TC 106 - Methods for the assessment of electric, magnetic and electromagnetic fields associated with human exposure
To prepare international standards on measurement and calculation methods to assess human exposure to electric, magnetic and electromagnetic fields. The task includes: characterisation of the electromagnetic environments with regard to human exposure; – measurement methods, instrumentation and procedures; – calculation methods; – assessment methods for the exposure produced by specific sources (in so far as this task is not carried out by specific product committees); – basic standards for other sources; – assessment of uncertainties. It covers the whole frequency range from 0 Hz to 300 GHz. It applies to basic restrictions and reference levels. Excluded are: – the establishment of exposure limits (see AC/38/2009 of 2009-11-27); – mitigation methods which have to be dealt with by the relevant product committees; – electrical safety (however, the issue of contact current related to the indirect effect of human exposure to electromagnetic fields is included).
Méthodes d'évaluation des champs électriques, magnétiques et électromagnétiques en relation avec l'exposition humaine
Préparer des normes internationales sur des méthodes de mesure et de calcul dans le but d'évaluer l'exposition humaine aux champs électriques, magnétiques et électromagnétiques. Cela inclut : - la caractérisation des environnements électromagnétiques en relation avec l'exposition humaine ; - les méthodes de mesure, l'instrumentation et les procédures ; - les méthodes de calcul ; - les méthodes d'évaluation pour l'exposition produite par des sources particulières (pour autant que cette tâche ne soit pas réalisée par d'autres comités de produit particuliers) ; - les normes fondamentales pour d'autres sources ; - l’estimation des incertitudes. Il couvre la plage de fréquences de 0 Hz à 300 GHz. Il s'applique aux restrictions de base et aux niveaux de référence. Sont exclues : - la fixation de limites d'exposition (voir document AC/38/2009 datant du 27 novembre 2009) ; - les méthodes d'atténuation qui doivent être développées par les comités de produits concernés ; - la sécurité électrique (Cependant la question des courants de contact relatifs aux effets indirects de l’exposition humaine aux champs électromagnétiques est incluse).
General Information
IEC TR 63424-1:2024 describes the methods for validating dynamic power control and (dynamic) exposure time-averaging (DPC-ETA) algorithms used in RF modem chipsets of wireless devices. The DPC-ETA implementations are exposure-based, where SAR is time-averaged according to power recorded by the RF modem. Time-averaging windows up to six minutes consistent with applicable SAR limits and regulatory policies are considered for frequencies up to 6 GHz. The DPC-ETA power control parameters are established based on SAR compliance results with all relevant design and operating tolerances taken into consideration. The device output power is controlled by DPC-ETA to maintain SAR compliance in real-time. While SAR compliance is evaluated independently by applying IEC/IEEE 62209-1528:2020 [1] , this document contains information for algorithm validation.
Quasi-static and dynamic power control test sequences are described in this document for algorithm validation. The test sequences are sent from a radio communication tester (RCT) and DPC-ETA responses are measured with conducted and radiated power measurement methods to confirm algorithm functionality. Test sequences for wireless configurations that need validation, including wireless mode transitions, call drop, handover, discontinuous transmission, and simultaneous transmission are described. Considerations for measurement automation to acquire time-aligned results for correlation with power changes in the test sequences are provided. DPC-ETA algorithms are validated by correlating the normalized power measurement results with the expected behaviours of an implementation for the applied test sequences. The procedures in this document also support algorithm validation of modular transmitters using an appropriate test platform. Guidance for using SAR methods in place of radiated power measurements and capacitive proximity sensor triggering with time-averaged detection are also included.
NOTE 1 A separate document will be considered to validate DPC-ETA implementations above 6 GHz, according to near-field millimetre-wave band power density exposure requirements. Substantially shorter time-averaging window durations, on the order of a few seconds, can be required to satisfy some national regulatory requirements.
NOTE 2 The scope of this document is limited to cellular network technologies that have RF modem transmission power dictated by a base station and therefore can be tested using RCT test sequences. Cellular network technologies (also referred to as wireless wide area networks (WWAN)) include Global System for Mobile Communications (GSM), Universal Mobile Telecommunication System (UMTS), Long-Term Evolution (LTE) and 5G New Radio (NR), including other related 2G, 3G, 4G, and 5G specifications, respectively. A separate document will be considered for validating DPC-ETA implementations for wireless local area network (WLAN) technologies, such as those based on the IEEE 802.11 standards series. With WLAN technologies, the transmit power is dictated independently by the RF modem and can be specific to each power control implementation, requiring different testing approaches.
NOTE 3 The procedures in this document can also be considered for 3GPP [2] 5G NR FR1 bands above 6 GHz.
NOTE 4 This document does not address algorithm validation for simultaneous transmission configurations involving transmitters that are not controlled by DPC-ETA operations in the RF modem. These are evaluated according to regulatory requirements.
- Technical report99 pagesEnglish languagesale 15% off
IEC TR 63167:2024 provides general information on the assessment of contact current related to human exposure to electric, magnetic and electromagnetic fields. The contact currents in this context occur when a human body comes into contact with a conductive object that is non-electrified but exposed to an electric field or magnetic field or both at a different electric potential owing to electric or magnetic induction to the object. This is distinguished from the issue of electrical safety where contact with live parts of a conductive object is dealt with. In reference to the international EMF guidelines, the frequency range of contact current covered in this document is DC to 110 MHz, and only steady-state (continuous) contact currents are covered. Transient contact currents (spark discharges) which can occur immediately before the contact with the object are not covered.
- Technical report23 pagesEnglish languagesale 15% off
- Technical report51 pagesEnglish languagesale 15% off
IEC 61786-1:2013 provides guidance for measuring instruments used to measure the field strength of quasi-static magnetic and electric fields that have a frequency content in the range 1 Hz to 100 kHz and with DC magnetic fields to evaluate the exposure levels of the human body to these fields. Sources of fields include devices that operate at power frequencies and produce power frequency and power frequency harmonic fields, as well as devices that produce fields within the frequency range of this document, including devices that produce static fields, and the earth's static magnetic field. The magnitude ranges covered by this standard are 0,1 μT to 200 mT in AC (1 μT to 10 T in DC) and 1 V/m to 50 kV/m for magnetic fields and electric fields, respectively. When measurements outside this range are performed, most of the provisions of this standard will still apply, but special attention should be paid to specified uncertainty and calibration procedures. The first editions of IEC 61786-1 and IEC 61786-2 replace IEC 61786:1998. Part 1 deals with measuring instruments, and Part 2 deals with measurement procedures. The content of the standard was revised in order to give up-to-date and practical information to the user.
It has the status of a horizontal standard in accordance with IEC Guide 108.
- Standard107 pagesEnglish languagesale 15% off
- Standard110 pagesEnglish and French languagesale 15% off
IEC TR 63377:2022 describes assessment methods to evaluate the compliance of radiative wireless power transfer (WPT) systems operating in the frequency range from 30 MHz to 300 GHz with electromagnetic guidelines on human exposure (electromagnetic field strength, specific absorption rate (SAR), and power density). This document includes but is not limited to systems that focus the electromagnetic energy emitted by the transmitter to regions surrounding the receiver, for example, by narrow beam-forming systems, wide-beam systems and spatially closed systems. Implementations without transmitter, for example, applications that harvest energy from the environment, are not included in the scope of this document.
- Technical report52 pagesEnglish languagesale 15% off
IEC PAS 63446:2022, a Publicly Available Specification, provides the method to conservatively evaluate the area averaged electromagnetic (EM) power density entering the human body, i.e. the absorbed power density (APD), for communication devices intended to be used at a position near the human head or body, or mounted on the body, combined with other transmitters within a product, or embedded in garments. The device categories covered include but are not limited to mobile telephones, radio transmitters in personal computers, and desktop and laptop devices. The applicable frequency range is from 6 GHz to 10 GHz.
This document specifies:
conversion of the psSAR to the psAPD (Clause 6);
uncertainty estimation (Clause 7);
reporting requirements (Clause 8);
methods of validation and system check (Annex C)
- Technical specification22 pagesEnglish languagesale 15% off
IEC 62232:2022 addresses the evaluation of RF field strength, power density and specific absorption rate (SAR) levels in the vicinity of base stations (BS), also called products or equipment under test (EUT), intentionally radiating in the radio frequency (RF) range 110 MHz to 300 GHz in accordance with the scope, see Clause 1. It does not address the evaluation of current density.
RF exposure evaluation methods to be used for product compliance, product installation compliance and in-situ RF exposure assessments are specified in this document. Exposure limits are not specified in this document. The entity conducting RF exposure assessments refers to the set of exposure limits applicable where exposure takes place. Examples of applicable exposure limits considered in this document are provided in the Bibliography, for example ICNIRP-2020 [1], ICNIRP-1998 [2], IEEE Std C95.1™-2019 [3] and Safety Code 6 [4].
- Standard342 pagesEnglish languagesale 15% off
- Standard736 pagesEnglish and French languagesale 15% off
IEC 62764-1:2022 specifies a methodology for determining the exposure to multiple magnetic field sources for passenger cars and light commercial vehicles including standardized operating conditions and measurement volumes and/or surfaces. This part of IEC 62764 applies to the assessment of human exposure to low-frequency magnetic fields generated by automotive vehicles. For plug-in vehicles, this includes the electric vehicle supply equipment (EVSE) and associated cables provided by the car manufacturer. This excludes the charging station. This document specifies the measurement procedure for the evaluation of magnetic field exposures generated by electronic and electrical equipment (excluding intentionally transmitting radio frequency antennas) in selected automotive environments, for passenger cars and commercial vehicles of categories M1 and N1 as defined in ECE/TRANS/WP.29/78/Rev.3 [1], with respect to human exposure. It provides standardized operating conditions and defines recommended measurements to assess compliance with the applicable exposure requirements. This document covers the frequency range 1 Hz to 100 kHz and is applicable to any type of engine and/or internal energy source.
This first edition replaces IEC TS 62764-1, published in 2019.
- Standard75 pagesEnglish and French languagesale 15% off
IEC/IEEE 63195-2:2022 specifies computational procedures for conservative and reproducible computations of power density (PD) incident to a human head or body due to radio-frequency (RF) electromagnetic field (EMF) transmitting devices. The computational procedures described are finite-difference time-domain (FDTD) and finite element methods (FEM), which are computational techniques that can be used to determine electromagnetic quantities by solving Maxwell’s equations within a specified computational uncertainty. The procedures specified here apply to exposure assessments for a significant majority of the population during the use of hand-held and body-worn RF transmitting devices. The methods apply to devices that can feature single or multiple transmitters or antennas, and that can be operated with their radiating part or parts at distances up to 200 mm from a human head or body.
This document can be employed to determine conformity with any applicable maximum PD requirements of different types of RF transmitting devices used in close proximity to the head and body, including those combined with other RF transmitting or non-transmitting devices or accessories (e.g. belt-clip), or embedded in garments. The overall applicable frequency range of these protocols and procedures is from 6 GHz to 300 GHz.
The RF transmitting device categories covered in this document include but are not limited to mobile telephones, radio transmitters in personal computers, desktop and laptop devices, and multi-band and multi-antenna devices.
The procedures of this document do not apply to PD assessment of electromagnetic fields emitted or altered by devices or objects intended to be implanted in the body.
NOTE For the assessment of the combined exposure from simultaneous transmitters at frequencies below 6 GHz, the relevant standards for SAR computation are IEC/IEEE 62704-1:2017 and IEC/IEEE 62704-4:2020.
This publication is published as an IEC/IEEE Dual Logo standard.
- Standard150 pagesEnglish and French languagesale 15% off
IEC/IEEE 63195-1:2022 specifies protocols and test procedures for repeatable and reproducible measurements of power density (PD) that provide conservative estimates of exposure incident to a human head or body due to radio-frequency (RF) electromagnetic field (EMF) transmitting communication devices, with a specified measurement uncertainty. These protocols and procedures apply for exposure evaluations of a significant majority of the population during the use of hand-held and body-worn RF transmitting communication devices. The methods apply for devices that can feature single or multiple transmitters or antennas, and can be operated with their radiating structure(s) at distances up to 200 mm from a human head or body.
The methods of this document can be used to determine conformity with applicable maximum PD requirements of different types of RF transmitting communication devices being used in close proximity to the head and body, including if combined with other RF transmitting or non-transmitting devices or accessories (e.g. belt-clip), or embedded in garments. The overall applicable frequency range of these protocols and procedures is from 6 GHz to 300 GHz.
The RF transmitting communication device categories covered in this document include but are not limited to mobile telephones, radio transmitters in personal computers, desktop and laptop devices, and multi-band and multi-antenna devices.
NOTE 1 The protocols and test procedures in this document can be adapted to evaluate exposure also due to non-communication types of devices operating in close proximity to the head and body, but these devices are not in the scope of this document.
NOTE 2 For the assessment of the combined exposure from simultaneous transmitters at frequencies below 6 GHz, the relevant standards for SAR measurements are IEC/IEEE 62209-1528:2020 and IEC/IEEE 62209-3:2019 [1].
NOTE 3 Between 6 GHz and 10 GHz, the scopes of this document and IEC/IEEE 62209-1528:2020 overlap. According to ICNIRP [2] and IEEE ICES TC95 [3] exposure guidelines, power density is the conformity metric in this frequency range. SAR can be used as conformity metric if local regulatory requirements allow it. (e.g. in case where a single transmit band includes test channels at both below and above 6 GHz).
The procedures of this document do not apply for EMF measurements of devices or objects intended to be implanted in the body.
This publication is published as an IEC/IEEE Dual Logo standard.
- Standard296 pagesEnglish and French languagesale 15% off
IEC PAS 63184:2021 specifies the assessment methods to evaluate compliance of stationary and dynamic wireless power transfer (WPT) systems with electromagnetic human exposure guidelines (external electric and magnetic fields, specific absorption rate (SAR), internal electric fields or current density including contact currents). The frequency range of this document is from 1 kHz to 30 MHz.
- Technical specification119 pagesEnglish languagesale 15% off
IEC/IEEE 62704-4:2020 describes the concepts, techniques, and limitations of the finite element method (FEM) and specifies models and procedures for verification, validation and uncertainty assessment for the FEM when used for determining the peak spatial-average specific absorption rate (psSAR) in phantoms or anatomical models. It recommends and provides guidance on the modelling of wireless communication devices, and provides benchmark data for simulating the SAR in such phantoms or models.
This document does not recommend specific SAR limits because these are found elsewhere (e.g. in IEEE Std C95.1 or in the guidelines published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP)).
This publication is published as an IEC/IEEE Dual Logo standard.
- Standard99 pagesEnglish and French languagesale 15% off
IEC/IEEE 62209-1528:2020 specifies protocols and test procedures for the reproducible and repeatable measurement of the conservative exposure peak spatial average SAR (psSAR) induced inside a simplified model of the head and the body by radio-frequency (RF) transmitting devices, with a defined measurement uncertainty. These protocols and procedures apply to a significant majority of the population, including children, during the use of hand-held and body-worn wireless communication devices. These devices include single or multiple transmitters or antennas, and are operated with their radiating structure(s) at distances up to 200 mm from a human head or body. This document is employed to evaluate SAR compliance of different types of wireless communication devices used next to the ear, in front of the face, mounted on the body, operating in conjunction with other RF-transmitting, non-transmitting devices or accessories (e.g. belt-clips), or embedded in garments. The applicable frequency range is from 4 MHz to 10 GHz. Devices operating in the applicable frequency range can be tested using the phantoms and other requirements defined in this document.
The device categories covered include, but are not limited to, mobile telephones, cordless microphones, and radio transmitters in personal, desktop and laptop computers, for multi band operations using single or multiple antennas, including push-to-talk devices. This document can also be applied for wireless power transfer devices operating above 4 MHz.
This document does not apply to implanted medical devices.
This first edition of IEC/IEEE 62209-1528 cancels and replaces IEC 62209-1:2016, IEC 62209-2:2010, IEC 62209 2:2010/AMD1:2019 and IEEE Std 1528:2013. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) extension of the frequency range down to 4 MHz and up to 10 GHz;
b) testing of devices with proximity sensors;
c) application specific phantoms;
d) device holder specifications;
e) fast SAR testing procedures;
f) test reduction procedures;
g) LTE assessment procedure;
h) revision of validation clause, including validation antennas;
i) revision of SAR assessment procedure;
j) time-average SAR measurement procedure;
k) uncertainty analysis;
This publication is published as an IEC/IEEE Dual Logo standard.
- Standard280 pagesEnglish languagesale 15% off
- Standard600 pagesEnglish and French languagesale 15% off
IEC 62209-3: 2019 specifies measurement protocols and test procedures for the reproducible measurement of peak spatial-average specific absorption rate (psSAR) induced inside a simplified model of a human head or body by radio-frequency (RF) transmitting devices, with a specified measurement uncertainty. Requirements are provided for psSAR assessment using vector measurement-based systems. Such systems determine the psSAR by three-dimensional (3D) field reconstruction within the volume of interest in accordance with the requirements herein for the measurement system, calibration, uncertainty assessment and validation methods. The protocols and procedures apply for the psSAR assessments covering a significant majority of people including children during use of wireless communication devices operated in close proximity to the head or body.
This document is applicable to wireless communication devices intended to be used at a position near the human head or body at distances up to and including 200 mm. This document may be employed to evaluate SAR compliance of different types of wireless communication devices used next to the ear, in front of the face, mounted on the body, combined with other RF-transmitting or non-transmitting devices or accessories (e.g. belt-clip), or embedded in garments. The overall applicable frequency range is from 600 MHz to 6 GHz.
The system validation procedures provided within this document cover frequencies from 600 MHz to 6 GHz.
With a vector measurement-based system this document can be employed to evaluate SAR compliance of different types of wireless communication devices.
The wireless communication device categories covered include but are not limited to mobile telephones, cordless microphones, auxiliary broadcast devices and radio transmitters in personal computers, desktop and laptop devices, multi-band, multi-antenna, and push-to-talk devices.
Key Words: Human Exposure, Hand-Held and Body Mounted Wireless Communication Devices.
- Standard282 pagesEnglish and French languagesale 15% off
IEC 62311:2019 applies to electronic and electrical equipment for which no dedicated product standard or product family standard regarding human exposure to electromagnetic fields applies. It covers equipment with intentional or non-intentional radiators as well as a combination thereof.
This document provides assessment methods and criteria to evaluate equipment against limits on exposure of people related to electric, magnetic and electromagnetic fields. The frequency range covered is from 0 Hz to 300 GHz.
This second edition cancels and replaces the first edition published in 2007. This edition constitutes a technical revision.
This document does not specify limits expressed by means of basic restrictions and/or reference levels. Such limits are subject to the applied assessment scheme, for example by means of regional limits.
This edition includes the following significant technical changes with respect to the previous edition:
a) a clear distinction between intentional and unintentional radiators has been introduced;
b) the exposure to non-uniform fields is considered;
c) the treatment of uncertainty for the assessment procedures has been improved;
d) various summation regimes are described in Annex A;
e) the information from meanwhile published basic standards has been used and hence all informative annexes of the previous edition have been removed.
Key words: Human Exposure, Electromagnetic Fields (0 Hz to 300 GHz).
- Standard71 pagesEnglish and French languagesale 15% off
IEC/TR 62669:2019(E) is a Technical Report. This document presents a series of case studies in which electromagnetic (EM) fields are evaluated in accordance with IEC 62232:2017. The case studies presented in this document involve intentionally radiating base stations (BS). The BS transmit on one or more antennas using one or more frequencies in the range 110 MHz to 100 GHz and RF exposure assessments take into account the contribution of ambient sources at least in the 100 kHz to 300 GHz frequency range.
Each case study has been chosen to illustrate a typical BS evaluation scenario and employs the methods detailed in IEC 62232:2017. The case studies are provided for guidance only and are not a substitute for a thorough understanding of the requirements of IEC 62232:2017. Based on the lessons learned from each case study, recommendations about RF assessment topics to be considered in the next revision of IEC 62232 are proposed. The methodologies and approaches described in this document are useful for the assessment of early 5G products introduced for consumer trials or deployments.
This document provides background and rationale for applying a compliance approach based on the actual maximum transmitted power or EIRP. Guidance for collecting and analysing information about the transmitted power of a base station and evaluating its actual maximum RF exposure based on modelling studies or measurement studies on operational sites (in networks, sub-networks or field trials) is also presented.
This second edition cancels and replaces the first edition published in 2011. This edition constitutes a technical revision.
Keywords: Human Exposure, Wireless Communication Devices, RF field strength, power density and SAR in the vicinity of radiocommunication base stations
- Technical report124 pagesEnglish languagesale 15% off
IEC/TR 62905:2018(E) is a Technical Report. Provides general information on the assessment of contact current related to human exposure to electric, magnetic and electromagnetic fields. The contact currents in this context occur when a human body comes into contact with a not electrified conductive object exposed to an electric and/or magnetic field at a different electric potential owing to electric and/or magnetic induction to the object. This is distinguished from the issue of electrical safety where contact with live parts of a conductive object is dealt with.
In reference to the international EMF guidelines, the frequency range of contact current covered in this document is direct current to 110 MHz, and only steady-state (continuous) contact currents are covered. Transient contact currents (spark discharges) which may occur immediately before the contact with the object are not covered.
Keywords: Human Exposure Electric Fields, Magnetic Fields, Electromagnetic Fields
- Technical report22 pagesEnglish languagesale 15% off
IEC/TR 62905:2018(E) is a Technical Report. It describes general exposure assessment methods for wireless power transfer (WPT) at frequency up to 10 MHz considering thermal and stimulus effects. Exposure assessment procedures and experimental results are shown as examples such as electric vehicles (EVs) and mobile devices.
Keywords: Exposure Assessment, Wireless Power Transfer (WPT), Human Exposure
- Technical report102 pagesEnglish languagesale 15% off
IEC/IEEE 62704-1:2017(E) defines the methodology for the application of the finite-difference time domain (FDTD) technique when used for determining the peak spatial-average specific absorption rate (SAR) in the human body exposed to wireless communication devices with known uncertainty. It defines methods to validate the numerical model of the device under test (DUT) and to assess its uncertainty when used in SAR simulations. Moreover, it defines procedures to determine the peak spatial-average SAR in a cubical volume and to validate the correct implementation of the FDTD simulation software. The applicable frequency range is 30 MHz to 6 GHz.
This document does not recommend specific SAR limits since these are found elsewhere, for example, in the guidelines published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) [1] or in IEEE Std C95.1 [3].
Key words: Spatial-Average Specific Absorption Rate, Finite-Difference Time-Domain, Human Body
- Standard81 pagesEnglish languagesale 15% off
IEC/IEEE 62704-3:2017 defines the concepts, techniques, benchmark phone models, validation procedures, uncertainties and limitations of the finite difference time domain (FDTD) technique when used for determining the peak spatial-average specific absorption rate (SAR) in standardized head and body phantoms exposed to the electromagnetic fields generated by wireless communication devices, in particular pre-compliance assessment of mobile phones, in the frequency range from 30 MHz to 6 GHz. It recommends and provides guidance on the numerical modelling of mobile phones and benchmark results to verify the general approach for the numerical simulations of such devices. It defines acceptable modelling requirements, guidance on meshing and test positions of the mobile phone and the phantom models.
This document does not recommend specific SAR limits since these are found in other documents, e.g. IEEE C95.1-2005 and ICNIRP
Key words: Mobile Phone, Spatial-Average Specific Absorption Rate, Finite-Difference Time-Domain, Human Body
- Standard72 pagesEnglish and French languagesale 15% off
IEC 62232:2017 provides methods for the determination of radio-frequency (RF) field strength and specific absorption rate (SAR) in the vicinity of radiocommunication base stations (RBS) for the purpose of evaluating human exposure. This document:
- considers intentionally radiating RBS which transmit on one or more antennas using one or more frequencies in the range 110 MHz to 100 GHz;
- considers the impact of ambient sources on RF exposure at least in the 100 kHz to 300 GHz frequency range;
- specifies the methods to be used for RF exposure evaluation for compliance assessment applications, namely:
- product compliance - determination of compliance boundary information for an RBS product before it is placed on the market;
- product installation compliance - determination of the total RF exposure levels in accessible areas from an RBS product and other relevant sources before the product is put into service;
- in-situ RF exposure assessment – measurement of in-situ RF exposure levels in the vicinity of an RBS installation after the product has been taken into operation;
- describes several RF field strength and SAR measurement and computation methodologies with guidance on their applicability to address both the in-situ evaluation of installed RBS and laboratory-based evaluations;
- describes how surveyors, with a sufficient level of expertise, establish their specific evaluation procedures appropriate for their evaluation purpose;
- provides guidance on how to report, interpret and compare results from different evaluation methodologies and, where the evaluation purpose requires it, determine a justified decision against a limit value and
- provides short descriptions of the informative example case studies given in the companion Technical Report IEC TR 62669]
This second edition cancels and replaces the first edition published in 2011 and constitutes a technical revision.
- Standard240 pagesEnglish languagesale 15% off
IEC/IEEE 62704-2:2017 establishes the concepts, techniques, validation procedures, uncertainties and limitations of the finite difference time domain technique (FDTD) when used for determining the peak spatial-average and whole-body average specific absorption rate (SAR) in a standardized human anatomical model exposed to the electromagnetic field emitted by vehicle mounted antennas in the frequency range from 30 MHz to 1 GHz, which covers typical high power mobile radio products and applications. This document specifies and provides the test vehicle, human body models and the general benchmark data for those models. It defines antenna locations, operating configurations, exposure conditions, and positions that are typical of persons exposed to the fields generated by vehicle mounted antennas. The extended frequency range up to 6 GHz will be considered in future revisions of this document. This document does not recommend specific peak spatial-average and whole-body average SAR limits since these are found in other documents, e.g. IEEE C95.1-2005, ICNIRP (1998).
Key words: Electromagnetic Field, Finite-Difference Time Domain (FDTD), Spatial-Average Specific Absorption Rate (SAR), vehicle mounted antennas
- Standard108 pagesEnglish and French languagesale 15% off
- Standard9 pagesEnglish and French languagesale 15% off
Gives guidance on allowable limits of surface irregularities applicable to RM-cores in accordance with the relevant generic specification.
- Standard10 pagesEnglish and French languagesale 15% off
IEC 61786-2:2014 provides requirements for the measurement of quasi-static magnetic and electric fields that have a frequency content in the range 1 Hz to 100 kHz, and DC magnetic fields, to evaluate the exposure levels of the human body to these fields. Specifically, this standard gives requirements for establishing measurement procedures that achieve defined goals pertaining to human exposure. Because of differences in the characteristics of the fields from sources in the various environments, e.g. frequency content, temporal and spatial variations, polarization, and magnitude, and differences in the goals of the measurements, the specific measurement procedures will be different in the various environments. Sources of fields include devices that operate at power frequencies and produce power frequency and power-frequency harmonic fields, as well as devices that produce fields independent of the power frequency, and DC power transmission, and the geomagnetic field. The magnitude ranges covered by this standard are 0,1 micro-Tesla to 200 mili-Tesla for AC (1 micro-Tesla to 10 Tesla for DC) for magnetic fields, and 1 V/m to 50 kV/m for electric fields. When measurements outside this range are performed, most of the provisions of this standard will still apply, but special attention should be paid to the specified uncertainty and calibration procedures. Examples of sources of fields that can be measured with this standard include:
- devices that operate at power frequencies (50/60 Hz) and produce power frequency and power-frequency harmonic fields (examples: power lines, electric appliances...);
- devices that produce fields that are independent of the power frequency.(Examples: electric railway (DC to 20 kHz);
- commercial aeroplanes (400 Hz), induction heaters (up to 100 kHz), and electric vehicles);
- and devices that produces static magnetic fields: MRI, DC power lines, DC welding, electrolysis, magnets, electric furnaces, etc. DC currents are often generated by converters, which also create AC components (power frequency harmonics), which should be assessed. When EMF products standards are available, these products standards should be used. With regard to electric field measurements, this standard considers only the measurement of the unperturbed electric field strength at a point in space (i.e. the electric field prior to the introduction of the field meter and operator) or on conducting surfaces. Sources of uncertainty during measurements are also identified and guidance is provided on how they should be combined to determine total measurement uncertainty.
- Standard71 pagesEnglish and French languagesale 15% off
IEC/TR 62699:2011(E) is a technical report. It contains a series of case studies for the evaluation of electromagnetic (EM) sources in the frequency range 100 kHz - 300 GHz to support the methods detailed in the international standard IEC 62232, Determination of RF field strength and SAR in the vicinity of radiocommunication base stations for the purpose of evaluating human exposure. Using the methods detailed in the standard, each case study has been chosen to illustrate a typical radio base station (RBS) evaluation scenario. Some of the case studies demonstrate more than one evaluation method. However, in most situations only one method would be required to complete an evaluation. The case studies documented in this report are provided for guidance only and are not a substitute for a thorough understanding of the requirements of IEC 62232. This publication contains attached files in the form of a CD-ROM for the paper version and embedded files for the electronic version. These files are intended to be used as a complement and do not form an integral part of the standard.
- Technical report212 pagesEnglish languagesale 15% off
IEC 62232:2011 addresses the evaluation of RF field strength or specific absorption rate levels in the vicinity of non-broadcast RF radiocommunication sources (i.e. RBS) intentionally radiating in the frequency range 300 MHz to 6 GHz according to the scope (see Clause 1). It does not address the evaluation of current density which exposure guidelines often do not consider to be relevant when evaluating RF fields in the intended RBS operating frequency range. This standard defines how a suitably qualified surveyor shall select between the described evaluation methods in order to prepare specific or generic evaluation plans and how to validate their implementation. When using this standard to establish RBS compliance, the full set of limiting conditions needs to be defined. These may include for example limits on human exposure to RF fields; the likelihood that people may have access to a specific location; specific decision rules for interpretation of uncertainty. This standard does not define such limits or the associated requirements for a safety programme. Further, this standard recognises that national regulators (or the test client) may establish rules (termed "assessment schemes") on how to interpret uncertainty when establishing compliance. However, this standard does provide guidance on how to apply the described evaluation methods consistent with such rules. Additional guidance can be found in Technical Report IEC 62669 [54]) which includes a set of worked case studies giving practical examples of the application of this standard.
- Standard383 pagesEnglish and French languagesale 15% off
IEC 62479:2010 provides simple conformity assessment methods for low-power electronic and electrical equipment to an exposure limit relevant to electromagnetic fields (EMF). If such equipment cannot be shown to comply with the applicable EMF exposure requirements using the methods included in this standard for EMF assessment, then other standards, including IEC 62311 or other (EMF) product standards, may be used for conformity assessment.
- Standard38 pagesEnglish and French languagesale 15% off
IEC/TR 62630:2010(E) describes exposure evaluation concepts and techniques for the overall exposure level in spatial regions and occupants caused by the simultaneous exposure to multiple narrowband electromagnetic (EM) sources. Throughout this Technical Report, it is assumed that the exposure evaluation occurs under static conditions, i.e., the source position and transmit-mode characteristics (e.g. emitted power, modulation scheme, etc.) of the device(s) under test do not vary significantly over the time required to carry out the evaluation using the chosen evaluation technique (e.g., field measurements). IEC/TR 62630:2010 provides guidance to IEC TC 106 project teams on how to evaluate the combined exposures from multiple electromagnetic (EM) sources in the frequency range 100 kHz to 300 GHz when specific absorption rate (SAR) and equivalent power density (S) are the relevant exposure metrics, as defined by the main international guidelines recommending limits on human exposure to EM fields.
- Technical report46 pagesEnglish languagesale 15% off
IEC 62110:2009 establishes measurement procedures for electric and magnetic field levels generated by AC power systems to evaluate the exposure levels of the human body to these fields. This standard is not applicable to DC power transmission systems. IEC 62110:2009 is applicable to public exposure in the domestic environment and in areas accessible to the public. It specifies fundamental procedures for the measurement of fields, and, with regard to human exposure, for obtaining a field value that corresponds to a spatial average over the entire human body. IEC 62110:2009 is not applicable to occupational exposure associated with, for example, the operation and/or maintenance of the power systems. Such exposure may occur when working inside a distribution or transmission substation, a power plant, in a manhole or a tunnel for underground cables, or on an overhead line tower or pole. The contents of the corrigendum of January 2015 have been included in this copy.
- Standard103 pagesEnglish and French languagesale 15% off
IEC 62577:2009 applies to a single stand-alone broadcast transmitter operating in the frequency range 30 MHz to 40 GHz when put on the market. The objective of the standard is to specify, for such equipment operating in typical conditions, the method for assessment of compliance distances according to the basic restrictions (directly or indirectly via compliance with reference levels) related to human exposure to radio frequency electromagnetic fields.
NOTE 1 - This standard only applies to broadcast transmitters being placed on the market (type approval) and does not apply to broadcast transmitters being commissioned or placed into service.
NOTE 2 - Compliance certification depends on the policy of national regulatory bodies.
- Standard50 pagesEnglish and French languagesale 15% off
IEC 62369-1:2008 presents procedures for the evaluation of human exposure to electromagnetic fields (EMFs) from devices used in electronic article surveillance (EAS), radio frequency identification (RFID) and similar applications. It adopts a staged approach to facilitate compliance assessment. The first stage (Stage 1) is a simple measurement against the appropriate derived reference values. Stage 2 is a more complex series of measurements or calculations, coupled with analysis techniques. Stage 3 requires detailed modelling and analysis for comparison with the basic restrictions. When assessing any device, the most appropriate methodfor the exposure situation may be used. At the time of writing this International Standard, electronic article surveillance, radio frequency identification and similar systems do not normally operate at frequencies below 1 Hz or above 10 GHz. EMF exposure guidelines and standards can cover a wider range of frequencies, so clarification on the required range is included as part of the evaluation procedures. The devices covered by this document normally have non-uniform field patterns. Often these devices have a very rapid reduction of field strength with distance and operate under near-field conditions where the relationship between electric and magnetic fields is not constant. This, together with typical exposure conditions for different device types, is detailed in Annex A. Annex B contains comprehensive information to assist with numerical modelling of the exposure situation. It includes both homogeneous and anatomical models as well as the electrical properties of tissue. IEC 62369-1:2008 does not include limits. Limits can be obtained from separately published human exposure guidelines. Different guidelines and limit values may apply in different regions. Linked into the guidelines are usually methods for summation across wider frequency ranges and for multiple exposure sources. These shall be used. A simplified method for summation of multiple sources is contained in Annex C. This has to be used with care as it is simplistic and will overestimate the exposure; however it is useful as a guide, when the results of different evaluations are in different units of measure which are not compatible. Different countries and regions have different guidelines for handling the uncertainties from the evaluation. Annex D provides information on the two most common methods.
- Standard149 pagesEnglish and French languagesale 15% off
Applies to electronic and electrical equipment for which no dedicated product- or product family standard regarding human exposure to electromagnetic fields applies. The frequency range covered is 0 Hz to 300 GHz. The object of this generic standard is to provide assessment methods and criteria to evaluate such equipment against basic restrictions or reference levels on exposure of the general public related to electric, magnetic and electromagnetic fields and induced and contact current.
- Standard146 pagesEnglish and French languagesale 15% off
Applies to the frequency range for which exposure limits are based on the induction of voltages or currents in the human body when exposed to electric fields. Defines in detail the coupling factor K - introduced by the IEC 62226 series to enable exposure assessment for complex exposure situations, such as non-uniform magnetic field or perturbed electric field - for the case of simple models of the human body, exposed to uniform electric fields. The coupling factor K has different physical interpretations depending on whether it relates to electric or magnetic field exposure. It is the so called "shape factor for electric field". This part of IEC 62226 can be used when the electric field can be considered to be uniform, for frequencies up to at least 100 kHz. This situation of exposure to a "uniform" electric field is mostly found in the vicinity of high voltage overhead power systems. For this reason, illustrations given in this part are given for power frequencies (50 Hz and 60 Hz).
- Standard109 pagesEnglish and French languagesale 15% off
- Standard225 pagesEnglish and French languagesale 15% off
Deals with electromagnetic fields up to 300 GHz and defines methods for evaluating the electric field strength and magnetic flux density around household and similar electrical appliances, including the conditions during testing as well as measuring distances and positions. Appliances may incorporate motors, heating elements or their combination, may contain electric or electronic circuitry, and may be powered by the mains, by batteries, or by any other electrical power source. Appliances include such equipment as household electrical appliances, electric tools and electric toys. Appliances not intended for normal household use but which nevertheless may be approached by the public, or may be used by laymen, are within the scope of this standard. This standard includes specific elements to assess human exposure: - definition of sensor; - definition of measuring methods; - definition of operating mode for appliance under test; - definition of measuring distance and position. The measurement methods specified are valid from 10 Hz to 400 kHz. In the frequency range above 400 kHz and below 10 Hz appliances in the scope of this standard are deemed to comply without testing unless otherwise specified in IEC 60335 series.
- Standard89 pagesEnglish and French languagesale 15% off
Applies to any electromagnetic field (EMF) transmitting device intended to be used with the radiating part of the device in close proximity to the human head and held against the ear, including mobile phones, cordless phones, etc. The frequency range is 300 MHz to 3 GHz. The objective of this standard is to specify the measurement method for demonstration of compliance with the specific absorption rate (SAR) limits for such devices.
- Standard215 pagesEnglish and French languagesale 15% off
This part of IEC 62226 introduces the coupling factor K, to enable exposure assessment for complex exposure situations, such as non-uniform magnetic field or perturbed electric field. The coupling factor K has different physical interpretations depending on whether it relates to electric or magnetic field exposure. The aim of this part is to define in more detail this coupling factor K, for the case of simple models of the human body, exposed to non-uniform magnetic fields. It is thus called "coupling factor for non-uniform magnetic field".
- Standard113 pagesEnglish and French languagesale 15% off
Provides means for demonstrating compliance with the basic restrictions on human exposure to low and intermediate frequency electric and magnetic fields specified in exposure standards or guidelines such as those produced by IEEE and ICNIRP. The object of IEC 62226 is - to propose a more realistic approach to the modelling of the human exposure to low frequency electric and magnetic fields, using a set of models of growing complexity for the field emission source, or the human body or both; - to propose standardised values for the electrical parameters of organs in human body: electrical conductivity and permittivity and their variation with the frequency. The present basic standard does not aim at replacing the definitions and procedures specified in exposure standards or guidelines, such as those produced by IEEE or ICNIRP, but aims at providing additional procedures with a view to allowing compliance assessment with these documents. The present basic standard provides means for demonstrating compliance with the basic restrictions without having to go to the sophisticated models. Nevertheless, when the exposure conditions are well characterized (such as in product standards, for example) and when results from such models are available, they can be used for demonstrating compliance with EMF standards or guidelines.
- Standard29 pagesEnglish and French languagesale 15% off
IEC 61786-2:2014 provides requirements for the measurement of quasi-static magnetic and electric fields that have a frequency content in the range 1 Hz to 100 kHz, and DC magnetic fields, to evaluate the exposure levels of the human body to these fields. Specifically, this standard gives requirements for establishing measurement procedures that achieve defined goals pertaining to human exposure. Because of differences in the characteristics of the fields from sources in the various environments, e.g. frequency content, temporal and spatial variations, polarization, and magnitude, and differences in the goals of the measurements, the specific measurement procedures will be different in the various environments. Sources of fields include devices that operate at power frequencies and produce power frequency and power-frequency harmonic fields, as well as devices that produce fields independent of the power frequency, and DC power transmission, and the geomagnetic field. The magnitude ranges covered by this standard are 0,1 micro-Tesla to 200 mili-Tesla for AC (1 micro-Tesla to 10 Tesla for DC) for magnetic fields, and 1 V/m to 50 kV/m for electric fields. When measurements outside this range are performed, most of the provisions of this standard will still apply, but special attention should be paid to the specified uncertainty and calibration procedures. Examples of sources of fields that can be measured with this standard include:
- devices that operate at power frequencies (50/60 Hz) and produce power frequency and power-frequency harmonic fields (examples: power lines, electric appliances...);
- devices that produce fields that are independent of the power frequency.(Examples: electric railway (DC to 20 kHz);
- commercial aeroplanes (400 Hz), induction heaters (up to 100 kHz), and electric vehicles);
- and devices that produces static magnetic fields: MRI, DC power lines, DC welding, electrolysis, magnets, electric furnaces, etc. DC currents are often generated by converters, which also create AC components (power frequency harmonics), which should be assessed. When EMF products standards are available, these products standards should be used. With regard to electric field measurements, this standard considers only the measurement of the unperturbed electric field strength at a point in space (i.e. the electric field prior to the introduction of the field meter and operator) or on conducting surfaces. Sources of uncertainty during measurements are also identified and guidance is provided on how they should be combined to determine total measurement uncertainty.
- Standard34 pagesEnglish languagesale 10% offe-Library read for1 day
IEC/TR 63170:2018(E) is a Technical Report. This document describes the state of the art measurement techniques and test approaches for evaluating the local and spatial-average incident power density of wireless devices operating in close proximity to the users between 6 GHz and 100 GHz.
In particular, this document provides guidance for testing portable devices in applicable operating position(s) near the human body, such as mobile phones, tablets, wearable devices, etc. The methods described in this document may also apply to exposures in close proximity to base stations.
This document also gives guidance on how to assess exposure from multiple simultaneous transmitters operating below and above 6 GHz (including combined exposure of SAR and power density).
Key words: Human Exposure, Wireless Communication Devices, Radio Frequency Fields from 6Ghz to 100GHz
- Technical report99 pagesEnglish languagesale 15% off
IEC PAS 63083:2017(E) applies to measurement procedures of Specific Absorption Rate (SAR) generated by devices with LTE (Long Term Evolution) technology specified by 3rd Generation Partnership Project (3GPP), Rel. 8 and 9 [1] where the devices are intended to be used with the radiating part in close proximity to the human head and body. This document supports both FDD and TDD modes. The objective of this document is to define the number of test conditions with respect to basic radio frequency aspects, i.e. channel bandwidths, number and offset of allocated resource blocks (RB), modulation, and maximum power reduction (MPR) for IEC 62209-1 and IEC 62209-2. This PAS is a technical specification not fulfilling the requirements for a standard, but made available to the public.
- Technical specification28 pagesEnglish languagesale 15% off
IEC PAS 63151:2018(E) specifies protocols and test procedures for the reproducible measurement of the peak spatial-average specific absorption rate (psSAR) induced inside a simplified model of the head or the body by radio-frequency (RF) transmitting devices, with a defined uncertainty. It provides requirements for systems using vector measurement-based systems. Such systems determine the psSAR by 3D field reconstruction within the volume of interest by specifying the requirements for the measurement system, calibration, uncertainty assessment and validation methods. The protocols and procedures apply for a significant majority of people including children during use of hand-held and body-worn wireless communication devices.
This PAS is applicable to any wireless communication device intended to be used at a position near the human head or body at distances up to and including 200 mm. This PAS can be employed to evaluate SAR compliance of different types of wireless communication devices used next to the ear, in front of the face, mounted on the body, combined with other RF-transmitting or non-transmitting devices or accessories (e.g. belt-clip), or embedded in garments. The overall applicable frequency range is from 30 MHz to 6 GHz.
The system validation procedures provided within this PAS cover frequencies from 600 MHz to 6 GHz.
Some specifications (e.g., validation antennas and other procedures or requirements) are not yet defined over the full frequency range within the scope of this document but will be included in a future revision.
The device categories covered include but are not limited to mobile telephones, cordless microphones, auxiliary broadcast devices and radio transmitters in personal computers, desktop, laptop devices, multi-band, multi-antenna, and push-to-talk devices.
- Technical specification127 pagesEnglish languagesale 15% off
IEC TS 62764-1:2019(E) applies to the assessment of human exposure to low frequency magnetic fields generated by automotive vehicles. For plug-in vehicles, this includes the electric vehicle supply equipment (EVSE) and associated cables provided by the car manufacturer.
The scope of this document establishes the measurement procedure for the evaluation of magnetic field levels in the automotive environment, for passenger cars and commercial vehicles of categories M1 and N1 as defined in ECE/TRANS/WP.29/78/Rev.3 [1] , with respect to human exposure. It provides standardized operating conditions and defines recommended measurements to assess compliance to the applicable exposure requirements.
This document covers the frequency range 1 Hz to 400 kHz and is applicable to any type of engine and/or internal energy source.
It is not the scope of this document to define procedures for wireless power transfer (WPT). Human exposure due to WPT is covered by IEC 61980-1 [2].
Abnormal operation of the vehicle or equipment under test is not taken into consideration.
Key Words:Human Exposure, Low Frequency Magnetic Fields, Electric vehicle Supply Equipment
- Technical specification21 pagesEnglish languagesale 15% off
- Standard8 pagesEnglish and French languagesale 15% off
IEC 62209-1:2016 specifies protocols and test procedures for measurement of the peak spatial-average SAR induced inside a simplified model of the head with defined reproducibility. It applies to certain electromagnetic field (EMF) transmitting devices that are positioned next to the ear, where the radiating structures of the device are in close proximity to the human head, such as mobile phones, cordless phones, certain headsets, etc. These protocols and test procedures provide a conservative estimate with limited uncertainty for the peak-spatial SAR that would occur in the head for a significant majority of people during normal use of these devices. The applicable frequency range is from 300 MHz to 6 GHz. This second edition cancels and replaces the first edition published in 2005. This edition constitutes a technical revision.
- Standard471 pagesEnglish and French languagesale 15% off
Describes a test to determine the ignition temperature of a vapour or chemically pure gas in air at atmospheric pressure.
- Standard10 pagesEnglish and French languagesale 15% off
IEC 62209-2:2010 is applicable to any wireless communication device capable of transmitting electromagnetic fields (EMF) intended to be used at a position near the human body, in the manner described by the manufacturer, with the radiating part(s) of the device at distances up to and including 200 mm from a human body, i.e. when held in the hand or in front of the face, mounted on the body, combined with other transmitting or non-transmitting devices or accessories (e.g. belt-clip, camera or Bluetooth add-on), or embedded in garments. For transmitters used in close proximity to the human ear, the procedures of IEC 62209-1:2005 are applicable. IEC 62209-2:2010 is applicable for radio frequency exposure in the frequency range of 30 MHz to 6 GHz, and may be used to measure simultaneous exposures from multiple radio sources used in close proximity to human body. Definitions and evaluation procedures are provided for the following general categories of device types:
- body-mounted,
- body-supported,
- desktop,
- front-of-face,
- hand-held,
- laptop,
- limb-mounted,
- multi-band,
- push-to-talk,
- clothing-integrated. The types of devices considered include but are not limited to mobile telephones, cordless microphones, auxiliary broadcast devices and radio transmitters in personal computers. IEC 62209-2:2010 gives guidelines for a reproducible and conservative measurement methodology for determining the compliance of wireless devices with the SAR limits. The contents of the corrigendum of June 2010 have been included in this copy.
- Standard231 pagesEnglish and French languagesale 15% off
- Standard472 pagesEnglish and French languagesale 15% off