This document describes a standard method for determining particle number size distributions in ambient air in the size range from 10 nm to 800 nm at total concentrations up to approximately 10^5 cm^-3 with a time resolution of a few minutes. The standard method is based on a Mobility Particle Size Spectrometer (MPSS) used with a bipolar diffusion charger and a Condensation Particle Counter (CPC) as the detector. The document describes the performance characteristics and minimum requirements of the instruments and equipment to be used, and describes sampling, operation, data processing and QA/QC procedures, including calibration.

  • Technical specification
    63 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Technical specification
    62 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a manual method of measurement including sampling and different analytical methods for the determination of the mass concentration of ammonia (NH3) in the waste gas of industrial plants, for example combustion plants or agricultural plants. All compounds which are volatile at the sampling temperature and produce ammonium ions upon dissociation during sampling in the absorption solution are measured by this method, which gives the volatile ammonia content of the waste gas.
This document specifies an independent method of measurement, which has been validated in field tests in a NH3 concentration range of approximately 8 mg/m3 to 65 mg/m3 at standard conditions. The lower limit of the validation range was determined under operational conditions of a test plant. The measurement method can be used at lower values depending, for example, on the sampling duration, sampling volume and the limit of detection of the analytical method used.
NOTE 1 The plant, the conditions during field tests and the performance characteristics obtained in the field are given in Annex A.
This method of measurement can be used for intermittent monitoring of ammonia emissions as well as for the calibration and validation of permanently installed automated ammonia measuring systems.
NOTE 2 An independent method of measurement is called standard reference method (SRM) in EN 14181.

  • Standard
    52 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies the conversion of raw data from an automated measuring system (AMS) to reported data by a data acquisition and handling system (DAHS). This specification includes:
- requirements for the handling of data,
- requirements for the reporting of data,
- calculation procedures required.
The main items covered by this European Standard are given by, but not limited to raw data acquisition, raw data validation, data correction and data averaging.
This European Standard supports the requirements of EN 14181 and legislation such as the IED and E-PRTR. It does not preclude the use of additional features and functions provided the minimum requirements of this European Standard are met and that these features do not adversely affect data quality, clarity or access.

  • Standard
    40 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document describes a method for sampling and determining the concentration of gaseous emissions to atmosphere of multiple species from ducts and stacks by extractive Fourier transform infrared (FTIR) spectroscopy.
This method is applicable to periodic monitoring and to the calibration or control of automated measuring systems (AMS) permanently installed on a stack, for regulatory or other purposes.

  • Technical specification
    60 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the procedure to sample continuously and to analyse the concentration of airborne pollen grains and fungal spores in ambient air using the volumetric Hirst type sampler [1] [2] [3] (see Annex A) or an even equivalent method assuring comparable data.
This document describes both the sampling and the analysis procedures for the purpose of networks related to allergy. For the other tasks mentioned in the introduction, other specifications may be required.

  • Standard
    38 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The purpose of this document is to establish performance benchmarks for, and to evaluate the acceptability of, sorbent trap monitoring systems used to monitor total vapour- phase mercury (Hg) emissions in stationary source flue gas streams. These monitoring systems involve continuous repetitive in-flue sampling using paired sorbent traps with subsequent analysis of the time-integrated samples.
This document is suitable for both short-term (periodic) measurements and long-term (continuous) monitoring using sorbent traps.
NOTE   When this Technical Specification has been validated, the sorbent trap method will be an Alternative Method subject to the restrictions on applicability defined below. Until that time, EN 13211 is the only accepted Reference Method for both short-term (periodic) measurements and for calibrating continuous monitoring systems, including those with long-term sampling systems. EN 13211 is a wet chemistry approach that relies on absorption of mercury into impinger solutions.
The substance measured according to this specification is the total vapour phase mercury in the flue gas, which represents the sum of the elemental mercury (Hg0) and gaseous forms of oxidized mercury (Hg2+), such as mercury (II) chloride, in mass concentration units of micrograms (μg) per dry meter cubed (m3). The analytical range is typically 0,1 to greater than 50 µg/m3.
The sorbent tube approach is intended for use under relatively low particulate conditions (typically less than 100 mg/m3) when monitoring downstream of all pollution control devices, e.g. at coal fired power plants and cement plants. In this case, the contribution of mercury in the particulate fraction is considered to be negligible (typically less than 5 % of total mercury). However, it shall be noted that the sorbent trap does take account of the finest particle fraction that is sampled with the flue gas, in addition to capturing the vapour phase mercury.
This specification also contains routine procedures and specifications that are designed to evaluate the ongoing performance of an installed sorbent trap monitoring system. The operator of the industrial installation is responsible for the correct calibration, maintenance and operation of this long-term sampling system. Additional requirements for calibration and quality assurance of the long-term sampling system are then defined in EN 14884 and EN 14181.

  • Technical specification
    62 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Technical Specification gives requirements for the certification of PEMS software and for the performance and quality assurance for a PEMS to prove suitability for its measuring task and to ensure that the PEMS continues to perform within the specified performance during operation of the PEMS.

  • Technical specification
    55 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies requirements for the calibration and validation (QAL2), the ongoing quality assurance during operation (QAL3) and the annual surveillance test (AST) of automated measuring systems (AMS) used for monitoring dust emissions from stationary sources to demonstrate compliance with emission limit values (ELV) below 50 mg/m3 at standard conditions. It specifically deals with measurements in wet gases and at low concentrations.
This document is derived from EN 14181 and is only applicable in conjunction with EN 14181.
This document is applicable by direct correlation with the standard reference method (SRM) described in EN 13284-1.

  • Standard
    33 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies the standard reference method (SRM) for the measurement of low dust concentration in ducted gaseous streams in the concentrations below 50 mg/m3 at standard conditions.
This European Standard is primarily developed and validated for gaseous streams emitted by waste incinerators. More generally, it can be applied to gases emitted from other stationary sources, and to higher concentrations.
If the gases contain unstable, reactive or semi-volatile substances, the measurement depends on the sampling and filter treatment conditions.
This method has been validated in field tests with special emphasis to dust concentrations around 5 mg/m3. The results of the field tests are presented in Annex A.

  • Standard
    63 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies a method for the determination of the mass concentration of water soluble NO3- (nitrate), SO42- (sulphate), Cl- (chloride), NH4+ (ammonium), Na+ (sodium), K+ (potassium), Mg2+ (magnesium), Ca2+ (calcium) in PM2,5 as deposited on filters.
This European Standard describes the analytical procedures for determining anions and cations as part of the PM2,5 particulate phase, sample extraction and analysis of anions and cations by ion chromatography. Sampling onto filters will be done in accordance with EN 12341 for PM2,5.
NOTE 1   Alternatively, cations, excluding ammonium, can be analysed by inductively coupled plasma optical emission spectrometry (ICP-OES). Ammonium can also be analysed by photometry or conductometry.
This European Standard can be used for the measurements of anions and cations as required by Directive 2008/50/EC. The method does not take into account the possible losses during sampling due to evaporation.
NOTE 2   NO3-, Cl-, NH4+ are part of the volatile fraction of PM2,5, and the concentrations determined using this standard can be used as minimum values for the concentrations of these ions in PM2,5. NO3-, NH4+, Cl- are usually up to 30 % underestimated due to evaporational losses from the filter during sampling.
This European Standard may be used at rural and urban background sites and road sites that are in accordance with the siting criteria of Directive 2008/50/EC.
This European Standard is applicable to the measurement of anion/cations in PM2,5 samples corresponding to PM2,5 mass concentrations between approximately 1 μg/m3 (i.e. the limit of detection of the standard measurement method (EN 12341) expressed as its uncertainty) up to 120 μg/m3.
The validated range of the anion and cation concentrations based on the field validation measurements is presented in Table 1.
(...)
See Annex A for the statistical analysis of the field validation measurements.

  • Standard
    46 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This CEN Technical Report provides guidance only on the application of the European Standard EN ISO 16911-1:2013.
This CEN Technical Report does not provide guidance on the application of EN ISO 16911-2:2013.

  • Technical report
    40 pages
    English language
    sale 10% off
    e-Library read for
    1 day

In order to be in compliance with EU Air Quality Directive requirements, the reference methods given in the Directive 2008/50/EC [1] for the measurement of mass concentrations of particulate matter are not commonly used for operation in routine monitoring networks. These networks usually apply automated continuous measurement systems (AMS), such as those based on the use of oscillating microbalances, ß-ray attenuation, or in-situ optical methods. Such AMS are typically capable of producing 24-hour average measurement values over a measurement range up to 1 000 µg/m3 and 1-hour average measurement values up to 10 000 µg/m3, if applicable, where the volume of air is the volume at ambient conditions near the inlet at the time of sampling.
The 1-hour average values may be used for:
a)   direct information of the public;
b)   aggregation to produce daily or yearly average concentration values for regulatory reporting purposes.
Directive 2008/50/EC allows the use of such systems after demonstration of equivalence with the reference method, i.e. after demonstration that these systems meet the Data Quality Objectives for continuous measurements. Guidelines for the demonstration of equivalence are given in Reference [2].
This European Standard lays down the minimum performance requirements and test procedures for the type approval of appropriate AMS for particulate matter. This includes the evaluation of its equivalence with the reference method as laid down in Directive 2008/50/EC.
Further, this European Standard describes minimum requirements for ongoing quality assurance – quality control (QA/QC) of AMS deployed in the field. These requirements are necessary to ensure that uncertainties of measured concentrations are kept within the required limits during extended periods of continuous monitoring in the field, and include procedures for maintenance, calibration and control checks.
Additional procedures are described that determine whether an instrument’s equivalence to the reference method is maintained through possible pollution climate changes, over periods longer than five years.
Lastly, this European Standard describes harmonized requirements and procedures for the treatment and validation of raw measurement data that are used for the assembly of daily or yearly average concentration values. Experience with existing methods for data treatment and validation – for similar AMS – has shown that the different ways of data treatment and validation applied may lead to significant differences in reported results for similar datasets [3].
When the European Standard is used for purposes other than measurements required by Directive 2008/50/EC, the range and uncertainty requirements may not apply.
This European Standard contains information for different groups of users.
Clauses 5 and 6 and Annex A contain general information about the principles of automated continuous measurement systems for particulate matter, and relevant equipment.
Clause 7 and Annexes B and C are specifically directed towards test houses and laboratories that perform type-approval testing of automated continuous measurement systems for particulate matter. These clauses contain information about:
c)   type-approval test conditions, test procedures and test requirements;
d)   system performance requirements;
e)   evaluation of the type-approval test results;
f)   evaluation of the uncertainty of the measurement results of the automated continuous measurement systems for particulate matter based on the type-approval test results.
Clauses 8 to 11 are aimed at monitoring networks performing the practical measurements of particulate matter in ambient air. These clauses contain information about:
g)   initial installation of the system in the monitoring network and acceptance testing;
h)   ongoing quality assurance/quality control;
i)   on-going verification of suitability;
j)   treatment, validation and reporting of measurement results.

  • Standard
    50 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard gives guidance on the measurement of elemental carbon (EC) and organic carbon (OC) following the requirement for the networks of all EU member states to measure EC and OC in particulate matter from June 2010 at background sites according to the Council Directive 2008/50/EC on ambient air quality and cleaner air for Europe [1].
This European Standard describes the analytical procedures for determining EC and OC on quartz fibre filters as μg/cm2, and the subsequent calculation of concentrations as µg/m3. Sampling onto filters is to be done in accordance with EN 12341:2014 for PM2,5. The sampling process determines the size fraction of the particulate matter, the retention of semi-volatile material, and uptake/loss of volatile organic compounds on the filter at the time of sampling.
The same analysis method may also be used for smaller size fractions than PM2,5. Any possible additional artefacts for larger particles, e.g. pyrolysis or higher concentrations of carbonates, should be assessed.
The scope includes rural background, urban background, road side and industrial measurement sites, to allow the assessment of additional exposure of people in urban areas as stated in the objectives of the council directive and to achieve coherence in the European approach.
The applicable concentration range of the proposed method is limited by the optical correction and instrument applied in the analysis of EC and OC. This method was validated from 0,2 µg CEC/cm² and 1,8 µg COC/cm² to 38 µg CEC/cm² and 49 µg COC/cm² in the laboratory and to 16 µg CEC/cm² and 45 µg COC/cm² in the field.

  • Standard
    56 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies the standard reference method (SRM) based on a sampling system with a condensation/adsorption technique to determine the water vapour concentration in the flue gases emitted to atmosphere from ducts and stacks.
This European Standard specifies the performance characteristics to be determined and performance criteria to be fulfilled by measuring systems based on the measurement method. It applies to periodic monitoring and to the calibration or control of automated measuring systems (AMS) permanently installed on a stack, for regulatory or other purposes.
This European Standard specifies criteria for demonstration of equivalence of an alternative method to the SRM by application of prEN 14793.
This European Standard is applicable in the range of water vapour content from 4 % to 40 % as volume concentrations and of water vapour mass concentration from 29 g/m3 to 250 g/m3 as a wet gas, although for a given temperature the upper limit of the method is related to the maximum pressure of water in air or in the gas.
In this European Standard all the concentrations are expressed at standard conditions (273 K and 101,3 kPa).
NOTE 1   For saturated conditions the condensation/adsorption method is not applicable. Some guidance is given in this European Standard to deal with flue gas when droplets are present.
This European Standard has been evaluated during field tests on waste incineration, co-incineration and large combustion plants. It has been validated for sampling periods of 30 min in the volume concentration range of 7 % to 26 %.
NOTE 2   The characteristics of installations, the conditions during field tests and the values of repeatability and reproducibility in the field are given in Annex A.

  • Standard
    43 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies a procedure to demonstrate the equivalence of an alternative method (AM) with the reference method (RM) or the standard reference method (SRM), both implemented to determine the same measurand.
In particular, this European Standard provides the statistical tools and different criteria to evaluate the alternative method. This does not release the body performing the equivalence testing from bearing technical and analytical judgement on the evaluation of the different criteria.
Three steps are required for demonstration of equivalence:
   description of the alternative method and setting of the field of application (measurement range and type of gas matrix);
   determination of the performance characteristics of the alternative method and calculation of the expanded uncertainty where appropriate and check of compliance with the maximum expanded uncertainty allowed for the reference method;
   check of repeatability and lack of systematic deviation of the alternative method in the field or on a recognized test bench in comparison with the reference method for the type of matrix defined in the field of equivalence.
This European Standard requires that a reference method has been defined and validated.
This European Standard only considers the case of linear quantitative methods.
This European Standard has been drawn up for laboratories working in air quality measurements and consequently an example taken from this sector are presented in Annex A.

  • Standard
    34 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies the standard reference method (SRM) based on the paramagnetic principle for the determination of the oxygen concentrations in flue gases emitted to the atmosphere from ducts and stacks. It includes the sampling and the gas conditioning system as well as the analyser.
This European Standard specifies the performance characteristics to be determined and the performance criteria to be fulfilled by measuring systems based on this measurement method. It applies to periodic monitoring and the calibration or control of automated measuring systems (AMS) permanently installed on a stack, for regulatory or other purposes.
This European Standard specifies criteria for demonstration of equivalence of an alternative method (AM) to the SRM by application of prEN 14793.
This European Standard has been validated during field tests on waste incineration, co-incineration and large combustion plants and on a recognized test bench. It has been validated for sampling periods of 30 min in the range from 3 % to 21 %. Oxygen concentration values, expressed as volume concentrations, are used to allow results of emission measurements to be standardised to the oxygen reference concentration and dry gas conditions required e.g. by EU Directive 2010/75/EC on industrial emissions.
NOTE   The characteristics of installations, the conditions during field tests and the values of repeatability and reproducibility in the field are given in Annex A.

  • Standard
    41 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies the general performance criteria and test procedures for automated measuring systems used for discontinuous (periodic) measurements of stationary source emissions. It applies to the performance testing of automated measuring systems based on measurement techniques specified by a standard reference method (SRM) or an alternative method (AM). Performance testing is based on the general performance criteria and test procedures specified in this European Standard and on the specifications in the standard  specifying the SRM or AM. This includes testing of the applicability and correct implementation of the QA/QC procedures specified in the method-specific standard. This European Standard supports the requirements of particular EU Directives.

  • Standard
    58 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    58 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Technical Specification describes a method for sampling and determining the concentration of gaseous sulphur dioxide (SO2) emissions from stacks. This method is based on instrumental techniques. It is applicable to both periodic measurements and the calibration of automated measuring systems permanently installed on stacks, for regulatory or other purposes.

  • Technical specification
    45 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies the standard reference method (SRM) based on the chemiluminescence principle for the determination of the nitrogen oxides (NOx) in flue gases emitted to the atmosphere from ducts and stacks. It includes the sampling and the gas conditioning system, as well as the analyser.
This European Standard specifies the characteristics to be determined and the performance criteria to be fulfilled by measuring systems based on this measurement method. It applies for periodic monitoring and for the calibration or control of automatic measuring systems (AMS) permanently installed on a stack, for regulatory or other purposes.
This European Standard specifies criteria for demonstration of equivalence of an alternative method to the SRM by application of prEN 14793.
This European standard has been validated during field tests on waste incineration, co-incineration and large combustion installations and on a recognized test-bench. It has been validated for sampling periods of 30 min in the range of 0 mg/m3 to 1 300 mg/m3 of NO2 for large combustion plants and 0 mg/m3 to 400 mg/m3 of NO2 for waste incineration, according to emission limit values (ELV) laid down in the Directive 2010/75/EC.
The ELV for NOx (NO + NO2) in EU directives are expressed in mg/m3 of NO2 on a dry basis, at a specified value for oxygen and at reference conditions (273 K and 101,3 kPa).
NOTE    The characteristics of installations, the conditions during field tests and the values of repeatability and reproducibility in the field are given in Annex F.

  • Standard
    56 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies the standard reference method (SRM) for the determination of the sulphuric oxide SO2 in flue gases emitted to the atmosphere from ducts and stacks. It is based on a sampling system and two analytical principles: ion chromatography and the Thorin method.
This European Standard specifies the performance characteristics to be determined and the performance criteria to be fulfilled by measuring systems based on the measurement method. It applies to periodic monitoring and to the calibration or control of automatic measuring systems (AMS) permanently installed on a stack, for regulatory or other purposes.
This European Standard specifies criteria for demonstration of equivalence of an alternative method to the SRM by application of prEN 14793.
This European Standard has been evaluated during field tests on waste incineration, co-incineration and large combustion installations. It has been validated for sampling periods of 30 min in the range of 0,5 mg/m³ to 2 000 mg/m³ of SO2 for an ion-chromatography variant and 5 mg/m³ to 2 000 mg/m³ of SO2 for the Thorin method according to emission limit values laid down in the Directive 2010/75/EC.
The limit values of EU Directives are expressed in units of mg/m³ of SO2 on dry basis and at standard conditions of 273 K and 101,3 kPa.
NOTE   The characteristics of installations, the conditions during field tests and the values of repeatability and reproducibility in the field are given in Annex E.

  • Standard
    69 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies the standard reference method (SRM) based on the infra-red (IR) absorption principle. It includes the sampling and the gas conditioning system, and allows the determination of the carbon monoxide CO in flue gases emitted to the atmosphere from ducts and stacks.
This European Standard specifies the characteristics to be determined and the performance criteria to be fulfilled by measuring systems using the IR measurement method. It applies for periodic monitoring and for the calibration or control of automatic measuring systems (AMS) permanently installed on a stack, for regulatory or other purposes.
This European Standard specifies criteria for demonstration of equivalence of an alternative method (AM) to the SRM by application of prEN 14793.
This European Standard has been validated during field tests on waste incineration, co-incineration and large combustion plants and on a recognized test bench. It has been validated for CO concentrations with sampling periods of 30 min in the range of 0 mg/m3 to 400 mg/m3 for large combustion plants and 0 mg/m3 to 740 mg/m3 for waste and co-incineration. Directive 2010/75/EC lays down emission values which are expressed in mg/m3, on dry basis at a specified value of oxygen and at standard conditions of 273 K and 101,3 kPa.
NOTE    The characteristics of installations, the conditions during field tests and the values of repeatability and reproducibility in the field are given in Annex A.

  • Standard
    50 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document describes the general requirements to be taken into account in planning and implementing plant-related plume measurements of microbial air pollutants. A basic principle of this method is to compare the concentrations in air unaffected by the activities of the plant (i.e. background air sampled upwind of the plant) with the concentration of bioaerosols in air downwind of the plant. It is this comparison that allows an assessment of the plant-related contribution and the mean spatial impact range to be made. As it has so far not been possible to set limit values based on dose-response relationships, the mean impact range is to be used as a first criterion for assessing the environmental impact of a plant.
The scale of work for the plume measurements described is necessary to obtain statistically representative data about the impact range of the plant and/or source, taking into account the great variety of influencing factors.
Plant-related measurements of bioaerosol concentrations in ambient air may be required in a number of regulatory situations. Examples of typical measurement objectives and indicative application scenarios are presented in the document. This method specifies the simultaneous measurement of background and downwind air quality to reduce the risk of invalid comparisons resulting from changing background air concentrations. Another important principle of this method is the requirement for repeated measures to take into account day to day and seasonal variations in the processes governing bioaerosol emissions and dispersion.
The objective is to analyse a given measurement problem and derive the associated requirements for organization, the measurement method, the sampling strategy, the evaluation of the measured data, quality assurance and reporting.

  • Technical specification
    42 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Technical Report is focused on the presence of nitro- and oxy-PAH compounds in ambient air. It describes how nitro- and oxy-PAH are formed, what typical concentrations are found, what is known about their toxicity, and what sampling and measurement techniques are available. The conclusions of this report are that nitro- and oxy-PAH concentrations are present in the atmosphere in level that are of concern regarding their high toxicity. Information on the presence of these compounds in ambient air is at least as relevant as information about PAH. Validated techniques for the measurement of nitro- and oxy-PAH are available.

  • Technical report
    59 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of the European Standard describes the plume method for determining the extent of recognizable odours from a specific source using direct observation in the field by human panel members under specific meteorological conditions.
The plume method involves the determination of the presence or absence (YES/NO) of recognizable odours in and around the plume originating from a specific odorant emission source, for a specific emission situation and under specific meteorological conditions (specific wind direction, wind speed and boundary layer turbulence). The unit of measurement is the presence or absence of recognizable odours at a particular location downwind of a source. The extent of the plume is assessed as the transition of absence to presence of recognizable odour.
The primary application of this standard is to provide a common basis for the determination of the odour plume extent in the member states of the European Union.
The results are typically used to determine a plausible extent of potential exposure to recognizable odours, or to estimate the total emission rate based on the plume extent, using reverse dispersion modelling.
The field of application of this European Standard includes the determination of the extent of the recognizable odour plume downwind from a source, under specific meteorological conditions (e.g. wind direction, wind speed, turbulence, etc. (see 7.3.2).
This European Standard does not include:
-   the measurement of intensity of ambient odours;
-   the measurement of hedonic tone of ambient odours;
-   the measurement of the odour exposure in ambient air over a longer time period in an assessment area;
-   the calculation of estimated source emission rate from plume assessment using reverse dispersion modelling.
An overview of the interaction between existing odour exposure assessment methods is given in Annex A including grid method (Part 1), plume method (Part 2) and olfactometry according EN 13725.

  • Standard
    43 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of the European Standard describes the grid method for the determination of the level of odour exposure in ambient air. It provides a set of instructions for measurement of ambient odour exposure within a defined assessment area, using qualified human panel members, over a sufficiently long period of time to be representative for the meteorological conditions of that location, and hence determine the distribution of the frequency of exposure to odours within the assessment area. The sources of the odorant under study may be located within or outside the assessment area.
The primary application of this European Standard is to provide a common basis for evaluation of exposure to ambient odours in the member states of the European Union. The field of application of this type of measurement is to characterize the level of odour exposure within the study area, in order to assess whether the impact of that exposure on resident population could be a justified cause for annoyance, using exposure criteria. The unit of measurement of the method is the frequency of odour hours for an assessment square, defined by four measurement points as a representative value for odour exposure for local conditions, e.g. local odour sources and the meteorology of that location.
This European Standard does not include:
-   the measurement of intensity of ambient odours,
-   the measurement of hedonic tone of ambient odours,
-   the calculation of odour exposure in specific weather conditions in order to determine the frequency distribution of recognizable odour in an odorant plume,
-   the calculation of estimated source emission rate from plume assessment using reverse dispersion modelling.
An overview of the interaction between existing odour exposure assessment methods is given in Annex A, including grid method (Part 1), plume method (Part 2) and olfactometry according to EN 13725.

  • Standard
    57 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Technical Specification describes a standard method for determining the particle number concentration in ambient air in a range up to about 107 cm–3 for averaging times equal to or larger than 1 min. The standard method is based on a Condensation Particle Counter (CPC) operated in the counting mode and an appropriate dilution system for concentrations exceeding the counting mode range. It also defines the performance characteristics and the minimum requirements of the instruments to be used. The lower and upper sizes considered within this document are 7 nm and a few micrometres, respectively. This document describes sampling, operation, data processing and QA/QC procedures including calibration parameters.

  • Technical specification
    57 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard applies to the determination of the impact of ground-level ozone on a bioindicator plant species (tobacco Nicotiana tabacum cultivars Bel-W3, Bel-B and Bel-C) in a given environment.
The present document specifies the procedure for setting-up and use of a system designed to expose these plants to ambient air. It also describes the procedure for leaf injury assessment.
Leaf injury caused by ozone appears in the form of necrosis or accelerated aging (senescence) on the leaves of the bioindicator. The macroscopically detectable leaf injury is used as the effect measure (see pictures in Annex A). The measure is the percentage of dead leaf area on the entire leaf surface.
The results of the standardised tobacco exposure indicate ozone-caused injury of the exposed bioindicators and thus enable a spatial and temporal distribution of the impact of ozone on plants to be determined.
This Standard applies to the outside atmosphere in all environments. This standard does not apply to the assessment of air quality inside buildings.
The method described in this European Standard does not replace modelling or physico-chemical methods of direct measurement of air pollutants, it complements them by demonstrating the biological effect.
The method described in this European Standard does not replace modelling or physico-chemical methods of direct measurement of air pollutants, it complements them by demonstrating the biological effect.

  • Standard
    35 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard provides a harmonized methodology for calculating GHG emissions and GHG performance in the steel industry.
This European Standard applies to facilities producing any of the multiple products of the steel value chain. It is supported by a set of worksheets [1].
This European Standard deals with the specific aspects for the determination of GHG emissions from steel production and the assessment of emission performance. This standard is to be used in conjunction with EN 19694-1, which contains overall requirements, definitions and rules applicable to the determination of GHG emissions for energy-intensive sectors, thereby providing a common methodological approach.
EN 19694-1 and EN 19694-2 provide a harmonized method for:
a)   measuring, testing and quantifying methods for the determination of  greenhouse gas (GHG) emissions;
b)   assessing the level of GHG emissions performance of production processes over time, at production sites;
c)   the establishment and provision of reliable and accurate information of proper quality for reporting and verification purposes.
In addition, this standard provides a stepwise approach for the determination of CO2 emissions and the assessment of CO2 performance of steel facilities, providing a set of methodologies allowing for a fair and reliable assessment of the CO2 performance of each individual process along the steel production value chain.
It can be seen as a toolbox which enables the determination of CO2 emissions and the assessment of CO2 performance of steel production facilities at various levels of disaggregation, establishing a sound system for:
-   the evaluation of the global CO2 performance of a steel production facility taking its production structure into account;
-   setting a reliable basis for evaluation of the CO2 reduction potential in a facility and the contributing processes;
-   setting a basis for accurate evaluation of new technologies.
Next to the determination of the direct and indirect CO2 emissions of a steel facility, this standard has a strong focus on performance assessment which it strives to address through the following aspects:
-   assessment of CO2 impact, including process emissions: this methodology evaluates the total CO2 emission of a steel facility, with the carbon content of the waste gases burdened as CO2 to the processes giving rise to them;
-   assessment of the actual CO2 impact: this methodology evaluates the total CO2 emissions released by a steel facility, but considers waste gases exported or used in a power plant as equal to natural gas in terms of CO2 emissions;
-   carbon input CO2 performance at facility level: this methodology delivers an indicator comparing the facility performance with best practice, on the basis of the carbon input to the system;
-   CO2 performance assessment at process level: this methodology delivers a set of indicators comparing process performance with best practice at unit level. These indicators are then combined as a consolidated figure for the whole facility. This methodology also provides a theoretical assessment of the CO2 saving potential up to best practice.

  • Standard
    81 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies a harmonized methodology for calculating GHG emissions from the cement industry, with a view to reporting these emissions for various purposes and by different basis, such as, plant basis, company basis (by country or by region) or even international group basis. It addresses all the following direct and indirect sources of GHG included [1]:
-   Direct GHG emissions (scope 1) from sources that are owned or controlled by the organization, such as emissions result from the following sources:
-   process: calcinations of carbonates and combustion of organic carbon contained in raw materials;
-   combustion of kiln fuels (fossil kiln fuels, alternative fossil fuels, mixed fuels with biogenic carbon content, biomass and bioliquids) related to clinker production and/or drying of raw materials and fuels;
-   combustion of non-kiln fuels (fossil fuels, alternative fossil fuels, mixed fuels with biogenic carbon content, biomass and bioliquids) related to equipment and on-site vehicles, room heating/cooling, drying of MIC (e.g. slag or pozzolana);
-   combustion of fuels for on-site power generation;
-   combustion of carbon contained in wastewater.
-   Energy indirect GHG emissions (scope 2) from the generation of purchased electricity consumed in the  organization’s owned or controlled equipment;
-   Other indirect GHG emissions (scope 3) from bought clinker. Excluded from this standard are all other scope 3 emissions from the cement industry.

  • Standard
    76 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard provides a harmonized methodology for calculating GHG emissions from the ferro-alloys industry based on the mass balance approach . It also provides key performance indicators over time of ferro-alloys plants.  It addresses the following direct and indirect sources of GHG:
-   Scope 1  - Direct GHG emissions from sources that are owned or controlled by the company, such as emissions result from the following sources:
-   smelting (reduction) process;
-   decomposition of carbonates inside the furnace;
-   auxiliaries operation related to the smelting operation (i.e. aggregates, drying processes, heating of ladles, etc.).
-   Scope 2 - Indirect GHG emissions from:
-   the generation of purchased electricity consumed in the company’s owned or controlled equipment.
This European Standard is to be used in conjunction with FprEN 19694-1, which contains generic, overall requirements, definitions and rules applicable to the determination of GHG emissions for all energy-intensive sectors, provides common methodological issues and defines the details for applying the rules. The application of this standard to the sector-specific standards ensures accuracy, precision and reproducibility of the results and is for this reason a normative reference standard. The requirements of these standards do not supersede legislative requirements.

  • Standard
    33 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies a harmonized method for calculating the emissions of greenhouse gases from the electrolysis section of primary aluminium smelters and aluminium anode baking plants. It also specifies key performance indicators for the purpose of benchmarking of aluminium. This also defines the boundaries.
NOTE   Other requirements and other EU Directives may be applicable to the product(s) falling within the scope of this standard.

  • Standard
    24 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard provides a harmonized methodology for calculating GHG emissions from the lime industry. It includes the manufacture of lime, and any downstream lime products manufactured at the plant, such as ground or hydrated lime. This standard allows for reporting of GHG emissions for various purposes and on different basis, such as plant basis, company basis (by country or by region) or international organization basis.
Since lime is defined as the generic name for quicklime, dolime and sintered dolime, plants manufacturing at least one of these products shall be covered by this standard.
This European Standard addresses all of the following direct and indirect sources of GHG included as defined in ISO 14064 1:
-   direct greenhouse gas emissions from greenhouse gas sources that are owned or controlled by the company, such as emissions resulting from the following sources:
-   calcination of carbonates and combustion of organic carbon contained in the kiln stone;
-   combustion of kiln fuels (fossil kiln fuels, alternative fossil fuels, mixed fuels with biogenic carbon content, biomass fuels and bio fuels) related to lime production and/or drying of raw materials;
-   combustion of non-kiln fuels (fossil kiln fuels, mixed fuels with biogenic carbon content, biomass fuels and bio fuels) related to equipment and on-site vehicles, heating/cooling and other on-site uses;
-   combustion of fuels for on-site power generation.
-   indirect greenhouse gas emissions from the generation of imported electricity, heat or steam consumed by the organization;
-   other indirect greenhouse gas emissions, other than energy indirect GHG emissions, which is a consequence of an organization's activities, but arises from greenhouse gas sources that are owned or controlled by other organizations such as from imported kiln stone.
This European Standard is to be used in conjunction with EN 19694-1, which contains generic, overall requirements, definitions and rules applicable to the determination of GHG emissions for all energy-intensive sectors, provides common methodological issues and defines the details for applying the rules. The application of this standard to the sector-specific standards ensures accuracy, precision and reproducibility of the results and is for this reason a normative reference standard.
Together these standards provide a harmonized method for:
a)   measuring, testing and quantifying methods for GHG emissions;
b)   assessing the level of GHG emissions performance of production processes over time, at production sites;
c)   establishment and provision of reliable, accurate and quality information for reporting and verification purposes.
GHG emissions offset mechanisms, including but not limited to voluntary offset schemes or nationally or internationally recognized offset mechanisms, shall not be used at any point in the GHG assessment according to this standard.

  • Standard
    58 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies the principles and requirements for the determination of GHG emissions from sector-specific sources as of the steel and iron, cement, aluminium, lime and ferroalloy producing industry.
This European Standard specifies in particular definitions and rules valid to all above enlisted sector-specific standards, provides common methodological issues and defines the details for applying the rules for the harmonized methods, which include:
a)   measuring, testing and quantifying methods for greenhouse gas (GHG) emissions of the above mentioned sector-specific sources in the cited standards;
b)   assessment of the level of GHG emissions performance of production processes over time, at production sites;
c)   establishment and provision of reliable, accurate and quality information for reporting and verification purposes.
The application of this standard to the other sector-specific standards in this series ensures accuracy, precision and reproducibility of the obtained results and is for this reason a normative reference standard, umbrella standard respectively.

  • Standard
    38 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies a semi-continuous measurement method for the determination of the concentration of benzene present in ambient air based on automated sampling and analysis by gas chromatography. This standard describes the performance characteristics and sets the relevant minimum criteria required to select an appropriate automated gas chromatograph (GC) by means of type approval tests. It also includes the evaluation of the suitability of an analyser for use in a specific fixed site so as to meet the data quality requirements as specified in Annex I of Directive 2008/50/EC [1] and requirements during sampling, calibration and quality assurance for use.
The method is applicable to the determination of the mass con¬centration of benzene present in ambient air in the range up to 50 µg/m3 benzene. This concentration range represents the certification range for the type approval test.
Other ranges may be used depending on the levels present in ambient air.
NOTE 1   When the standard is used for other purposes than for measurements required by Directive 2008/50/EC, the ranges and uncertainty requirements may not apply.
The method covers the determination of ambient air concentrations of benzene in zones classified as rural areas, urban-background areas and traffic-orientated locations and locations influenced by industrial sources.
The results are expressed in µg/m3 (at 20 °C and 101,3 kPa).
NOTE 2   50 µg/m3 of benzene corresponds to 15,4 nmol/mol of benzene.
This European Standard contains information for different groups of users.
Clauses 5 to 7 and Annexes C and D contain general information about the principles of benzene measurement by automated gas chromatography and sampling equipment.
Clause 8 and Annex E are specifically directed towards test houses and laboratories that perform type-approval testing of benzene analysers. These sections contain information about:
-   type-approval test conditions, test procedures and test requirements;
-   analyser performance requirements;
-   evaluation of the type-approval test results;
-   evaluation of the uncertainty of the measurement results of the benzene analyser based on the type-approval test results.
Clauses 9 to 11 and Annex F are directed towards monitoring networks performing the practical measurements of benzene in ambient air. These sections contain information about:
-   initial installation of the analyser in the monitoring network and acceptance testing;
-   ongoing quality assurance/quality control;
-   calculation and reporting of measurement results;
-   evaluation of the uncertainty of measurement results under practical monitoring conditions.

  • Standard
    72 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Technical Specification describes a procedure through which pollen – in particular pollen of genetically modified organisms (GMO) – can be sampled by means of bee colonies.
Bee colonies, especially the foraging bees, actively roam an area and are therefore area related samplers. Pollen sampling depends on the collection activity of the bees and the availability of pollen sources within the spatial zone according to the bees' preferences (supply of melliferous plants). A colony of bees normally forages over an area of up to 5 km radius (median 1,6 km, mean 2,2 km), in rare cases some bees may also forage in greater distances up to 10 km and more [26].
Foragers fix the gathered pollen on the outside of their hind legs (pollen loads, also known as pollen pellets). Inside the hive they place these pollen loads into comb cells close to the brood nest (bee bread). Furthermore, foragers gather nectar and honeydew. Nectar contains pollen which fell from the anthers of the blossom into the nectar drop, or pollen which was dispersed by the wind and sticks in the nectar of other blossoms or adheres to the sticky honeydew of plants. Nectar and honeydew are converted to honey and stored by the bees in the beehive.
Honey, pollen load and bee-bread may be used as sample matrices for the subsequent analysis of pollen as it is possible to concentrate sufficient amounts of pollen for microscopic and molecular biological diagnostics.
Microscopic analysis is used to identify the various pollen types and to quantify the exposure to the target pollen types in question. GMO exposure is analyzed by molecular-biological methods: For analysis of pollen DNA quantitative PCR methods are used and described here in this Technical Specification. The analysis of GMO specific proteins and toxins in pollen is possible, too, using ELISA, but to this date the method has not been evaluated enough in pollen matrices for standardization in this Technical Specification.

  • Technical specification
    33 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Technical Specification describes a procedure for the use of the passive samplers Sigma-2 and PMF to sample airborne pollen. Both are designed to sample coarse aerosol particles. Collected samples are used to analyze pollen input with regard to pollen type and amount, and input of transgenic pollen. The Sigma-2 passive sampler here provides a standardized sampling method for direct microscopic pollen analysis and quantifying the aerial pollen input at the site. The PMF yields sufficient amounts of pollen to additionally carry out molecular-biological diagnostics for detection of GMO.
Essential background information on performing GMO monitoring is given in Guideline VDI 4330 Part 1 [4], which is based on an integrated assessment of temporal and spatial variation of GMO cultivation (sources of GMO), the exposure in the environment and biological/ecological effects. Ideally, the pollen sampling using technical samplers for GMO monitoring should be undertaken in combination with the biological collection of pollen by bees (FprCEN/TS 16817-2).
The application of technical passive samplers and the use of honey bee colonies as active biological collectors complement each other in a manifold way when monitoring the exposure to GMO pollen. Technical samplers provide results regarding the pollen input at the sampling site in a representative way, whereas with biological sampling by honey bee colonies, pollen from flowering plants in the area is collected according to the bees' collection activity. Thus, this method represents GMO exposure to roaming insects. By combining the two sampling methods these two main principles of exposure are represented. Furthermore, a broad range of pollen species is covered.
The sample design depends on the intended measuring objective. Some examples are given in 6.2.

  • Technical specification
    55 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Technical Specification CEN/TS 1948-5 specifies the long-term sampling of PCDD/PCDF/PCB concentrations in emissions of stationary sources. It is intended to base the new method on EN 1948 Part 2, 3, 4 "Analyses of PCDD/PCDF/PCB".
The development of the new method is necessary due to the enhanced demand of several European countries and of the European Commission with regard to possible amendment of the Waste Incineration Directive 2000/76.
http://ec.europa.eu/environment/air/stationary.htm#2
http://ec.europa.eu/environment/air/pdf/technical_annex2.pdf
Preferably the development of the method has to be done by validation measurements.

  • Technical specification
    80 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Technical Specification specifies procedures for the sampling, preparation and analysis of individual volatile organic compounds (VOCs) in waste gas, such as those arising from solvent using processes. Sampling occurs by adsorption on sorbents, preparation by solvent extraction or thermodesorption and analysis by gas chromatography.
Examples of individual VOC are given in relevant industry sector BAT Reference documents (BREFs).
The results obtained are expressed as the mass concentration (mg/m3) of the individual gaseous organic compounds. This document is suitable for measuring individual VOCs whose ranges vary depending on compound and test method, refer to Annex B and C.
This Technical Specification may be used to meet the monitoring requirements of the Industrial Emission Directive (IED) and associated supporting documents.
This Technical Specification is not suitable for measuring total organic carbon (TOC). For the measurement of the mass concentration of total organic carbon then EN 12619 [3] is applicable.

  • Technical specification
    47 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies procedures for establishing quality assurance levels (QAL) for automated measuring systems (AMS) installed on industrial plants for the determination of the flue gas components and other flue gas parameters.
This European Standard specifies:
-   a procedure (QAL2) to calibrate the AMS and determine the variability of the measured values obtained by it, so as to demonstrate the suitability of the AMS for its application, following its installation;
-   a procedure (QAL3) to maintain and demonstrate the required quality of the measurement results during the normal operation of an AMS, by checking that the zero and span characteristics are consistent with those determined during QAL1;
-   a procedure for the annual surveillance tests (AST) of the AMS in order to evaluate (i) that it functions correctly and its performance remains valid and (ii) that its calibration function and variability remain as previously determined.
This European Standard is designed to be used after the AMS has been certified in accordance with the series of European Standards EN 15267.

  • Standard
    84 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 16000-19:2012 describes the measurement strategy for the detection of fungi in indoor environments.
ISO 16000-19:2012 describes suitable sampling and analysis methods together with a description of the applicability and the interpretation of the measurement results to maximize the comparability of the measured data obtained for a given measurement objective. It does not include details on recording building characteristics or field inspections by qualified professionals which have to take place prior to any microbiological measurement.
ISO 16000-19:2012 is not applicable to a detailed description of the building physics- and building-engineering-related procedures applicable to field inspections. The methods and procedures presented do not allow quantitative exposure assessment with regard to the room occupants.
The application of ISO 16000-19:2012 presupposes the knowledge of ISO 16000-1.

  • Standard
    38 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 16000-32:2014 specifies the requirements for investigating buildings and other structures and their technical installations for the occurrence of pollutants, as a basis for subsequent sampling of suspect areas and determination of the type and quantity of pollutants, which are described in other parts of ISO 16000.

  • Standard
    27 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard describes a standard method for determining the PM10 or PM2,5 mass concentrations of suspended particulate matter in ambient air by sampling the particulate matter on filters and weighing them by means of a balance.
Measurements are performed with samplers with inlet designs as specified in Annex A, operating at a nominal flow rate of 2,3 m3/h, over a nominal sampling period of 24 h. Measurement results are expressed in µg/m3, where the volume of air is the volume at ambient conditions near the inlet at the time of sampling.
The range of application of this European Standard is from approximately 1 µg/m3 (i.e. the limit of detection of the standard measurement method expressed as its uncertainty) up to 150 µg/m3 for PM10 and 120 µg/m3 for PM2,5.
NOTE 1   Although the European Standard is not validated for higher concentrations, its range of application could well be extended to ambient air concentrations up to circa 200 µg/m3 when using suitable filter materials (see 5.1.4).
This European Standard describes procedures and gives requirements for the use of so-called sequential samplers, equipped with a filter changer, suitable for extended stand-alone operation. Sequential samplers are commonly used throughout the European Union for the measurement of concentrations in ambient air of PM10 or PM2,5. However, this European Standard does not exclude the use of single-filter samplers.
This European Standard does not give procedures for the demonstration of equivalence of other sampler types, e.g. equipped with a different aerosol classifier and/or operating at different flow rates. Such procedures and requirements are given in detail in the Guide to the Demonstration of Equivalence of Ambient Air Monitoring Methods [11] and for automated continuous PM monitors (see CEN/TS 16450:2013).
The present European Standard represents an evolution of earlier European Standards (EN 12341:1998 and EN 14907:2005) through the development of the 2,3 m3/h sampler to include constraints on the filter temperature during and after sampling and the ability to monitor temperatures at critical points in the sampling system. It is recommended that when equipment is procured it complies fully with the present European Standard. However, older versions of these 2,3 m3/h samplers that do not employ sheath air cooling, the ability to cool filters after sampling, or the ability to monitor temperatures at critical points in the sampling system have a special status in terms of their use as reference samplers. Historical results obtained using these samplers will remain valid. These samplers can still be used for monitoring purposes and for equivalence trials, provided that a well justified additional allowance is made to their uncertainties (see Annex B).
In addition, three specific sampling systems  - the -long nozzle - 2,3 m3/h sampler and the 68 m3/h sampler for PM10 in EN 12341:1998, and the 30 m3/h PM2,5 inlet in EN 14907:2005  - also have a special status in terms of their use as reference samplers. Historical results obtained using these samplers will remain valid. These samplers can still be used for monitoring purposes and for equivalence trials, provided that a well-justified additional allowance is made to their uncertainties (see Annex B).
Other sampling systems, as described in Annex B of this European Standard, can be used provided that a well justified additional allowance is made to their uncertainties as derived from equivalence tests.
NOTE 2   By evaluating existing data it has been shown that these samplers give results for PM10 and PM2,5 that are equivalent to those obtained by application of this European Standard. Results are shown in Annex B.
This European Standard also provides guidance for the selection and testing of filters with the aim of reducing the measurement uncertainty of the results obtained when applying this European Standard.

  • Standard
    53 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Technical Specification specifies a measurement method for the determination of the particle bound polycyclic aromatic hydrocarbon (PAH) compounds benz[a]anthracene (BaA), benzo[b]fluoranthene (BbF), benzo[j]fluoranthene (BjF), benzo[k]fluoranthene (BkF), dibenz[a,h]anthracene (DBahA), indeno[1,2,3-cd]pyrene (INP) and benzo[ghi]perylene (BghiP) in ambient air, which can be used in the framework of Council Directive 2008/50/EC [10] and Directive 2004/107/EC [11]. This document specifies performance characteristics and performance criteria for this measurement method. The performance characteristics of the measurement method are based on a sampling period of 24 h.
This Technical Specification describes a measurement method which comprises sampling of the selected PAH compounds as part of the PM10 particles, sample extraction and analysis by high performance liquid chromatography (HPLC) with fluorescence detector (FLD) or by gas chromatography with mass spectrometric detection (GC-MS). The method is applicable for the measurement of the PAH compounds in the concentration range from approx. 0,04 ng/m3 to approximately 20 ng/m3 for BaA, BbF, BjF, BkF, BaP, INP and BghiP and 0,02 ng/m3 to approximately 2 ng/m3 for DBahA. Table 1 shows examples for concentrations of the compounds (annual mean values) for sampling sites with different characteristics.
(...)
The lower limit of the applicable range depends on the noise level of the detector and the variability of the laboratory filter blank.

  • Technical specification
    52 pages
    English language
    sale 10% off
    e-Library read for
    1 day

CEN/TC 264 origin - Editorial modifications in the Englsih + French reference versions only. (Changes were not necessary on the German ref. version as they had already been implemented in it.)

  • Corrigendum
    2 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard aims to provide a reliable, repeatable and objective method for assessing epiphytic lichen diversity. According to international literature on the topic (see e.g. [18] for an overall outline), it provides a framework for assessing the impact of anthropogenic intervention, particularly for estimating the effects of atmospheric pollution.

  • Standard
    32 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard describes the sampling protocol and the preparation of samples of in situ mosses to monitor the bioaccumulation of atmospheric contaminants.
This European Standard specifies the actions that shall be taken from the field sampling of mosses to their final preparation before analysis for targeted contaminants.
This European Standard is of interest to all operators wishing to conduct air quality biomonitoring studies.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies sampling from stationary sources, extraction, clean-up, identification and quantification procedures of the dioxin-like PCBs. The procedure described lays down requirements to measure the PCB congeners given in Annex A (see Table A.1). It is applicable to the 12 non- and mono-ortho PCB designated by the WHO. It is optimised to measure PCB concentrations of about 0,01 ng WHO-TEQPCB/m3.
In addition to the 12 non- and mono-ortho-PCB the present document is also applicable to measure further PCB-congeners like the "marker PCB" 28, 52, 101, 138, 153, 180 (see Annex F).
This document specifies a framework of quality control requirements which should be fulfilled by any PCB sampling, extraction, clean-up, identification and quantification methods to be applied.
As a result of their similar chemical behaviour PCBs, as shown in the validation campaign, can be sampled from stationary sources together with the PCDDs/PCDFs. Therefore, it is possible to measure PCBs together with PCDDs/PCDFs by applying EN 1948-1, -2, -3 and -4. The complete sampling procedure is described in EN 1948-1. Each of the three sampling methods of EN 1948-1 can be combined with the methods described in this document to complete the measurement procedure. EN 1948-1 is an integral part of the complete measurement procedure and is necessary for the determination of PCBs.
The analyses of the following PCB congeners is described in this European Standard and is validated in the validation campaign:
a)   Non-ortho substituted PCBs
1)   3,3’,4,4’-TeCB(77)
2)   3,4,4’,5-TeCB (81)
3)   3,3’,4,4’,5-PeCB (126)
4)   3,3’,4,4’,5,5’-HxCB (169)
b)   Mono-ortho substituted PCBs
1)   2,3,3’,4,4’-PeCB (105)
2)   2,3,4,4’,5-PeCB (114)
3)   2,3’,4,4’,5-PeCB (118)
4)   2’,3,4,4’,5-PeCB (123)
5)   2,3,3’,4,4’,5-HxCB (156)
6)   2,3,3’,4,4’,5’-HxCB (157)
7)   2,3’,4,4’,5,5’-HxCB (167)
8)   2,3,3’,4,4’,5,5’-HpCB (189)
c)   Marker PCBs
1)   2,4,4'- TriCB (28)
2)   2,2',5,5'-TeCB (52)
3)   2,2',4,5,5'- PeCB

  • Standard
    63 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies a method for the sampling and analysis of NO2 in ambient air using diffusive sampling followed by extraction and analysis by colorimetry or ion chromatography (IC). It can be used for the NO2 measurement in a concentration range of approximately 3 µg/m³ to 130 µg/m3. A sample is typically collected for a period of 1 to 4 weeks [13], with exposure periods depending on the design of the samplers and the concentration levels of NO2.
Several sorbents can be used for trapping NO2 in ambient air using a diffusive sampler. This standard specifies the application of triethanolamine as the reagent.
Nitrous acid and peroxyacetyl nitrate are the major chemical interferences of sorption by triethanolamine. However, in ambient air monitoring over long sampling times, both contaminants are generally present at low concentrations relative to NO2. Moreover, these species can also interfere with the measurement of NO2 when applying the EU reference method for NO2 monitoring based on chemiluminescence (see [2]).
This standard describes the application of a tube-type sampler with either a cylindrical or a slightly conical tube. Its typical uptake rate is about 1 cm3/min. Only for this sampler type sufficient evidence of validation has been found in a literature survey [12].
The relative expanded uncertainty of NO2 measurements performed using these tube-type diffusive samplers can potentially be lower than 25 % for individual measurements. When aggregating results to form annual average values, the relative expanded uncertainty can be further reduced to levels below 15 % due to the reduction of random effects on uncertainty [6].

  • Standard
    49 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard describes the operation of active DOAS measuring systems with continuous radiation source, the calibration procedures and applications in determining gaseous constituents (e.g. NO2, SO2, O3, BTX, Hg) in ambient air or in diffuse emissions.

  • Standard
    86 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ISO 13833:2013 specifies sampling methods and analysis methods for the determination of the ratio of biomass- and fossil-derived carbon dioxide (CO2) in the CO2 from exhaust gases of stationary sources, based on the radiocarbon (14C isotope) method. The lower limit of application is a biogenic to total CO2 fraction of 0,02. The working range is a biogenic to total CO2 fraction of 0,02 to 1,0.

  • Standard
    45 pages
    English language
    sale 10% off
    e-Library read for
    1 day