This document applies to overhead contact line systems in heavy railways, light railways, trolley buses and industrial railways of public and private operators. This document applies to new installations of overhead contact line systems and for the complete renewal of existing overhead contact line systems. This document contains the requirements and tests for the design of overhead contact lines, requirements for structures and their structural calculations and verifications as well as the requirements and tests for the design of assemblies and individual parts. This document does not provide requirements for ground level conductor rail systems (see Figure 1).

  • Standard
    108 pages
    English language
    sale 10% off
    e-Library read for
    1 day

2021: CLC legacy converted by DCLab NISOSTS

  • Amendment
    4 pages
    English language
    sale 10% off
    e-Library read for
    1 day

2021: CLC legacy converted by DCLab NISOSTS

  • Amendment
    4 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies requirements for the acceptance of simulation tools used for the assessment of design of electric traction power supply systems with respect to TSI Energy. This document is applicable to the simulation of AC and DC electric traction power supply systems, in the frame of assessment required by Directive (EU) 2016/797. The methods and parameters defined in this document are only intended for use in the design of the electric traction power supply system, and hence this document solely considers validation of tools within the TSI energy subsystem for all envisaged railway networks. This document does not deal with validation of simulation tools by measurement. This document focuses on the core simulation functions comprising the equations and functions which calculate the mechanical movement of trains and also which calculate the load flow of the electrical traction power supply system. In doing so this document provides all requirements necessary to demonstrate that a simulation tool may be used for the purposes of TSI approval of electric traction power supply systems. Any simulation tool which meets the acceptance requirements of the test cases in this document can be used to determine TSI compatibility for all systems of the same voltage and frequency without any requirement for further validation as part of the TSI assessment process. This document includes controls for the modification of simulation tools, in particular the limits of applicability of certification when tools are modified. These controls focus on determining whether the core functions of the simulation model are modified. This document provides only the requirements for demonstration of the algorithms and calculations of core functions. The use of a certified simulation tool in accordance with this document does not, in itself, demonstrate good practice in electric traction power supply system design, neither does it guarantee that the simulation models and data for infrastructure or trains used in the tool are correct for a given application. The choice and application of any models and data, of individual system components, in a design is therefore subject to additional verification processes and not in the Scope of this document. Competent development of design models and full understanding of the limits of design tools remain requirements in any system design. This document does not reduce any element of the need for competent designers to lead the design process. The test cases and data shown in Clause 6 in this document do not represent an existing network, but these data are used as theoretical/virtual network only for the purpose of verification of the core functionality. NOTE A new test case will be drafted considering metro, tramways and trolleybuses using DC 600 V or DC 750 V. Until this test case is available, this document can also be applied to subway, tram and trolley bus systems. This test case will also integrate rail systems using DC 750 V. Additionally, the application of this document ensures that the output data of different simulation tools are consistent when they are using the same set of input data listed in Clause 6. This document only applies to the simulation of electric traction power supply systems characteristics at their nominal frequency for AC or DC systems. It does not consider harmonic studies, electrical safety studies (e.g. rail potential), short circuit or electromagnetic compatibility studies over a wide frequency spectrum. This document does not mandate the use of a particular simulation tool in order to validate the design of an electric traction power supply system. This document does not consider complex models with active components such as static frequency convertors.

  • Standard
    69 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60077-4:2019 is available as IEC 60077-4:2019 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 60077-4:2019 gives rules for AC circuit-breakers, the main contacts of which are connected to AC overhead contact lines; the nominal voltage of these circuits being in accordance with IEC 60850. This document, together with IEC 60077-2, states specifically: a) the characteristics of the circuit-breakers; b) the service conditions with which circuit-breakers comply with reference to: - operation and behaviour in normal service; - operation and behaviour in short-circuit; - dielectric properties; c) the tests for confirming the compliance of the components with the characteristics under the service conditions and the methods to be adopted for these tests d). the information to be marked on, or given with the circuit-breaker. This second edition cancels and replaces the first edition, issued in 2003. This edition includes the following main technical changes with regard to the previous edition: a) standard values of transient recovery voltages and test procedure are reviewed; b) procedure of verification of temperature rise is changed; c) air-tightness test as type test, insulation resistance measurement are added

  • Standard
    33 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60077-3:2019 is available as IEC 60077-3:2019 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 60077-3:2019 gives the rules for circuit-breakers, the main contacts of which are connected to DC power and/or auxiliary circuits. The nominal voltage of these circuits does not exceed 3 000 V DC according to IEC 60850. This part of IEC 60077, together with IEC 60077-2, states specifically: a) the characteristics of the circuit-breakers; b) the service conditions with which circuit-breakers complies with reference to: - operation and behaviour in normal service; - operation and behaviour in the case of short circuit - dielectric properties; c) the tests for confirming the compliance of the components with the characteristics under the service conditions and the methods to be adopted for these tests; d) the information to be marked on, or given with, the circuit breaker. This second edition cancels and replaces the first edition, issued in 2001. This edition includes the following main technical changes with regard to the previous edition: - procedure of verification of temperature rise is changed; - air-tightness test as type test, insulation resistance measurement are added.

  • Standard
    32 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60077-5:2019 is available as IEC 60077-5:2019 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 60077-5:2019 give additional or amended rules for high voltage (HV) fuses as a supplement to those given by IEC 60077-2. The high voltage fuses concerned are those connected into power and/or auxiliary circuits. The nominal voltage of these circuits lies between 600 V DC and 3 000 V DC, according to IEC 60850. These fuses can also be used in auxiliary AC circuits up to a nominal voltage of 1 500 V. This document together with IEC 60077-2 states specifically: a) the characteristics of the fuses; b) the service conditions with which the fuses comply with reference to: - operation and behaviour in normal service; - operation and behaviour in case of short circuit; - dielectric properties. c) the tests intended for confirming the compliance of the fuse with the characteristics under the service conditions and the methods adopted for these tests; d) the information marked on, or given with, the fuse. This second edition cancels and replaces the first edition, issued in 2003. This edition includes the following main technical changes with regard to the previous edition: a) test method of test duty III for verification of breaking capacity is reviewed.

  • Standard
    32 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62290-3:2019 specifies the system architecture for Urban Guided Transport Management and Command/Control systems (UGTMS) as defined in IEC 62290-1 and IEC 62290-2, and the allocation of functions and requirements defined in IEC 62290-2 to the different UGTMS subsystems (designated as system constituents in IEC 62290-1 and IEC 62290-2), for use in urban guided passenger transport lines and networks. This document is applicable for new lines or for upgrading existing signalling and command control systems. This document is applicable to applications using: - continuous data transmission - continuous supervision of train movements by train protection profile - localisation by reporting trains, and optionally by external wayside equipment for non-reporting ones (e.g. in case of mixed operation or degraded operation) This document is applicable as a basis to define FIS and FFFIS. For specific applications, some elements may be added to meet the requirements coming from additional functions or equipment.

  • Standard
    268 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document describes a process to demonstrate compatibility between Rolling Stock (RST) and Train Detection Systems (TDS). It describes the characterization of train detection systems, rolling stock and traction power supply systems. It is worth noting that the demonstration of technical compatibility between the rolling stock and infrastructure with respect to physical dimensions is not detailed in this document. This document is not generally applicable to those combinations of rolling stock, traction power supply and train detection system which were accepted as compatible prior to the issue of this document. However, as far as is reasonably practicable, this document can be applied to modifications of rolling stock, traction power supply or train detection systems which may affect compatibility. The detailed process can be used where no rules and processes for compatibility are established.

  • Standard
    39 pages
    English language
    sale 10% off
    e-Library read for
    1 day

For the purpose of demonstrating compatibility between rolling stock and axle counter detectors, this document defines the interference limits and evaluation methods to verify rolling stock emissions. Wheel sensors and crossing loops are not covered by this document. This document gives recommended individual limits to be applied to establish compatibility between RST and all selected types of axle counter detectors, including any covered by national standards. The list of selected types of axle counters and their limits for compatibility are drawn on the basis of established performance criteria. It is expected that the trend for newly signalled interoperable lines will be fitted with types that meet the compatibility limits published in the TSI CCS Interfaces Document (ERA/ERTMS/033281). To ensure adequate operational availability, it is essential that the rolling stock complies with the defined limits; otherwise, the established availability of the valid output function of axle counter detectors may be compromised. NOTE The influences from metal parts or inductively coupled resonant circuits on the vehicle, eddy current brakes or magnetic brakes, are not covered by this document but are considered on the basis of national technical specifications. For wheel sensors and wheel detectors in other applications than axle counters but utilizing the same rail sensors and detectors, transient and continuous interference can be considered as equivalent to axle counter detectors or axle counter sensors.

  • Technical specification
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The purpose of this document is to support rolling stock procurement, especially life cycle cost (LCC) assessment. This document is applicable to the specification and verification of energy consumption of railway rolling stock. It establishes a criterion for the energy consumption of rolling stock to calculate the total net energy consumed, either at current collector or from the fuel tank, over a predefined service profile, to ensure that the results are directly comparable or representative of the real operation of the train. For this purpose, this document considers the energy consumed and regenerated by the rolling stock. The determination methods covered are the simulation and the measurement. This document provides the framework that gives guidance on the generation of comparable energy performance values for trains and locomotives on a common basis and thereby supports benchmarking and improvement of the energy efficiency of rail vehicles. This document does not cover the comparison of energy consumption with other modes of transportation, or even for comparison between diesel and electric traction, covering only the energy consumption of the railway rolling stock itself.

  • Standard
    52 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies minimum functional requirements for urban rail signalling and control systems - which operate on line of sight or using automatic interlock signalling with intermittent train control, - not covered by the existing UGTMS standard EN 62290 series, - not forming a part of an urban traffic control system but possibly interfaced with such systems. The document is restricted to minimum functional requirements which allow users to define more specific requirements based on the given framework of the system requirements at top level. This document is not applicable to command and control systems for urban rail using continuous data transmission and continuous supervision of train movements by train protection profile (already covered by the EN 62290 series).

  • Standard
    29 pages
    English language
    sale 10% off
    e-Library read for
    1 day

CCMC - reference corrected.
2019-09-18 mah: no xml because AC

  • Corrigendum
    1 page
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies the emission and immunity requirements for all types of rolling stock. It covers traction stock, hauled stock and trainsets including urban vehicles for use in city streets. This European standard specifies the emission limits of the rolling stock to the outside world. The scope of this part of the standard ends at the interface of the rolling stock with its respective energy inputs and outputs. In the case of locomotives, trainsets, trams etc., this is the current collector (pantograph, shoe gear). In the case of hauled stock, this is the AC or DC auxiliary power connector. However, since the current collector is part of the traction stock, it is not entirely possible to exclude the effects of this interface with the power supply line. The slow moving test has been designed to minimize these effects. There may be additional compatibility requirements within the railway system identified in the EMC plan (e.g. as specified in EN 50238). Basically, all apparatus to be integrated into a vehicle meet the requirements of EN 50121-3-2. In exceptional cases, where apparatus meets another EMC Standard, but full compliance with EN 50121-3-2 is not demonstrated, EMC is ensured by adequate integration measures of the apparatus into the vehicle system and/or by an appropriate EMC analysis and test which justifies deviating from EN 50121-3-2. Electromagnetic interference concerning the railway system as a whole is dealt with in EN 50121-2. These specific provisions are to be used in conjunction with the general provisions in EN 50121-1. The frequency range considered is from 0 Hz (DC) to 400 GHz. No measurements need to be performed at frequencies where no requirement is specified.

  • Amendment
    3 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard applies to emission and immunity aspects of EMC for electrical and electronic apparatus intended for use on railway rolling stock. EN 50121-3-2 applies for the integration of apparatus on rolling stock. The frequency range considered is from DC to 400 GHz. No measurements need to be performed at frequencies where no requirement is specified. The application of tests shall depend on the particular apparatus, its configuration, its ports, its technology and its operating conditions. This standard takes into account the internal environment of the railway rolling stock and the external environment of the railway, and interference to the apparatus from equipment such as hand-held radio-transmitters. If a port is intended to transmit or receive for the purpose of radio communication (intentional radiators, e.g. transponder systems), then the radiated emission requirement in this standard is not intended to be applicable to the intentional transmission from a radio-transmitter as defined by the ITU. Immunity limits do not apply in the exclusion bands as defined in the corresponding EMC related standard for radio equipment. This standard does not apply to transient emissions when starting or stopping the apparatus. The objective of this standard is to define limits and test methods for electromagnetic emissions and immunity test requirements in relation to conducted and radiated disturbances. These limits and tests represent essential electromagnetic compatibility requirements. Emission requirements have been selected so as to ensure that disturbances generated by the apparatus operated normally on railway rolling stock do not exceed a level which could prevent other apparatus from operating as intended. The emission limits given in this standard take precedence over emission requirements for individual apparatus on board the rolling stock given in other standards. Likewise, the immunity requirements have been selected so as to ensure an adequate level of immunity for rolling stock apparatus. The levels do not however cover all cases which may occur with an extremely low probability of occurrence in any location. Specific requirements which deviate from this standard shall be specified. Test requirements are specified for each port considered. These specific provisions are to be used in conjunction with the general provisions in EN 50121-1.

  • Amendment
    3 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard applies to emission and immunity aspects of EMC for electrical and electronic apparatus and systems intended for use in railway fixed installations for power supply. This includes the power feed to the apparatus, the apparatus itself with its protective control circuits, trackside items such as switching stations, power autotransformers, booster transformers, substation power switchgear and power switchgear to other longitudinal and local supplies. Filters operating at railway system voltage (for example, for harmonic suppression or power factor correction) are not included in this standard since each site has special requirements. Filters would normally have separate enclosures with separate rules for access. If electromagnetic limits are required, these will appear in the specification for the equipment. If a port is intended to transmit or receive for the purpose of radio communication (intentional radiators, e.g. transponder systems), then the radiated emission requirement in this standard are not intended to be applicable to the intentional transmission from a radio-transmitter as defined by the ITU. The frequency range considered is from DC to 400 GHz. No measurements need to be performed at frequencies where no requirement is specified. Emission and immunity limits are given for items of apparatus which are situated: a) within the boundary of a substation which delivers electric power to a railway; b) beside the track for the purpose of controlling or regulating the railway power supply, including power factor correction; c) along the track for the purpose of supplying electrical power to the railway other than by means of the conductors used for contact current collection, and associated return conductors. Included are high voltage feeder systems within the boundary of the railway which supply substations at which the voltage is reduced to the railway system voltage; d) beside the track for controlling or regulating electric power supplies to ancillary railway uses. This category includes power supplies to marshalling yards, maintenance depots and stations; e) various other non-traction power supplies from railway sources which are shared with railway traction. The immunity levels given in this standard apply for: - vital equipment such as protection devices; - equipment having connections to the traction power conductors; - apparatus inside the 3 m zone; - ports of apparatus inside the 10 m zone with connection inside the 3 m zone; - ports of apparatus inside the 10 m zone with cable length > 30 m. Apparatus and systems which are in an environment which can be described as residential, commercial or light industry, even when placed within the physical boundary of the railway substation, shall comply with EN 61000-6-1:2007 for immunity and EN 61000-6-3:2007 for emission requirements. Excluded from the immunity requirements of this standard is power supply apparatus which is intrinsically immune to the tests defined in Tables 1 to 6. NOTE An example is an 18 MVA 230 kV to 25 kV power supply transformer. These specific provisions are to be used in conjunction with the general provisions in EN 50121-1. This part of the standard covers requirements for both apparatus and fixed installations. The sections for fixed installations are not relevant for CE marking.

  • Amendment
    3 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard applies to signalling and telecommunication apparatus that is installed inside the railway environment. Signalling and telecommunication apparatus mounted in vehicles is covered by EN 50121-3-2:2016, signalling and telecommunication apparatus installed inside the substation and connected to substation equipment is covered by EN 50121-5:2016. This European Standard specifies limits for emission and immunity and provides performance criteria for signalling and telecommunications (S&T) apparatus (including power supply systems belonging to S&T) which may interfere with other apparatus inside the railway environment, or increase the total emissions for the railway environment and so risk causing Electro-Magnetic Interference (EMI) to apparatus outside the railway system. The requirements specified in this standard apply for: — vital equipment such as interlocking or command and control; — apparatus inside the 3 m zone; — ports of apparatus inside the 10 m zone with connection inside the 3 m zone; — ports of apparatus inside the 10 m zone with cable length > 30 m. Other apparatus not covered by at least one of these given cases should be in compliance with EN 61000-6-2. If a port is intended to transmit or receive for the purpose of radio communication (intentional radiators, e.g. transponder systems), then the radiated emission requirement in this standard are not intended to be applicable to the intentional transmission from a radio-transmitter as defined by the ITU. Immunity limits do not apply in the exclusion bands as defined in the corresponding EMC related standard for radio equipment. The standard does not specify basic personal safety requirements for apparatus such as protection against electric shock, unsafe operation, insulation co-ordination and related dielectric tests. The requirements were developed for and are applicable to this set of apparatus when operating under normal conditions. Fault conditions of the apparatus have not been taken into account. The frequency range considered is from DC to 400 GHz. No measurements need to be performed at frequencies where no requirement is specified. For products in the scope of EN 61000-3-2, EN 61000-3-3, EN 61000-3-11 or EN 61000-3-12 the requirements of those standards also apply. These specific provisions are to be used in conjunction with the general provisions in EN 50121-1:2016. The immunity and emission levels do not of themselves guarantee that the integration of apparatus will necessarily be satisfactory. The standard cannot cover all the possible configurations of the apparatus, but the test levels are sufficient to achieve satisfactory EMC in the majority of cases.

  • Amendment
    3 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Simulation techniques are used to assess the dynamic interaction between overhead contact lines and pantographs, as part of the prediction of current collection quality. This document specifies functional requirements for the validation of such simulation methods to ensure confidence in, and mutual acceptance of the results of the simulations. This document deals with: - input and output parameters of the simulation; - comparison with line test measurements, and the characteristics of those line tests; - validation of pantograph models; - comparison between different simulation methods; - limits of application of validated methods to assessments of pantographs and overhead contact lines. This document applies to the current collection from an overhead contact line by pantographs mounted on railway vehicles. It does not apply to trolley bus systems.

  • Standard
    87 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document is applicable to safety-related electronic systems (including subsystems and equipment) for railway signalling applications. This document applies to generic systems (i.e. generic products or systems defining a class of applications), as well as to systems for specific applications. The scope of this document, and its relationship with other CENELEC standards, are shown in Figure 1. This document is applicable only to the functional safety of systems. It is not intended to deal with other aspects of safety such as the occupational health and safety of personnel. While functional safety of systems clearly can have an impact on the safety of personnel, there are other aspects of system design which can also affect occupational health and safety and which are not covered by this document. This document applies to all the phases of the life cycle of a safety-related electronic system, focusing in particular on phases from 5 (architecture and apportionment of system requirements) to 10 (system acceptance) as defined in EN 50126-1:2017. Requirements for systems which are not related to safety are outside the scope of this document. This document is not applicable to existing systems, subsystems or equipment which had already been accepted prior to the creation of this document. However, so far as reasonably practicable, it should be applied to modifications and extensions to existing systems, subsystems and equipment. This document is primarily applicable to systems, subsystems or equipment which have been specifically designed and manufactured for railway signalling applications. It should also be applied, so far as reasonably practicable, to general-purpose or industrial equipment (e.g. power supplies, display screens or other commercial off the shelf items), which is procured for use as part of a safety-related electronic system. As a minimum, evidence should be provided in such cases (more information is given in 6.2) to demonstrate either - that the equipment is not relied on for safety, or - that the equipment can be relied on for those functions which relate to safety. This document is aimed at railway duty holders, railway suppliers, and assessors as well as at safety authorities, although it does not define an approval process to be applied by the safety authorities.

  • Standard
    154 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61375-2-6:2018 establishes the specification for the communication between the on-board subsystems and the ground subsystems. The communication system, interfaces and protocols are specified as a mobile communication function, using any available wireless technology. This document provides requirements in order to: a) select the wireless network on the basis of QoS parameters requested by the application; b) allow TCMS and/or OMTS applications, installed on-board and communicating on the on-board communication network, to have a remote access to applications running on ground installations; c) allow applications running on ground installations to have a remote access to the TCMS and/or OMTS applications installed on-board.

  • Standard
    122 pages
    English language
    sale 10% off
    e-Library read for
    1 day

TC - Engllish version only; editorial corrections in 4.3.3.4, C.4.5 and E.2.

  • Corrigendum
    1 page
    English language
    sale 10% off
    e-Library read for
    1 day

In accordance with the ERTMS/ETCS specifications, Subset 121, UIC 612 leaflet, ERA_ERTMS_015560 document, EN 50126 and EN 61375 series requirements, this Technical Report describes the Train Display System (TDS) in the driver’s cab, and the link between the TDS/TDC and some of its interfaces (Blue box and blue links only): [figure] Figure 1 - Functional architecture The scope of this document is to define the functional architecture around the TDC. This Technical Report excludes the following items: - Communication protocols (e.g. EN 61375 series); - Ergonomic aspects; - Interface with ETCS (Subset 121); - Train functions; - GSM-R EIRENE functions; - Use of the displays as terminals for maintenance purpose.

  • Technical report
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62928:2017 specifies the design, operation parameters, safety recommendations, data exchange, routine and type tests, as well as marking and designation for onboard lithium-ion traction batteries for railway applications. Battery systems described in this document are used for the energy storage system (ESS) for the traction power of railway vehicles such as hybrid vehicles as defined in IEC 62864-1:2016.

  • Standard
    54 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC - IEC parallel corrigendum.

  • Corrigendum
    3 pages
    English and French language
    sale 10% off
    e-Library read for
    1 day

This European Standard defines the process, protective measures and demonstration of safety in accordance with EN 50126 for the conventional electric traction system of railways applications. The standard can also apply to guided mass transport systems and trolleybus systems. All these systems can be elevated, at-grade and underground. Other systems including those listed below were not assessed. For similar technology and similar hazardous scenarios the safety considerations of this standard can be applied as a guideline where applicable. - underground mine traction systems, - cranes, transportable platforms and similar transportation equipment on rails, temporary structures (e.g. exhibition structures) in so far as these are not supplied directly or via transformers from the contact line system and are not endangered by the traction power supply system, - suspended cable cars, - funicular railways, - magnetic levitated systems, - railways with inductive power with inductive contactless transmission of the energy from the electric traction power supply system to the electrically powered traction unit, - railways with buried contact line system that is required to be energised only below the train to ensure safety, This European Standard applies to conventional electric traction systems, which are new or are undergoing major changes on new or existing lines.

  • Standard
    63 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard contains the application requirements relevant to the radio remote control of a traction unit for shunting application, operated by personnel not physically located at the controls within the vehicle cab. Requirements specification for radio means and wireless protocols, as well as requirements specification for wireless communication between elements of the train, are not covered by this standard. This European Standard is applicable to newly manufactured vehicles and retrofitted vehicles.

  • Standard
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Specifies the general service conditions and requirements for all electric equipment installed in power circuits, auxiliary circuits, control and indicating circuits etc., on rolling stock. Intends to harmonize as far as practicable all rules and requirements of a general nature applicable to electric equipment for rolling stock..

  • Standard
    55 pages
    English language
    sale 10% off
    e-Library read for
    1 day

NEW!IEC 60077-2:2017 is available as IEC 60077-2:2017 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 60077-2:2017 provides general rules for all electrotechnical components installed in power circuits, auxiliary circuits, control and indicating circuits, etc., on railway rolling stock. The purpose of this document is to adapt the general rules given in IEC 60077-1 to all electrotechnical components for rolling stock, in order to obtain uniformity of requirements and tests for the corresponding range of components. This new edition includes the following main technical changes with regard to the previous edition: short circuit breaking capacity; rated short-time withstand current; critical currents range; specification of climatic conditions. This standard is to be read in conjunction with IEC 60077-1:2017.

  • Standard
    38 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies requirements for the installation of cabling on railway vehicles and within electrical enclosures on railway vehicles, including magnetic levitation trains and trolley buses. NOTE: With respect to trolley buses, this European Standard applies to the whole electric traction system, including current collecting circuits, power converters and the respective control circuits. The installation of other circuits is covered by street vehicle standards for example those for combustion driven buses. This European Standard covers cabling for making electrical connections between items of electrical equipment, including cables, busbars, terminals and plug/socket devices. It does not cover special effect conductors like fibre optic cables or hollow conductors (waveguides). The material selection criteria given here are applicable to cables with copper conductors. This European Standard is not applicable to the following: - special purpose vehicles, such as track-laying machines, ballast cleaners and personnel carriers; - vehicles used for entertainment on fairgrounds; - vehicles used in mining; - electric cars; - funicular railways. As the field of cabling in rolling stock is also dealt with in the cable makers’ standard, references are made to EN 50264 series, EN 50306 series, EN 50382 series and EN 50355. This European Standard applies in conjunction with the relevant product and installation standards. Stricter requirements than those given in this European Standard may be necessary.

  • Amendment
    3 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part 1 of EN 50126 - considers RAMS, understood as reliability, availability, maintainability and safety and their interaction; - considers the generic aspects of the RAMS life cycle. The guidance in this part can still be used in the application of specific standards; - defines: - a process, based on the system life cycle and tasks within it, for managing RAMS; - a systematic process, tailorable to the type and size of the system under consideration, for specifying requirements for RAMS and demonstrating that these requirements are achieved; - addresses railway specifics; - enables conflicts between RAMS elements to be controlled and managed effectively; - does not define: - RAMS targets, quantities, requirements or solutions for specific railway applications; - rules or processes pertaining to the certification of railway products against the requirements of this standard; - an approval process for the railway stakeholders. This part 1 of EN 50126 is applicable to railway application fields, namely Command, Control and Signalling, Rolling Stock and Fixed Installations, and specifically: - to the specification and demonstration of RAMS for all railway applications and at all levels of such an application, as appropriate, from complete railway systems to major systems and to individual and combined subsystems and components within these major systems, including those containing software; in particular: - to new systems; - to new systems integrated into existing systems already accepted, but only to the extent and insofar as the new system with the new functionality is being integrated. It is otherwise not applicable to any unmodified aspects of the existing system; - as far as reasonably practicable, to modifications and extensions of existing systems already accepted, but only to the extent and insofar as existing systems are being modified. It is otherwise not applicable to any unmodified aspect of the existing system; - at all relevant phases of the life cycle of an application; - for use by railway duty holders and the railway suppliers. It is not required to apply this standard to existing systems which remain unmodified, including those systems already compliant with any former version of EN 50126. The process defined by this European Standard assumes that railway duty holders and railway suppliers have business-level policies addressing Quality, Performance and Safety. The approach defined in this standard is consistent with the application of quality management requirements contained within EN ISO 9001.

  • Standard
    103 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part 2 of EN 50126 - considers the safety-related generic aspects of the RAMS life-cycle; - defines methods and tools which are independent of the actual technology of the systems and subsystems; - provides: - the user of the standard with the understanding of the system approach to safety which is a key concept of EN 50126; - methods to derive the safety requirements and their safety integrity requirements for the system and to apportion them to the subsystems; - methods to derive the safety integrity levels (SIL) for the safety-related electronic functions. NOTE This standard does not allow the allocation of safety integrity levels to non-electronic functions. - provides guidance and methods for the following areas: - safety process; - safety demonstration and acceptance; - organisation and independence of roles; - risk assessment; - specification of safety requirements; - apportionment of functional safety requirements; - design and implementation. - provides the user of this standard with the methods to assure safety with respect to the system under consideration and its interactions; - provides guidance about the definition of the system under consideration, including identification of the interfaces and the interactions of this system with its subsystems or other systems, in order to conduct the risk analysis; - does not define: - RAMS targets, quantities, requirements or solutions for specific railway applications; - rules or processes pertaining to the certification of railway products against the requirements of this standard; - an approval process by the safety authority. This part 2 of EN 50126 is applicable to railway applications fields, namely Command, Control and Signalling, Rolling Stock and Fixed Installations, and specifically: - to the specification and demonstration of safety for all railway applications and at all levels of such an application, as appropriate, from complete railway systems to major systems and to individual and combined sub-systems and components within these major systems, including those containing software, in particular: - to new systems; - to new systems integrated into existing systems already accepted, but only to the extent and insofar as the new system with the new functionality is being integrated. It is otherwise not applicable to any unmodified aspects of the existing system; - as far as reasonably practicable, to modifications and extensions of existing systems accepted prior to the creation of this standard, but only to the extent and insofar as existing systems are being modified. It is otherwise not applicable to any unmodified aspect of the existing system; - at all relevant phases of the life-cycle of an application; - for use by railway duty holders and the railway suppliers. It is not required to apply this standard to existing systems which remain unmodified, including those systems already compliant with any former version of EN 50126. The process defined by this European Standard assumes that railway duty holders and railway suppliers have business-level policies addressing Quality, Performance and Safety. The approach defined in this standard is consistent with the application of quality management requirements contained within EN ISO 9001.

  • Standard
    77 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard applies to all electronic equipment for control, regulation, protection, diagnostic, energy supply, etc. installed on rail vehicles. For the purpose of this European Standard, electronic equipment is defined as equipment mainly composed of semiconductor devices and recognized associated components. These components will mainly be mounted on printed boards. Sensors (current, voltage, speed, etc.) and Semiconductor drive unit (SDU) for power electronic devices are covered by this standard. Complete Semiconductor drive unit (SDU) and power converters are covered by EN 61287 1. This European Standard covers the conditions of operation, design requirements, documentation, and testing of electronic equipment, as well as basic hardware and software requirements considered necessary for compliant and reliable equipment. Specific requirements related to practices necessary to ensure defined levels of functional safety will be determined in accordance with relevant railway safety standards. The software requirements for on board railway equipment are specified by EN 50657.

  • Standard
    105 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard covers the requirements applicable to the Energy Measurement Function (EMF) of an Energy Measurement System (EMS) for use on board traction units for measurement of energy supplied directly from/to the Contact Line system. This European Standard also gives requirements for the Current Measurement Function (e.g. current sensor), the Voltage Measurement Function (e.g. voltage sensor) and the Energy Calculation Function (e.g. energy meter). The Conformity Assessment arrangements for the Voltage Measurement Function, Current Measurement Function, the Energy Calculation Function and a complete Energy Measurement Function are also specified in this document. The standard has been developed taking into account that in some applications the EMF can be subjected to legal metrological control. All relevant metrological aspects are covered in this part. Figure 2 shows the flow between the functional blocks of the EMF. Only connections between the functional blocks required by this standard are displayed. (...)

  • Standard
    93 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies the conformity assessment arrangements for newly manufactured EMS installed on a traction unit. This includes the integration conformity assessment and installation conformity assessment. In addition, this document also specifies the conformity assessment procedures for device and ancillary component replacement (e.g. due to damage in service), and periodic check to verify the EMS conformity assessment remains valid. This European Standard does not include elements related to conformity assessment aspects other than design review and testing provisions for the products, processes or services specified. Consequently, this part does not delete, change or interpret the general requirements for conformity assessment procedures and vocabulary detailed in EN/ISO/IEC 17000. This European Standard does not cover the conformity assessment schemes that, according to the CEN-CENELEC Internal Regulations, are the responsibility of ISO policy committee "Committee on conformity assessment" (ISO/CASCO).

  • Standard
    24 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard applies to the on board and on board to ground communication services, i.e. it covers the data communication using digital interfaces: a) between functions implemented within the EMS; b) between EMS function and other on board subsystems; c) between EMS and ground communication services. The on board data communication services of the EMS cover the data exchange between functions of the EMS and the data exchange between EMS and other on board units, where data are exchanged using a communications protocol stack over a dedicated physical interface or a shared communication network. The on board to ground communication services cover the wireless data communication between the DHS and the on ground server. Furthermore, this document includes conformity assessment requirements.

  • Standard
    165 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard covers the requirements applicable to the Data Handling System (DHS) of an Energy Measurement System (EMS). This document also includes the basic requirements for the Data Collecting System (DCS) on-ground, relating to the acquisition and storage and export of Compiled Energy Billing Data (CEBD). The Conformity Assessment arrangements for the DHS and the DCS are specified in this document. The settlement system is outside the scope of this standard, and the specification of the interface between DCS and settlement system is outside the scope of this standard.

  • Standard
    38 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard describes the primary purpose of the EMS, which is to meter energy consumption for billing and provide compiled energy billing data (CEBD) to a DCS. The EMS may also be used for other functions such as energy management. In addition, this European Standard also describes the primary purpose of a DCS and its interactions with an EMS and settlement system. This part of EN 50463: - gives requirements for the complete Energy Measurement System and also requirements for all devices implementing one or more functions of the Energy Measurement System; - applies to newly manufactured Energy Measurement Systems for use on board railway traction units, powered by AC. and/or DC. supply voltages as listed in EN 50163; - does not apply to portable Energy Measurement Systems.

  • Standard
    23 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1 This European Standard specifies the process and technical requirements for the development of software for programmable electronic systems for use in rolling stock applications. Outside the scope of this standard is software that: - is part of signalling equipment (CENELEC sub-committee SC9XA applications) installed on board trains, or - does not contribute to, and is segregated from Rolling Stock operational functions. 1.2 This European Standard is applicable exclusively to software and the interaction between software and the system of which it is part. 1.3 Entry intentionally left empty 1.4 This European Standard applies to safety-related as well as non-safety-related software, including for example: - application programming, - operating systems, - support tools, - firmware. Application programming comprises high level programming, low level programming and special purpose programming (for example: programmable logic controller ladder logic). 1.5 This European Standard also addresses the use of pre-existing software and tools. Such software may be used, if the specific requirements in 7.3.4.7 and 6.5.4.16 on pre-existing software and for tools in 6.7 are fulfilled. 1.6 Software developed according to a valid version of EN 50128 is considered as compliant to this standard. Software previously developed in accordance with any version of EN 50128 is also considered as compliant and not subject to the requirements on pre-existing software. SIL1-SIL4 software developed under EN 50657 also complies with EN 50128:2011. 1.7 This European Standard considers that modern application design often makes use of software that is suitable as a basis for various applications. Such software is then configured by application data for producing the executable software for the application. This European Standard applies to such software. In addition, specific requirements for application data will be given. 1.8 Entry intentionally left empty 1.9 This European Standard is not intended to be retrospective. It therefore applies primarily to new developments and only applies in its entirety to existing systems if these are subjected to major modifications. For minor changes, only 9.2 applies. However, application of this European Standard during upgrades and maintenance of existing software is recommended. 1.10 The relevant sections of this software standard are also applicable to programmable components (e.g. FPGA and CPLD), in addition to the applicable hardware standard (e.g. EN 50129, EN 50155, EN 61508 2). However, requirements of this software standard that are already covered by the applicable hardware standard do not need to be re-addressed. When it is possible to exhaustively test the programmable logic for all possible inputs and internal logic states, this European Standard does not apply.

  • Standard
    140 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard defines requirements to be applied in the design and manufacture of electrical installations and equipment to be used on rolling stock to protect persons from electric shocks. This European Standard is applicable to rolling stock of rail transport systems, road transport systems, if they are powered by an external supply (e.g. trolley buses), magnetically levitated transport systems and to the electrical equipment installed in these systems. This European Standard does not apply to: - mine railways in mines, - crane installations, moving platforms and similar transport systems on rails, - funicular railways, temporary constructions.

  • Amendment
    6 pages
    English language
    sale 10% off
    e-Library read for
    1 day

2017-06-01 - D156/024 - Approves publication of Annex ZZ (see BT156/DG10384/DV)
Annex ZZ to be published once approved by BTas an Amendment to the mother standard, this in view of the submission to the EC for citation in the OJEU under Directive 2008/57/EC.

  • Amendment
    4 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62924:2017 specifies the requirements and test methods for a stationary energy storage system to be introduced as a trackside installation and used in a power supply network of a DC electrified railway. This system can take electrical energy from the DC power supply network, store the energy, and supply the energy back to the DC power supply network when necessary.

  • Standard
    43 pages
    English language
    sale 10% off
    e-Library read for
    1 day

D156/C020: Publication of Annex ZZ, this in view of the submission to the EC for citation in the OJEU under Directive 2008/57/EC.

  • Amendment
    3 pages
    English language
    sale 10% off
    e-Library read for
    1 day

D156/C020: Publication of Annex ZZ, this in view of the submission to the EC for citation in the OJEU under Directive 2008/57/EC.

  • Amendment
    3 pages
    English language
    sale 10% off
    e-Library read for
    1 day

D156/C020: Publication of Annex ZZ, this in view of the submission to the EC for citation in the OJEU under Directive 2008/57/EC.

  • Amendment
    4 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard applies to emission and immunity aspects of EMC for electrical and electronic apparatus and systems intended for use in railway fixed installations for power supply. This includes the power feed to the apparatus, the apparatus itself with its protective control circuits, trackside items such as switching stations, power autotransformers, booster transformers, substation power switchgear and power switchgear to other longitudinal and local supplies. Filters operating at railway system voltage (for example, for harmonic suppression or power factor correction) are not included in this standard since each site has special requirements. Filters would normally have separate enclosures with separate rules for access. If electromagnetic limits are required, these will appear in the specification for the equipment. If a port is intended to transmit or receive for the purpose of radio communication (intentional radiators, e.g. transponder systems), then the radiated emission requirement in this standard are not intended to be applicable to the intentional transmission from a radio-transmitter as defined by the ITU. The frequency range considered is from DC to 400 GHz. No measurements need to be performed at frequencies where no requirement is specified. Emission and immunity limits are given for items of apparatus which are situated: a) within the boundary of a substation which delivers electric power to a railway; b) beside the track for the purpose of controlling or regulating the railway power supply, including power factor correction; c) along the track for the purpose of supplying electrical power to the railway other than by means of the conductors used for contact current collection, and associated return conductors. Included are high voltage feeder systems within the boundary of the railway which supply substations at which the voltage is reduced to the railway system voltage; d) beside the track for controlling or regulating electric power supplies to ancillary railway uses. This category includes power supplies to marshalling yards, maintenance depots and stations; e) various other non-traction power supplies from railway sources which are shared with railway traction. The immunity levels given in this standard apply for: - vital equipment such as protection devices; - equipment having connections to the traction power conductors; - apparatus inside the 3 m zone; - ports of apparatus inside the 10 m zone with connection inside the 3 m zone; - ports of apparatus inside the 10 m zone with cable length > 30 m. Apparatus and systems which are in an environment which can be described as residential, commercial or light industry, even when placed within the physical boundary of the railway substation, shall comply with EN 61000 6 1:2007 for immunity and EN 61000 6 3:2007 for emission requirements. Excluded from the immunity requirements of this standard is power supply apparatus which is intrinsically immune to the tests defined in Tables 1 to 6. NOTE An example is an 18 MVA 230 kV to 25 kV power supply transformer. These specific provisions are to be used in conjunction with the general provisions in EN 50121 1. This part of the standard covers requirements for both apparatus and fixed installations. The sections for fixed installations are not relevant for CE marking.

  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard deals with insulation coordination in railways. It applies to equipment for use in signalling, rolling stock and fixed installations. Insulation coordination is concerned with the selection, dimensioning and correlation of insulation both within and between items of equipment. In dimensioning insulation, electrical stresses and environmental conditions are taken into account. For the same conditions and stresses, these dimensions are the same. An objective of insulation coordination is to avoid unnecessary over dimensioning of insulation. This standard specifies: - requirements for clearances and creepage distances for equipment; - general requirements for tests pertaining to insulation coordination. The term equipment relates to a section as defined in 3.3 it may apply to a system, a sub-system, an apparatus, a part of an apparatus, or a physical realization of an equipotential line. This standard does not deal with: - distances through solid or liquid insulation; - distances through gases other than air; - distances through air not at atmospheric pressure; - equipment used under extreme conditions. Product standards should align with this generic standard. However, they may require, with justification, different requirements due to safety and/or reliability reasons, e.g. for signalling, and/or particular operating conditions of the equipment itself, e.g. overhead contact lines which should comply with EN 50119. This standard also gives provisions for dielectric tests (type tests or routine tests) on equipment (see Annex B). NOTE For safety critical systems, specific requirements are needed. These requirements are given in the product specific signalling standard EN 50129.

  • Standard
    54 pages
    English language
    sale 10% off
    e-Library read for
    1 day