3, September 2017 for application in ECSS.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day

In the standard CCSDS 132.0-B-2, TM Space Data Link Protocol, CCSDS specifies a data link layer protocol for the
efficient transfer of space application data of various types and characteristics over space links.
This Adoption Notice adopts and applies CCSDS 132.0-B-2 w ith a minimum set of modifications, identified in the present
document, to allow for reference and for a consistent integration in the ECSS system of standards.
The TM Transfer Frame specified in CCSDS 132.0-B-2 is similar to the TM Transfer Frame specified in the EN 16603-50-
03:2014 (ECSS-E-ST-50-03), that is superseded by the follow ing tw o Adoption Notices: EN 16603-50-22 (ECSS-E-AS-
50-22) and EN 16603-50-23 (ECSS-E-AS-50-23).
Differences betw een these tw o standards that are not covered by the normative modifications in clause 4 are described in
the informative Annex A.

  • Standard
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Standard specifies the requirements for the development of the end­to­end data communications system for spacecraft.
Specifically, this standard specifies:
- The terminology to be used for space communication systems engineering.
- The activities to be performed as part of the space communication system engineering process, in accordance with the ECSS-E-ST-10 standard.
- Specific requirements on space communication systems in respect of functionality and performance.
The communications links covered by this Standard are the space­to­ground and space­to­space links used during spacecraft operations, and the communications links to the spacecraft used during the assembly, integration and test, and operational phases.
Spacecraft end­to­end communication systems comprise components in three distinct domains, namely the ground network, the space link, and the space network. This Standard covers the components of the space link and space network in detail. However, this Standard only covers those aspects of the ground network that are necessary for the provision of the end­to­end communication services.
NOTE Other aspects of the ground network are covered in ECSS-E ST 70.
This Standard may be tailored for the specific characteristics and constraints of a space project in conformance with ECSS-S ST 00.

  • Standard
    79 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    79 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This ECSS handbook is intended to help implementers and users of data handling systems who are adhering to the EN 16603-50 (equivalent to ECSS-E-ST-50) series of standards. The handbook provides an overview of the EN 16603-50 standards and related CCSDS Recommended Standards and describes how the individual standards may be used together to form a coherent set of communications protocols. It also evaluates issues which could not be discussed in the Standards documents themselves, and provides guidance on option selection and implementation choices.
It provides guidance to the EN 16603-50 series of standards including related CCSDS Recommendations. The information provided is informative and intended to be used as best practice; it is not binding on implementers.
The information contained in this handbook is not part of the Standards. In the event of any conflict between the Standards and the material presented in this handbook, the ECSS Standards prevail.

  • Technical report
    255 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document recommends engineering practices for European programs and projects. It may be cited in contracts and program documents as a reference for guidance to meet specific program/project needs and constraints.
The target users of this handbook are engineers involved in design, analysis and verification of spacecraft and payloads in relation to general structural loads analysis issues. The current know‐how is documented in this handbook in order to make this expertise available to all European developers of space systems.
It is a guidelines document; therefore it includes advisory information rather than requirements.

  • Technical report
    502 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Handbook provides recommendations for the implementation of an Agile approach in space software projects complying with EN 16603-40 (based on ECSS-E-ST-40) and EN 16602-80 (based on ECSS-Q-ST-80).
This handbook is not an Agile development book, though it provides an Agile reference model based on Scrum and also covers other major Agile methods and techniques. Scrum has been selected as reference because of its widespread application in industry and its flexibility as a development framework to introduce or merge with other Agile methods and techniques. In relation to the EN 16603-40 and EN 16602-80, this handbook does not provide any tailoring of their requirements due to the use of the Agile approach, but demonstrates how compliance towards ECSS can be achieved. This handbook does not cover contractual aspects for this particular engineering approach, although it recognises that considering the approach of fixing cost and schedule and making the scope of functionalities variable, the customer and supplier need to establish specific contractual arrangements. Furthermore, it does not impose a particular finality for the use of Agile, either as a set of team values, project management process, specific techniques or supporting exploration by prototypes.

  • Technical report
    105 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This handbook recommends engineering inserts and practices for European programs and projects. It may be cited in contracts and program documents as a reference for guidance to meet specific program/project needs.
The target users of this handbook are engineers involved in the design, analysis and verification of launchers and spacecraft in relation to insert usage. The current know‐how is documented in this handbook in order to make expertise to all European developers of space systems.
It is a guidelines document, therefore it includes advisory information rather than requirements.

  • Technical report
    488 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The intended users of the “Mechanical shock design and verification handbook” are engineers involved in design, analysis and verification in relation to shock environment in spacecraft. The current know-how relevant to mechanical shock design and verification is documented in this handbook in order to make this expertise available to all European spacecraft and payload developers.
The handbook provides adequate guidelines for shock design and verification; therefore it includes advisory information, recommendations and good practices, rather than requirements.
The handbook covers the shock in its globally, from the derivation of shock input to equipment and sub-systems inside a satellite structure, until its verification to ensure a successful qualification, and including its consequences on equipment and sub-systems. However the following aspects are not treated herein:
- No internal launcher shock is treated in the frame of this handbook even if some aspects are common to those presented hereafter. They are just considered as a shock source (after propagation in the launcher structure) at launcher/spacecraft interface.
- Shocks due to fall of structure or equipment are not taken into account as they are not in the frame of normal development of a spacecraft.

  • Technical report
    540 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Handbook provides advice, interpretations, elaborations and software engineering best practices for the implementation of the requirements specified in EN 16603-40 (based on ECSS-E-ST-40C). The handbook is intended to be applicable to both flight and ground. It has been produced to complement the EN 16603-40 Standard, in the area where space project experience has reported issues related to the applicability, the interpretation or the feasibility of the Standard. It should be read to clarify the spirit of the Standard, the intention of the authors or the industrial best practices when applying the Standard to a space project.
The Handbook is not a software engineering book addressing the technical description and respective merits of software engineering methods and tools.

  • Standard
    198 pages
    English language
    sale 10% off
    e-Library read for
    1 day

2021-07-08: This TR is based on ECSS-E-HB-32-23A Rev.1
Exception XML - No CEN template.

  • Technical report
    234 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document recommends engineering practices for European programs and projects. It may be cited in contracts and program documents as a reference for guidance to meet specific program/project needs and constraints.
The target users of this handbook are engineers involved in design, analysis and verification of launchers and spacecraft in relation to structural stability issues. The current know‐how is documented in this handbook in order to make this expertise available to all European developers of space systems.
It is a guidelines document; therefore it includes advisory information rather than requirements.

  • Technical report
    462 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This handbook is an acceptable way of meeting the requirements of adhesive materials in bonded
joints of EN 16603-32 (equivalent to ECSS‐E‐ST‐32).

  • Technical report
    458 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The structural materials handbook, SMH, combines materials and design information on established polymer matrix composites with provisional information on the emerging groups of newer advanced materials and their composites. Design aspects are described, along with factors associated with joining and manufacturing. Where possible, these are illustrated by examples or case studies.
The Structural materials handbook contains 8 Parts.
A glossary of terms, definitions and abbreviated terms for these handbooks is contained in Part 8.
The parts are as follows:
Part 1 Overview and material properties and applications                    Clauses 1 ‐ 9
Part 2 Design calculation methods and general design aspects    Clauses 10 ‐ 22
Part 3 Load transfer and design of joints and design of structures    Clauses 23 ‐ 32
Part 4 Integrity control, verification guidelines and manufacturing    Clauses 33 ‐ 45
Part 5 New advanced materials, advanced metallic materials, general design aspects and load transfer and design of joints    Clauses 46 ‐ 63
Part 6 Fracture and material modelling, case studies and design and integrity control and inspection    Clauses 64 ‐ 81
Part 7 Thermal and environmental integrity, manufacturing aspects, in‐orbit and health monitoring, soft materials, hybrid materials and nanotechnoligies   Clauses 82 ‐ 107
Part 8 Glossary   
NOTE: The 8 parts will be numbered TR17603-32-01 to TR 17603-32-08

  • Technical report
    461 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    457 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The structural materials handbook, SMH, combines materials and design information on established polymer matrix composites with provisional information on the emerging groups of newer advanced materials and their composites. Design aspects are described, along with factors associated with joining and manufacturing. Where possible, these are illustrated by examples or case studies.
The Structural materials handbook contains 8 Parts.
A glossary of terms, definitions and abbreviated terms for these handbooks is contained in Part 8.
The parts are as follows:
Part 1 Overview and material properties and applications                    Clauses 1 ‐ 9
Part 2 Design calculation methods and general design aspects    Clauses 10 ‐ 22
Part 3 Load transfer and design of joints and design of structures    Clauses 23 ‐ 32
Part 4 Integrity control, verification guidelines and manufacturing    Clauses 33 ‐ 45
Part 5 New advanced materials, advanced metallic materials, general design aspects and load transfer and design of joints    Clauses 46 ‐ 63
Part 6 Fracture and material modelling, case studies and design and integrity control and inspection    Clauses 64 ‐ 81
Part 7 Thermal and environmental integrity, manufacturing aspects, in‐orbit and health monitoring, soft materials, hybrid materials and nanotechnoligies   Clauses 82 ‐ 107
Part 8 Glossary   
NOTE: The 8 parts will be numbered TR17603-32-01 to TR 17603-32-08

  • Technical report
    461 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    462 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The structural materials handbook, SMH, combines materials and design information on established polymer matrix composites with provisional information on the emerging groups of newer advanced materials and their composites. Design aspects are described, along with factors associated with joining and manufacturing. Where possible, these are illustrated by examples or case studies.
The Structural materials handbook contains 8 Parts.
A glossary of terms, definitions and abbreviated terms for these handbooks is contained in Part 8.
The parts are as follows:
Part 1 Overview and material properties and applications                    Clauses 1 ‐ 9
Part 2 Design calculation methods and general design aspects    Clauses 10 ‐ 22
Part 3 Load transfer and design of joints and design of structures    Clauses 23 ‐ 32
Part 4 Integrity control, verification guidelines and manufacturing    Clauses 33 ‐ 45
Part 5 New advanced materials, advanced metallic materials, general design aspects and load transfer and design of joints    Clauses 46 ‐ 63
Part 6 Fracture and material modelling, case studies and design and integrity control and inspection    Clauses 64 ‐ 81
Part 7 Thermal and environmental integrity, manufacturing aspects, in‐orbit and health monitoring, soft materials, hybrid materials and nanotechnoligies   Clauses 82 ‐ 107
Part 8 Glossary   
NOTE: The 8 parts will be numbered TR17603-32-01 to TR 17603-32-08

  • Technical report
    532 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    487 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The structural materials handbook, SMH, combines materials and design information on established polymer matrix composites with provisional information on the emerging groups of newer advanced materials and their composites. Design aspects are described, along with factors associated with joining and manufacturing. Where possible, these are illustrated by examples or case studies.
The Structural materials handbook contains 8 Parts.
A glossary of terms, definitions and abbreviated terms for these handbooks is contained in Part 8.
The parts are as follows:
Part 1 Overview and material properties and applications                    Clauses 1 ‐ 9
Part 2 Design calculation methods and general design aspects    Clauses 10 ‐ 22
Part 3 Load transfer and design of joints and design of structures    Clauses 23 ‐ 32
Part 4 Integrity control, verification guidelines and manufacturing    Clauses 33 ‐ 45
Part 5 New advanced materials, advanced metallic materials, general design aspects and load transfer and design of joints    Clauses 46 ‐ 63
Part 6 Fracture and material modelling, case studies and design and integrity control and inspection    Clauses 64 ‐ 81
Part 7 Thermal and environmental integrity, manufacturing aspects, in‐orbit and health monitoring, soft materials, hybrid materials and nanotechnoligies   Clauses 82 ‐ 107
Part 8 Glossary   
NOTE: The 8 parts will be numbered TR17603-32-01 to TR 17603-32-08

  • Technical report
    432 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    432 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The structural materials handbook, SMH, combines materials and design information on established polymer matrix composites with provisional information on the emerging groups of newer advanced materials and their composites. Design aspects are described, along with factors associated with joining and manufacturing. Where possible, these are illustrated by examples or case studies.
The Structural materials handbook contains 8 Parts.
A glossary of terms, definitions and abbreviated terms for these handbooks is contained in Part 8.
The parts are as follows:
Part 1 Overview and material properties and applications                    Clauses 1 ‐ 9
Part 2 Design calculation methods and general design aspects    Clauses 10 ‐ 22
Part 3 Load transfer and design of joints and design of structures    Clauses 23 ‐ 32
Part 4 Integrity control, verification guidelines and manufacturing    Clauses 33 ‐ 45
Part 5 New advanced materials, advanced metallic materials, general design aspects and load transfer and design of joints    Clauses 46 ‐ 63
Part 6 Fracture and material modelling, case studies and design and integrity control and inspection    Clauses 64 ‐ 81
Part 7 Thermal and environmental integrity, manufacturing aspects, in‐orbit and health monitoring, soft materials, hybrid materials and nanotechnoligies   Clauses 82 ‐ 107
Part 8 Glossary   
NOTE: The 8 parts will be numbered TR17603-32-01 to TR 17603-32-08

  • Technical report
    408 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    408 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The structural materials handbook, SMH, combines materials and design information on established polymer matrix composites with provisional information on the emerging groups of newer advanced materials and their composites. Design aspects are described, along with factors associated with joining and manufacturing. Where possible, these are illustrated by examples or case studies.
The Structural materials handbook contains 8 Parts.
A glossary of terms, definitions and abbreviated terms for these handbooks is contained in Part 8.
The parts are as follows:
Part 1 Overview and material properties and applications                    Clauses 1 ‐ 9
Part 2 Design calculation methods and general design aspects    Clauses 10 ‐ 22
Part 3 Load transfer and design of joints and design of structures    Clauses 23 ‐ 32
Part 4 Integrity control, verification guidelines and manufacturing    Clauses 33 ‐ 45
Part 5 New advanced materials, advanced metallic materials, general design aspects and load transfer and design of joints    Clauses 46 ‐ 63
Part 6 Fracture and material modelling, case studies and design and integrity control and inspection    Clauses 64 ‐ 81
Part 7 Thermal and environmental integrity, manufacturing aspects, in‐orbit and health monitoring, soft materials, hybrid materials and nanotechnoligies   Clauses 82 ‐ 107
Part 8 Glossary   
NOTE: The 8 parts will be numbered TR17603-32-01 to TR 17603-32-08

  • Technical report
    116 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    116 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The structural materials handbook, SMH, combines materials and design information on established polymer matrix composites with provisional information on the emerging groups of newer advanced materials and their composites. Design aspects are described, along with factors associated with joining and manufacturing. Where possible, these are illustrated by examples or case studies.
The Structural materials handbook contains 8 Parts.
A glossary of terms, definitions and abbreviated terms for these handbooks is contained in Part 8.
The parts are as follows:
Part 1 Overview and material properties and applications                    Clauses 1 ‐ 9
Part 2 Design calculation methods and general design aspects    Clauses 10 ‐ 22
Part 3 Load transfer and design of joints and design of structures    Clauses 23 ‐ 32
Part 4 Integrity control, verification guidelines and manufacturing    Clauses 33 ‐ 45
Part 5 New advanced materials, advanced metallic materials, general design aspects and load transfer and design of joints    Clauses 46 ‐ 63
Part 6 Fracture and material modelling, case studies and design and integrity control and inspection    Clauses 64 ‐ 81
Part 7 Thermal and environmental integrity, manufacturing aspects, in‐orbit and health monitoring, soft materials, hybrid materials and nanotechnoligies   Clauses 82 ‐ 107
Part 8 Glossary   
NOTE: The 8 parts will be numbered TR17603-32-01 to TR 17603-32-08

  • Technical report
    435 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    435 pages
    English language
    sale 10% off
    e-Library read for
    1 day

In general terms, the scope of the consolidation of LCLs power distribution interface requirements in the EN 16603-20-20 (equivalent to ECSS-E-ST-20-20) and the relevant explanation in the present handbook is to allow a more recurrent approach for the specific designs offered by power unit manufacturers, at the benefit of the system integrators and of the Agency, thus ensuring:
- better quality,
- stability of performances, and
- independence of the products from specific mission targets.
A recurrent approach enables power distribution manufacturing companies to concentrate on products and a small step improvement approach that is the basis of a high quality industrial output.
In particular, the scope of the present handbook is:
- to explain the principles of operation of power distribution based on LCLs,
- to identify important issues related to LCLs, and
- to give some explanations of the requirements set up in the ECSS-E-ST-20-20 for power distribution based on LCLs, for both source and load sides.

  • Technical report
    77 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    77 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The structural materials handbook, SMH, combines materials and design information on established polymer matrix composites with provisional information on the emerging groups of newer advanced materials and their composites. Design aspects are described, along with factors associated with joining and manufacturing. Where possible, these are illustrated by examples or case studies.
The Structural materials handbook contains 8 Parts.
A glossary of terms, definitions and abbreviated terms for these handbooks is contained in Part 8.
The parts are as follows:
Part 1 Overview and material properties and applications                    Clauses 1 ‐ 9
Part 2 Design calculation methods and general design aspects    Clauses 10 ‐ 22
Part 3 Load transfer and design of joints and design of structures    Clauses 23 ‐ 32
Part 4 Integrity control, verification guidelines and manufacturing    Clauses 33 ‐ 45
Part 5 New advanced materials, advanced metallic materials, general design aspects and load transfer and design of joints    Clauses 46 ‐ 63
Part 6 Fracture and material modelling, case studies and design and integrity control and inspection    Clauses 64 ‐ 81
Part 7 Thermal and environmental integrity, manufacturing aspects, in‐orbit and health monitoring, soft materials, hybrid materials and nanotechnoligies   Clauses 82 ‐ 107
Part 8 Glossary   
NOTE: The 8 parts will be numbered TR17603-32-01 to TR 17603-32-08

  • Technical report
    423 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    423 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This handbook is dedicated to the subject of thermal analysis for space applications. Thermal analysis is an important method of verification during the development of space systems. The purpose of this handbook is to provide thermal analysts with practical guidelines which support efficient and high quality thermal modelling and analysis.
Specifically, the handbook aims to improve:
1.the general comprehension of the context, drivers and constraints for thermal analysis campaigns;
2.the general quality of thermal models through the use of a consistent process for thermal modelling;
3.the credibility of thermal model predictions by rigorous verification of model results and outputs;
4.long term maintainability of thermal models via better model management, administration and documentation;
5.the efficiency of inter-organisation collaboration by setting out best practice for model transfer and conversion.
The intended users of the document are people, working in the domain of space systems, who use thermal analysis as part of their work. These users can be in industry, in (inter)national agencies, or in academia. Moreover, the guidelines are designed to be useful to users working on products at every level of a space project - that is to say at system level, sub-system level, unit level etc.
In some cases a guideline could not be globally applicable (for example not relevant for very high temperature applications). In these cases the limitations are explicitly given in the text of the handbook.

  • Technical report
    64 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    63 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Handbook deals with control systems developed as part of a space project. It is applicable to all the elements of a space system, including the space segment, the ground segment and the launch service segment. The handbook covers all aspects of space control engineering including requirements definition, analysis, design, production, verification and validation, transfer, operations and maintenance. It describes the scope of the space control engineering process and its interfaces with management and product assurance, and explains how they apply to the control engineering process.

  • Technical report
    39 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    39 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The objective of this EMC Handbook is to point out all the issues relevant to space systems EMC, to provide a general technical treatment and to address the interested reader to more thorough and in-depth publications.
NOTE: It is possible to find fundamental and advanced treatment of many aspects related to EMC: many universities offer courses on EMC and a large number of textbooks, papers and technical documents are available. Therefore replicating in this Handbook the available knowledge is impractical and meaningless.
Emphasis is given to space systems EMC design, development and verification, and specifically to the practical aspects related to these issues.
NOTE: This has been possible thanks to the collaboration of space industry, especially on items which are not textbook issues and whose solution needs the widespread experience gained in large number of projects.

  • Technical report
    226 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    226 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Handbook deals with control systems developed as part of a space project. It is applicable to all the elements of a space system, including the space segment, the ground segment and the launch service segment. It addresses the issue of control performance, in terms of definition, specification, verification and validation methods and processes. The handbook establishes a general framework for handling performance indicators, which applies to all disciplines involving control engineering, and which can be declined as well at different levels ranging from equipment to system level. It also focuses on the specific performance indicators applicable to the case of closed-loop control systems. Rules and guidelines are provided allowing to combine different error sources in order to build up a performance budget and to assess the compliance with a requirement. This version of the handbook does not cover control performance issues in the frame of launch systems.

  • Technical report
    118 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    118 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Common engineering practices involve the assessment, through computer simulation (with software like NASCAP [RD.4] or SPIS [RD.5]), of the levels of absolute and differential potentials reached by space systems in flight. This is usually made mandatory by customers and by standards for the orbits most at risk such as GEO or MEO and long transfers to GEO by, for example, electric propulsion.
The ECSS-E-ST-20-06 standard requires the assessment of spacecraft charging but it is not appropriate in a standard to explain how such an assessment is performed. It is the role of this document ECSS-E-HB-20-06, to explain in more detail important aspects of the charging process and to give guidance on how to carry out charging assessment by computer simulation.
The ECSS-E-ST-10-04 standard specifies many aspects of the space environment, including the plasma and radiation characteristics corresponding to worst cases for surface and internal charging. In this document the use of these environment descriptions in worst case simulations is described.
The emphasis in this document is on high level charging in natural environments. One aspect that is currently not addressed is the use of active sources e.g. for electric propulsion or spacecraft potential control. The tools to address this are still being developed and this area can be addressed in a later edition.

  • Technical report
    59 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    59 pages
    English language
    sale 10% off
    e-Library read for
    1 day

In general terms, the scope of the consolidation of the electrical interface requirements for electrical actuators in the EN 16603-20-21 (equivalent to ECSS-E-ST-20-21) and the relevant explanation in the present handbook is to allow a more recurrent approach both for actuator electronics (power source) and electrical actuators (power load) offered by the relevant manufacturers, at the benefit of the system integrators and of the European space agencies, thus ensuring:
- Better quality
- Stability of performances
- Independence of the products from specific mission targets.
A recurrent approach enables manufacturing companies to concentrate on products and a small step improvement approach that is the basis of a high quality industrial output.
In particular, the scope of the present handbook is:
- To explain the type of actuators, the principles of operation and the typical configuration of the relevant actuator electronics,
- To identify important issues relevant to electrical actuators interfaces, and
- To give some explanations of the requirements set up in the EN 16603-20-21.

  • Technical report
    56 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    56 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This handbook provides a compilation of different techniques that can be used to mitigate the adverse effects of radiation in integrated circuits (ICs), with almost exclusive attention to Application Specific Integrated Circuits (ASICs) and Field Programmable Gate Arrays (FPGAs) to be used in space, and excluding other ICs like power devices, MMIC or sensors.
The target users of this handbook are developers and users of ICs which are meant to be used in a radiation environment. Following a bottom-up order, the techniques are presented according to the different stages of an IC development flow where they can be applied. Therefore, users of this handbook can be IC engineers involved in the selection, use or development of IC manufacturing processes, IC layouts and ASIC standard cell libraries, analogue and digital circuit designs, FPGAs, embedded memories, embedded software and the immediate electronic system (printed circuit board) containing the IC that can experience the radiation effects.
In addition, this handbook contains an overview of the space radiation environment and its effects in semiconductor devices, a section on how to validate the good implementation and effectiveness of the mitigation techniques, and a special section providing some general guidelines to help with the selection of the most adequate mitigation techniques including some examples of typical space project scenarios.
The information given in this ECSS Handbook is provided only as guidelines and for reference, and not to be used as requirements. ECSS Standards provide requirements that can be made applicable, while, ECSS Handbooks provide guidelines.

  • Technical report
    234 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    234 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This handbook identifies data sources and respective methods that can be used for reliability prediction of components. It proposes suitable data sources and an application matrix for component families.

  • Technical report
    30 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    30 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This handbook provides guidelines to perform the worst case analysis. It applies to all electrical and electronic equipment. This worst case analysis (WCA) method can also be applied at subsystem level to justify electrical interface specifications and design margins for equipment. It applies to all project phases where electrical interface requirements are established and circuit design is carried out.
The worst case analysis is generally carried out when designing the circuit. For selected circuitry, worst case analysis (WCA) can be used to validate a conceptual design approach.

  • Technical report
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The handbook defines the principles and processes of human dependability as integral part of system safety and dependability. The handbook focuses on human behaviour and performance during the different operation situations as for example in a control centre such as handover to routine mission operation, routine mission operation, satellite maintenance or emergency operations.
This handbook illustrates the implementation of human dependability in the system life cycle, where during any project phase there exists the need to systematically include considerations of the:
- Human element as part of the space system,
- Impact of human behaviour and performance on safety and dependability.
Within this scope, the main application areas of the handbook are to support the:
a.   Development and validation of space system design during the different project phases,  
b.   Development, preparation and implementation of space system operations including their support such as the organisation, rules, training etc.
c.   Collection of human error data and investigation of incidents or accidents involving human error.
The handbook does not address:
- Design errors: The handbook intends to support design (and therefore in this sense, addresses design errors) regarding the avoidance or mitigation of human errors during operations. However, human error during design development are not considered.
- Quantitative (e.g. probabilistic) analysis of human behaviour and performance: The handbook does not address probabilistic assessment of human errors as input to system level safety and dependability analysis and consideration of probabilistic targets, and
- Intentional malicious acts and security related issues: Dependability and safety deals with "threats to safety and mission success" in terms of failures and human non malicious errors and for the sake of completeness includes "threats to safety and mission success" in terms of malicious actions, which are addressed through security risk analysis. However by definition "human dependability" as presented in this handbook excludes the consideration of "malicious actions" and security related issues i.e. considers only "non-malicious actions" of humans.
The handbook does not directly provide information on some disciplines or subjects, which only indirectly i.e. at the level of PSFs (see section 5) interface with "human dependability". Therefore the handbook does not provide direct support to "goals" such as:
- optimize information flux in control room during simulations and critical operations,
- manage cultural differences in a team,
- cope with negative group dynamics,
- present best practices and guidelines about team training needs and training methods,
- provide guidelines and best practices concerning planning of shifts,
- present basic theory about team motivation, and
- manage conflict of interests on a project.
1.2   Objectives
The objectives of the handbook are to support:
- Familiarization with human dependability (see section 5  "principles of human dependability"). For details and further reading see listed "references" at the end of each section of the handbook.
- Application of human dependability; (see section 6 "human dependability processes" and 7 "implementation of human dependability in system life cycle").

  • Technical report
    69 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    69 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Handbook provides guidelines to manage obsolescence of Materials, Mechanical Parts and Processes (in-house and sub-contracted).
It is useful for any actor of the European Space sector.
It covers Materials, Mechanical Parts and Processes (MMPP) used in flight hardware as well as ground support equipment (including test systems) and materials or tools used during process (not in the final product) and skills (knowhow).
It is not within the scope of this Handbook to address EEE components and software.
This document describes the general causes of obsolescences and introduces the concepts of proactive and reactive obsolescence management, depending of the programme phase.

  • Technical report
    36 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    36 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The scope of this Handbook is the software metrication as part of a space project, i.e. a space system, a subsystem including hardware and software, or ultimately a software product. It is intended to complement the EN 16602-80 (equivalent to ECSS-Q-ST-80) with specific guidelines related to use of different software metrics including their collection, analysis and reporting. Tailoring guidelines for the software metrication process are also provided to help to meet specific project requirements.
This Handbook provides recommendations, methods and procedures that can be used for the selection and application of appropriate metrics, but it does not include new requirements w ith respect to those provided by EN 16602-80 (equivalent to ECSS-ST-Q-80).
The scope of this Handbook covers the following topics:
• Specification of the goals and objectives for a metrication programme.
• Identification of criteria for selection of metrics in a specific project / environment (goal driven).
• Planning of metrication in the development life cycle.
• Interface of metrication with engineering processes.
• Data collection aspects (including use of tools).
• Approach to the analysis of the collected data.
• Feedback into the process and product based on the analysis results.
• Continuous improvement of measurement process.
• Use of metrics for process and product improvement.
This Handbook is applicable to all types of software of all major parts of a space system, including the space segment, the launch service segment and the ground segment software.

  • Technical report
    100 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    100 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Handbook provides guidance on the application of the dependability and safety requirements relevant to software defined in EN 16602-80 (equivalent of ECSS-Q-ST-80).
This Handbook provides support for the selection and application of software dependability and safety methods and techniques that can be used in the development of software-intensive space systems.
This Handbook covers all of the different kinds of software for which EN 16602-80 (equivalent of ECSS-Q-ST-80) is applicable. Although the overall software dependability and safety workflow description is mainly targeted to the development of spacecraft, the described approach can be adapted to projects of different nature (e.g. launchers, ground systems).
The methods and techniques described in the scope of this Handbook are limited to assessment aspects, not including development and implementation techniques for dependability and safety (e.g. fault tolerance techniques, or development methods like coding standards, etc.).
Although dependability is a composite term, including reliability, availability and maintainability, this Handbook addresses in particular the reliability aspects. Software maintainability and availability are not covered in depth by this handbook, because the relevant methods and techniques are still undergoing improvement. Nevertheless, whenever a link can be made to either of these two characteristics, it is explicitly mentioned in the corresponding section.

  • Technical report
    43 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    43 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This handbook defines methods for process assessment and improvement that may be used to meet the requirements on
process assessment and improvement of the EN16602-80 (equivalent to ECSS-Q-ST-80C) subclause 5.7. These methods constitute a clear and proven w ay of implementing those requirements. Alternative methods can be used provided that they meet the detailed instructions provided in this handbook for recognition of software process assessment schemes and results and process improvement.
This handbook provides a detailed method for the implementation of the requirements of the EN16602-80 for software process assessment and improvement. It also establishes detailed instructions for alternative methods intended to meet the same EN16602-80 requirements.
The process assessment and improvement scheme presented in this handbook is based on and conformant to the ISO/IEC 15504 International Standard. In designing this process assessment and improvement scheme the ISO/IEC 15504 exemplar process assessment model w as adopted and extended to address specific requirements.
The methods provided in this handbook can support organizations in meeting their business goals and in this context they can be tailored to suit their specific needs and requirements. How ever w hen used to claim compliance with relevant requirements in EN16602-80 only the steps and activities explicitly marked as recommended in this handbook may be omitted or modified.

  • Technical report
    122 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    122 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This handbook provides assessors with a number of instruments needed to perform software process capability assessments using the assessment method described in EN 17603-80-11 (equivalent to ECSS-Q-HB-80-02 Part 1). It also provides instruments that help assessors to carry out their activities when performing assessments and supporting the implementation of software process improvement initiatives using the method for process improvement described in Part 1.
The instruments provided are:
• The Process Assessment Model (PAM) required to perform assessments including process descriptions and process attribute indicators
• Conformance statement to the requirements in ISO/IEC 15504 Part 2
• A definition of the Process Reference Model (PRM) on which TR 17603-80-11 and TR 17603-80-12 (equivalent to ECSS-Q-HB-80-02 Part 1 and 2) PAM are based (defined in TR 17603-80-11)
• Detailed traces from base practices in the PAM to standard clauses and from work products to expected outputs.

  • Technical report
    129 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    129 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This handbook provides recommendations, methods and procedures that can be used for the selection and reuse of existing software in space software systems.
This handbook is applicable to all types of software of a space system, including the space segment, the launch service segment and the ground segment software (including EGSEs) whenever existing software is intended to be reused within them.
This handbook covers the following topics:
• Software reuse approach including guidelines to build the Software Reuse File
• Techniques to support completion of existing software qualification to allow its reuse in a particular project
• Tool qualification
• Risk management aspects of reusing existing software Existing software can be of any type: Purchased (or COTS), Legacy-Software, open-source software, customer-furnished items (CFI's), etc.
NOTE Special emphasis is put on guidance for the reuse of COTS software often available as-is and for which no code and documentation are often available.
Legal and contractual aspects of reuse are in principle out of scope; how ever guidelines to help in determine the
reusability of existing software from a contractual point of view is provided in [ESA/REG/002].
Any organization with the business objective of systematic reuse may need to implement the organizational reuse processes presented in [ISO12207]. These processes w ill support the identification of reusable software products and components within selected reuse domains, their classification, storage and systematic reuse within the projects of that organization, etc. But these processes are out of scope of this handbook as the handbook is centred on the specific project activities to reuse an existing software product, not part of those organizational reuse processes more oriented to ‘design for reuse’ processes.
In addition, this handbook provides guidelines to be used for the selection and analysis of tools for the development, verification and validation of the operational software.

  • Technical report
    58 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    58 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The present handbook is provided to support the implementation of the requirements of ECSS-E-AS-11 to space projects.
With this purpose, this handbook provides guidelines on the w ay to assess the maturity of a technology of a product in a
given environment, to use the TRL assessment outcome in the product development framew ork, and to introduce some
further refinements for specific disciplines or products to w hich the TRL assessment methodology can be extended.
The concept of Manufacturing Readiness Level (MRL) is not addressed in this document, w hilst the concept of TRL can
be applied to the technology-related aspects of manufacturing.

  • Technical report
    61 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    61 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Handbook establishes support the testing of Li-ion battery and associated generation of test related documentation.
This handbook sets out to:
- summarize most relevant characterisation tests
- provide guidelines for Li-ion battery testing
- provide guidelines for documentation associated w ith Li-ion cell or battery testing
- give an overview of appropriate test methods
- provide best practices

  • Technical report
    30 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    30 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Handbook describes the guidelines and recommendations for the design and test of RF components and equipment to achieve acceptable performance with respect to multipactor-free operation in service in space. This document is the mirror document of the EN 16603-20-01 (based on ECSS-ST-20-01) normative document. Thus it includes the same contents as the normative text and has the same structure.
This Handbook is intended to result in the effective design and verification of the multipactor performance of the equipment and consequently in a high confidence in achieving successful product operation.
This Handbook covers multipactor events occurring in all classes of RF satellite components and equipment at all frequency bands of interest. Operation in single carrier CW and pulse modulated mode are included, as w ell as multicarrier operations. A detailed chapter on secondary emission yield is also included.
This Handbook does not include breakdow n processes caused by collisional processes, such as plasma formation.

  • Technical report
    140 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    140 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This handbook provides additional information for the application of the verification standard EN 16603-10-02 to a space system product.
This handbook does not contain requirements and therefore cannot be made applicable. In case of conflict betw een the standard and this handbook, the standard prevails.
This handbook is relevant for both the customer and the supplier of the product during all project phases.
To facilitate the cross-reference, this handbook follow s as much as is practical, the structure of the standard and quotes the requirements, to make itself standing and easier to read (the text from the standard is in italic).
As the Standard applies to different products at different product levels from single equipment to the overall system (including space segment hardw are and softw are, launchers and Transportation Systems, ground segment, Verification tools, and GSE) several examples of tailoring, to match the specificity of each application, are proposed in Annex B.
Specific discipline related verification aspects are covered in other dedicated standards and handbooks. In particular the detailed aspects for Testing are covered in the EN 16603-10-03 and in its corresponding handbook.
The application of the requirements of the standard to a particular project is intended to result in effective product
verification and consequently to a high confidence in achieving successful product operations for the intended use, in this respect this handbook has the goal to help reaching these objectives.

  • Technical report
    95 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical report
    95 pages
    English language
    sale 10% off
    e-Library read for
    1 day