29.200 - Rectifiers. Convertors. Stabilized power supply
ICS 29.200 Details
Rectifiers. Convertors. Stabilized power supply
Gleichrichter. Stromrichter. Stabilisierte Stromversorgungselemente
Redresseurs. Convertisseurs. Alimentations stabilisees
Usmerniki. Pretvorniki. Stabilizirano električno napajanje
General Information
e-Library Subscription
Create subscription and get permanent access to documents within 29.200 - Rectifiers. Convertors. Stabilized power supply
Currently subscription includes documents marked with .We are working on making all documents available within the subscription.
IEC TS 63336:2024, which is a technical specification, applies to the commissioning of voltage-sourced converter (VSC) high voltage direct current (HVDC) systems which consist of two converter stations and the connecting HVDC transmission line.
The tests are generally applied to all HVDC configurations and could require addition or deletion to match the given solution.
This document provides guidance on the planning of commissioning activities. The commissioning described in this document is implemented through on-site testing on the whole system functionality, including testing on the subsystem and system. This document provides the scope, procedures and acceptance criteria of the tests.
Factory system tests, on-site equipment tests, electrode tests, and trial operation are not included in this document.
- Technical specification61 pagesEnglish languagesale 15% off
IEC 62501:2024 applies to self-commutated converter valves, for use in a three-phase bridge voltage sourced converter (VSC) for high voltage DC power transmission or as part of a back-to-back link, and to dynamic braking valves. It is restricted to electrical type and production tests. This document can be used as a guide for testing of high-voltage VSC valves used in energy storage systems (ESS). The tests specified in this document are based on air insulated valves. The test requirements and acceptance criteria can be used for guidance to specify the electrical type and production tests of other types of valves. This edition includes the following significant technical changes with respect to the previous edition: a) Conditions for use of evidence in lieu are inserted as a new Table 1; b) Test parameters for valve support DC voltage test, 7.3.2, and MVU DC voltage test, 8.4.1, updated; c) AC-DC voltage test between valve terminals, Clause 9, is restructured and alternative tests, by individual AC and DC voltage tests, added in 9.4.2; d) Partial discharge test in routine test program is removed; e) More information on valve component fault tolerance, Annex B, is added; f) Valve losses determination is added as Annex C.
- Draft51 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60146-1-1:2024 specifies the requirements for the performance of all semiconductor power converters and semiconductor power switches using controllable and/or non-controllable electronic valve devices. It is primarily intended to specify the basic requirements for converters in general and the requirements applicable to line commutated converters for conversion of AC power to DC power or vice versa. Parts of this document are also applicable to other types of electronic power converter provided that they do not have their own product standards. This fifth edition introduces four main changes: a) re-edition of the whole standard according to the current directives; b) deletion of safety-related descriptions considering coordination with IEC 62477 series; c) changes of calculation methods of inductive voltage regulation; d) changes considering coordination with IEC 61378 series.
- Draft84 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62477-1:2022 applies to power electronic converter systems (PECS), any specified accessories, and their components for electronic power conversion and electronic power switching, including the means for their control, protection, monitoring and measurement, such as with the main purpose of converting electric power, with rated system voltages not exceeding 1 000 V AC or 1 500 V DC.
This document also applies to PECS which intentionally emit or receive radio waves for the purpose of radio communication.
This document can also be used as a reference standard for product committees producing product standards for:
• adjustable speed electric power drive systems (PDS);
• standalone uninterruptible power systems (UPS);
• low voltage stabilized DC power supplies;
• bidirectional power converters.
For PECS and their specified accessories for which no product standard exists, this document provides minimum requirements for safety aspects.
This document has the status of a group safety publication in accordance with IEC Guide 104 for power electronic converter systems for solar, wind, tidal, wave, fuel cell or similar energy sources.
According to IEC Guide 104, one of the responsibilities of technical committees is, wherever applicable, to make use of basic safety publications and/or group safety publications in the preparation of their product standards.
Guidance for use of this group safety publication for product committees is given in Annex S.
This document
• establishes a common terminology for safety aspects relating to PECS,
• establishes minimum requirements for the coordination of safety aspects of interrelated parts within a PECS,
• establishes a common basis for minimum safety requirements for the PECS portion of products that contain PECS,
• specifies requirements to reduce risks of fire, electric shock, thermal, energy and mechanical hazards, during use and operation and, where specifically stated, during service and maintenance, and
• specifies minimum requirements to reduce risks with respect to PECS designed as pluggable and permanently connected equipment, whether it consists of a system of interconnected units or independent units, subject to installing, operating and maintaining the PECS in the manner prescribed by the manufacturer.
This document does not cover
• telecommunications apparatus other than power supplies to such apparatus,
• functional safety aspects as covered by, for example, IEC 61508 (all parts), and
• electrical equipment and systems for railways applications and electric vehicles.
- Standard14 pagesEnglish and French languagesale 15% off
No scope available
- Amendment5 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62501:2024 applies to self-commutated converter valves, for use in a three-phase bridge voltage sourced converter (VSC) for high voltage DC power transmission or as part of a back-to-back link, and to dynamic braking valves. It is restricted to electrical type and production tests. This document can be used as a guide for testing of high-voltage VSC valves used in energy storage systems (ESS). The tests specified in this document are based on air insulated valves. The test requirements and acceptance criteria can be used for guidance to specify the electrical type and production tests of other types of valves. This edition includes the following significant technical changes with respect to the previous edition:
a) Conditions for use of evidence in lieu are inserted as a new Table 1;
b) Test parameters for valve support DC voltage test, 7.3.2, and MVU DC voltage test, 8.4.1, updated;
c) AC-DC voltage test between valve terminals, Clause 9, is restructured and alternative tests, by individual AC and DC voltage tests, added in 9.4.2;
d) Partial discharge test in routine test program is removed;
e) More information on valve component fault tolerance, Annex B, is added;
f) Valve losses determination is added as Annex C.
- Standard171 pagesEnglish languagesale 15% off
- Standard113 pagesEnglish and French languagesale 15% off
IEC 60146-1-1:2024 specifies the requirements for the performance of all semiconductor power converters and semiconductor power switches using controllable and/or non-controllable electronic valve devices. It is primarily intended to specify the basic requirements for converters in general and the requirements applicable to line commutated converters for conversion of AC power to DC power or vice versa. Parts of this document are also applicable to other types of electronic power converter provided that they do not have their own product standards.
This fifth edition introduces four main changes:
a) re-edition of the whole standard according to the current directives;
b) deletion of safety-related descriptions considering coordination with IEC 62477 series;
c) changes of calculation methods of inductive voltage regulation;
d) changes considering coordination with IEC 61378 series.
- Standard295 pagesEnglish languagesale 15% off
- Standard182 pagesEnglish and French languagesale 15% off
This part of IEC 61800, which is a product standard, specifies requirements and makes
recommendations for the design and development, integration and validation of safety-related
encoder (Encoder(SR)) in terms of their functional safety considerations, electrical safety and
environmental conditions. It applies to Encoder(SR), being sensors as part of a PDS(SR).
NOTE 1 The term "integration" refers to the Encoder(SR) itself, not to its incorporation into the safety-related
application.
This document can also be referred to and used for Encoder(SR) in any other safety-related
application, for example safety-related position monitoring.
NOTE 2 This document specifies only complementary functional safety, electrical safety and environmental condition
requirements that are not clearly provided by other parts of the IEC 61800 series.
This document is applicable where functional safety of an encoder is claimed and the
Encoder(SR) is operating mainly in the high demand or continuous mode.
NOTE 3 While low demand mode operation is possible for an Encoder(SR), this document concentrates on high
demand and continuous mode. Safety sub-functions implemented for high demand or continuous mode can also be
used in low demand mode. Requirements for low demand mode are given in IEC 61508 (all parts) [2]. Some guidance
for the estimation of average probability of dangerous failure on demand (PFDavg) value is provided in
IEC 61800-5-2:2016, Annex F.
The requirements of IEC 61800-5-2:2016 for PDS(SR) apply to Encoder(SR) as applicable. This
document includes additional or different requirements for Encoder(SR). It sets out safetyrelated
considerations of Encoder(SR) in terms of the framework of IEC 61508 (all parts), and
introduces requirements for Encoder(SR) as subsystems of a safety-related system. It is
intended to facilitate the realisation of the electrical/electronic/programmable electronic
(E/E/PE) and mechanical parts of an Encoder(SR) in relation to the safety performance of safety
sub-function(s) of an Encoder(SR).
Manufacturers and suppliers of Encoder(SR) will, by using the normative requirements of this
document, indicate to users (system integrator, original equipment manufacturer) the safety
performance of the Encoder(SR). This will facilitate the incorporation of Encoder(SR) into
safety-related control systems using the principles of IEC 61508 (all parts), and possibly its
specific sector implementations (for example IEC 61511 (all parts) [3], IEC 61513 [4],
IEC 62061 [5] or ISO 13849-1 and ISO 13849-2 (see Clause 2).
By applying the requirements from this document, the corresponding requirements of
IEC 61508 (all parts) that are necessary for an Encoder(SR) are fulfilled.
This document does not specify requirements for:
• the functional properties of an Encoder(SR) without any safety relevance;
• the hazard and risk analysis of a particular application;
• the identification of safety sub-functions for that application;
• the initial allocation of SILs to those safety sub-functions;
• the driven equipment except for interface arrangements;
• secondary hazards (for example from failure in a production or manufacturing process);
• the Encoder(SR) manufacturing process;
• the validity of signals and commands to the Encoder(SR); and
• security aspects (e.g. cyber security or Encoder(SR) security of access).
NOTE 4 The functional safety requirements of an Encoder(SR) are dependent on the application, and can be
considered as a part of the overall risk assessment of the installation. Where the supplier of the Encoder(SR) is not
responsible for the driven equipment, the installation designer is responsible for the risk assessment, and for
specifying the functional and safety integrity requirements of the Encoder(SR).
This document applies to Encoder(SR) implementing safety sub-functions with a SIL not greater
than SIL 3.
This document provides additional information for Encoder(SR) claiming
- Standard108 pagesEnglish languagesale 10% offe-Library read for1 day
This part of IEC 62477 applies to power electronic converter systems (PECS), any specified
accessories, and their components for electronic power conversion and electronic power
switching, including the means for their control, protection, monitoring and measurement, such
as with the main purpose of converting electric power, with rated system voltages not exceeding
1 000 V AC or 1 500 V DC.
This document also applies to PECS which intentionally emit or receive radio waves for the
purpose of radio communication.
This document can also be used as a reference standard for product committees producing
product standards for:
• adjustable speed electric power drive systems (PDS);
• standalone uninterruptible power systems (UPS);
• low voltage stabilized DC power supplies;
• bidirectional power converters.
For PECS and their specified accessories for which no product standard exists, this document
provides minimum requirements for safety aspects.
This document has the status of a group safety publication in accordance with IEC Guide 104
for power electronic converter systems for solar, wind, tidal, wave, fuel cell or similar energy
sources.
According to IEC Guide 104, one of the responsibilities of technical committees is, wherever
applicable, to make use of basic safety publications and/or group safety publications in the
preparation of their product standards.
Guidance for use of this group safety publication for product committees is given in Annex S.
This document
• establishes a common terminology for safety aspects relating to PECS,
• establishes minimum requirements for the coordination of safety aspects of interrelated
parts within a PECS,
• establishes a common basis for minimum safety requirements for the PECS portion of
products that contain PECS,
• specifies requirements to reduce risks of fire, electric shock, thermal, energy and
mechanical hazards, during use and operation and, where specifically stated, during service
and maintenance, and
• specifies minimum requirements to reduce risks with respect to PECS designed as
pluggable and permanently connected equipment, whether it consists of a system of
interconnected units or independent units, subject to installing, operating and maintaining
the PECS in the manner prescribed by the manufacturer.
This document does not cover
• telecommunications apparatus other than power supplies to such apparatus,
• functional safety aspects as covered by, for example, IEC 61508 (all parts), and
• electrical equipment and systems for railways applications and electric vehicles.
- Standard257 pagesEnglish languagesale 10% offe-Library read for1 day
- Amendment11 pagesEnglish languagesale 10% offe-Library read for1 day
This part of IEC 61800 specifies requirements for adjustable speed electrical power drive
systems (PDS) or their elements, with respect to electrical, thermal, fire, mechanical, energy
and other relevant hazards. It does not cover the driven equipment except for interface
requirements. It applies to adjustable speed electrical PDS which include the power conversion,
basic drive module (BDM)/complete drive module (CDM) control, and a motor or motors.
Excluded are traction and electric vehicle BDM/CDM.
It applies to low-voltage adjustable speed electrical PDS intended to feed a motor or motors
from a BDM/CDM connected to phase-to-phase voltages of up to and including 1,0 kV AC
(50 Hz or 60 Hz) and up to and including 1,5 kV DC.
It also applies to high-voltage adjustable speed electrical PDS intended to feed a motor or
motors from a BDM/CDM connected to phase-to-phase voltages of up to and including 35 kV
AC (50 Hz or 60 Hz) and up to and including 52 kV DC.
NOTE 1 At the time of publication of this document, the technical upper voltage limit for DC motors is 2,25 kV DC.
NOTE 2 Above voltage and frequency limits reflect the scope of IEC 61800-1 and IEC 61800-2.
NOTE 3 For adjustable speed electrical PDS not covered by the scope of this document, applicable requirements
of other standards, for example IEC 62477-1 and IEC 62477-2, can be used.
This document also applies to PDS which intentionally emit or receive radio waves for the
purpose of radio communication.
Motors for driven equipment (see Figure 1) are covered by IEC 60034 (all parts).
NOTE 4 In some cases, safety requirements of the PDS (for example, protection against access to hazardous parts)
can necessitate the use of special components and/or additional measures.
- Standard446 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61800-3:2022 specifies electromagnetic compatibility (EMC) requirements for adjustable speed power drive systems (PDSs) and machine tools (MTs). A PDS is an AC or DC motor drive including an electronic converter. Requirements are stated for AC and DC PDSs and MTs with input and/or output voltages (line-to-line voltage), up to 35 kV AC RMS. This document applies to equipment of all power ratings.
As a product EMC standard, this document can be used for the assessment of PDS and MT. It can also be used for the assessment of complete drive modules (CDM) or basic drive modules (BDM).
Traction applications and electric vehicles are excluded. Equipment which is defined as group 2 in CISPR 11:2015 is excluded.
This document does not give requirements for the electrical machine which converts power between the electrical and mechanical forms within the PDS. Requirements for rotating electrical machines are covered by the IEC 60034 series. In this document, the term "motor" is used to describe the electrical machine, whether rotary or linear, and regardless of the direction of power flow.
This document is applicable to BDMs, CDMs, PDSs and MTs with or without radio function. However, this document does not specify any radio transmission and reception requirements.
This document defines the minimum requirements for emission and immunity in the frequency range from 0 Hz to 400 GHz. Tests are not required in frequency ranges where no requirements are specified.
This fourth edition cancels and replaces the third edition published in 2017. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
>extension of the scope to machine tools with one or more embedded PDS ;
>extension of the frequency range for radiated immunity tests to 6 GHz;
>general updates in the normative part and the informative annexes
- Standard133 pagesEnglish languagesale 10% offe-Library read for1 day
IEC TS 63471:2023 provides a recommended DC voltage series for HVDC grids with a DC voltage above 1,5 kV. It concerns the selection of a nominal DC voltage of multi-terminal HVDC power transmission and distribution systems and meshed HVDC networks, grids, rather than a rated DC voltage or highest DC voltage.
There is no stringent requirement to consider this DC voltage series for the DC voltage selection for any stand-alone (not forming part of DC Grid) HVDC projects, e.g. a point-to-point HVDC power transmission and distribution system. However, in order to facilitate the later progression towards larger HVDC systems in the future the use of standardized DC voltages is very useful. At later stages, with multi-terminal systems and meshed HVDC grids, the use of harmonized voltages will indeed become essential in order to optimize both capital and operational costs. Also, for entirely new projects, system planning should include this outlook and can benefit from the use of the recommended DC voltage series.
- Technical specification8 pagesEnglish languagesale 15% off
IEC 61800-5-1:2022 specifies requirements for adjustable speed electrical power drive systems (PDS) or their elements, with respect to electrical, thermal, fire, mechanical, energy and other relevant hazards. It does not cover the driven equipment except for interface requirements. It applies to adjustable speed electrical PDS which include the power conversion, basic drive module (BDM)/complete drive module (CDM) control, and a motor or motors. Excluded are traction and electric vehicle BDM/CDM. It applies to low-voltage adjustable speed electrical PDS intended to feed a motor or motors from a BDM/CDM connected to phase-to-phase voltages of up to and including 1,0 kV AC (50 Hz or 60 Hz) and up to and including 1,5 kV DC. It also applies to high-voltage adjustable speed electrical PDS intended to feed a motor or motors from a BDM/CDM connected to phase-to-phase voltages of up to and including 35 kV AC (50 Hz or 60 Hz) and up to and including 52 kV DC. This document also applies to PDS which intentionally emits or receives radio waves for the purpose of radio communication. This edition includes the following significant technical changes with respect to the previous edition: a) harmonization with IEC 62477-1:2022; b) harmonization with UL 61800-5-1 and CSA C22.2 No. 274, including an annex with a list of national deviation which was considered not possible to harmonize within a reasonable timeframe; c) more detailed information about the evaluation of components according to this document and relevant safety component standards; d) updated requirement for mechanical hazards including multiple IP ratings.
- Standard446 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61800-9-2:2023 specifies energy efficiency indicators of power electronics (complete drive modules (CDM), input or output sub drive modules (SDM), power drive systems (PDS) and motor starters, all used for motor driven equipment.
This document is a group energy efficiency publication according to IEC Guide 119 and specifies the methodology for the determination of losses of the complete drive module (CDM), the sub drive module (SDM), the power drive system (PDS) and the motor system.
It defines IE and IES classes, their limit values and provides test procedures for the classification of the overall losses of the motor system.
Furthermore, this document proposes a methodology for the implementation of the best energy efficiency solution of drive systems. This depends on the architecture of the motor driven system, on the speed/torque profile and on the operating points over time of the driven load equipment. It provides a link for the energy efficiency evaluation and classification of the extended product.
This edition includes the following significant technical changes with respect to the previous edition:
a) Additional IES Classes defined to IES5;
b) Removed reference motor loss data and now point to IEC 60034-30-2;
c) Expanded and modified factors in Clause 6 for CDMs;
d) Annex C is now the Mathematical Model for CDM Losses;
e) Moved the mathematical model for the CDM to Annex C;
f) Added Sub Drive Input Module and Sub Drive Output Modules to Annex B;
g) Annex D is now the Converter Topology (old Annex C);
h) Annex E is now the Interpolation of Motor Losses (Old Annex D);
i) Annex E expanded to include various motor connections and updated interpolation method;
j) New Annex E for determination of Interpolation Coefficients;
k) Annex F is the old Annex E;
l) New Annex J Explanation of Correction Factors for the Reference Losses in Table 8.
- Standard276 pagesEnglish and French languagesale 15% off
IEC 61800-3:2022 specifies electromagnetic compatibility (EMC) requirements for adjustable speed power drive systems (PDSs) and machine tools (MTs). A PDS is an AC or DC motor drive including an electronic converter. Requirements are stated for AC and DC PDSs and MTs with input and/or output voltages (line-to-line voltage), up to 35 kV AC RMS. This document applies to equipment of all power ratings. As a product EMC standard, this document can be used for the assessment of PDS and MT. It can also be used for the assessment of complete drive modules (CDM) or basic drive modules (BDM). Traction applications and electric vehicles are excluded. Equipment which is defined as group 2 in CISPR 11:2015 is excluded. This document does not give requirements for the electrical machine which converts power between the electrical and mechanical forms within the PDS. Requirements for rotating electrical machines are covered by the IEC 60034 series. In this document, the term "motor" is used to describe the electrical machine, whether rotary or linear, and regardless of the direction of power flow. This document is applicable to BDMs, CDMs, PDSs and MTs with or without radio function. However, this document does not specify any radio transmission and reception requirements. This document defines the minimum requirements for emission and immunity in the frequency range from 0 Hz to 400 GHz. Tests are not required in frequency ranges where no requirements are specified. This fourth edition cancels and replaces the third edition published in 2017. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
extension of the scope to machine tools with one or more embedded PDS;
extension of the frequency range for radiated immunity tests to 6 GHz;
general updates in the normative part and the informative annexes.
- Standard133 pagesEnglish languagesale 10% offe-Library read for1 day
- Amendment11 pagesEnglish languagesale 10% offe-Library read for1 day
IEC TS 63291-1:2023 contains guidelines on planning, specification, and execution of multi-vendor HVDC grid systems also referred to as HVDC grids. The terms "HVDC grid systems" or "HVDC grids" are used in this document to describe HVDC systems for power transmission having more than two HVDC stations connected to a common DC circuit. The DC circuit can be of radial or meshed topology or a combination thereof. In this document, the term "HVDC grids" is used.
While this document focuses on requirements specific for HVDC grids, some requirements are considered applicable to all HVDC systems in general, i.e., including point‑to‑point HVDC systems. Existing IEC (e.g. IEC TR 63363-1 [1]), Cigre or other relevant documents have been used for reference as far as possible.
Corresponding to electric power transmission applications, this document is applicable to high voltage systems, i.e. those having typically nominal DC voltages higher than 50 kV with respect to earth are considered in this document.
NOTE While the physical principles of DC networks are basically voltage independent, the technical options for designing equipment get much wider with lower DC voltage levels, e.g. in case of converters or switchgear.
This document covers technical aspects of:
- coordination of HVDC grid and AC systems,
- HVDC grid characteristics,
- HVDC grid control,
- HVDC grid protection,
- AC/DC converter stations,
- HVDC grid installations, including DC switching stations and HVDC transmission lines,
- studies and associated models,
- testing.
Beyond the scope of this document, the following content is proposed for future work:
DC/DC converter stations.
- Technical specification133 pagesEnglish languagesale 15% off
IEC TS 63291-2:2023 defines aspects on planning, specification, and execution of multi-vendor HVDC grid systems also referred to as HVDC grids. The terms "HVDC grid systems" or "HVDC grids" are used in this document to describe HVDC systems for power transmission having more than two HVDC stations connected to a common DC circuit. The DC circuit can be of radial or meshed topology or a combination thereof. In this document, the term "HVDC grids" is used.
While this document focuses on requirements specific for HVDC grids, some requirements are considered applicable to all HVDC systems in general, i.e., including point-to-point HVDC systems. Existing IEC (e.g., IEC TR 63363-1 [1]), Cigre or other relevant documents have been used for reference as far as possible.
Corresponding to electric power transmission applications, this document is applicable to high voltage systems, i.e., those having typically nominal DC voltages higher than 50 kV with respect to earth are considered in this document.
NOTE While the physical principles of DC networks are basically voltage independent, the technical options for designing equipment get much wider with lower DC voltage levels, e.g. in the case of converters or switchgear.
This document covers technical aspects of:
- coordination of HVDC grid and AC systems,
- HVDC grid characteristics,
- HVDC grid control,
- HVDC grid protection,
- AC/DC converter stations,
- HVDC grid installations, including DC switching stations and HVDC transmission lines,
- studies and associated models,
- testing.
Beyond the scope of this document, the following content is proposed for future work:
DC/DC converter stations.
- Technical specification90 pagesEnglish languagesale 15% off
IEC 61800-5-1:2022 specifies requirements for adjustable speed electrical power drive systems (PDS) or their elements, with respect to electrical, thermal, fire, mechanical, energy and other relevant hazards. It does not cover the driven equipment except for interface requirements. It applies to adjustable speed electrical PDS which include the power conversion, basic drive module (BDM)/complete drive module (CDM) control, and a motor or motors.
Excluded are traction and electric vehicle BDM/CDM.
It applies to low-voltage adjustable speed electrical PDS intended to feed a motor or motors from a BDM/CDM connected to phase-to-phase voltages of up to and including 1,0 kV AC (50 Hz or 60 Hz) and up to and including 1,5 kV DC. It also applies to high-voltage adjustable speed electrical PDS intended to feed a motor or motors from a BDM/CDM connected to phase-to-phase voltages of up to and including 35 kV AC (50 Hz or 60 Hz) and up to and including 52 kV DC.
This document also applies to PDS which intentionally emits or receives radio waves for the purpose of radio communication.
This edition includes the following significant technical changes with respect to the previous edition:
a) harmonization with IEC 62477-1:2022;
b) harmonization with UL 61800-5-1 and CSA C22.2 No. 274, including an annex with a list of national deviation which was considered not possible to harmonize within a reasonable timeframe;
c) more detailed information about the evaluation of components according to this document and relevant safety component standards;
d) updated requirement for mechanical hazards including multiple IP ratings.
- Standard10 pagesEnglish and French languagesale 15% off
IEC 62751-2:2014 gives the detailed method to be adopted for calculating the power losses in the valves for an HVDC system based on the "modular multi-level converter", where each valve in the converter consists of a number of self-contained, two-terminal controllable voltage sources connected in series. It is applicable both for the cases where each modular cell uses only a single turn-off semiconductor device in each switch position, and the case where each switch position consists of a number of turn-off semiconductor devices in series (topology also referred to as "cascaded two-level converter"). The main formulae are given for the two-level "half-bridge" configuration but guidance is also given as to how to extend the results to certain other types of MMC building block configuration.
- Standard115 pagesEnglish and French languagesale 15% off
- Standard247 pagesEnglish and French languagesale 15% off
- Standard252 pagesEnglish and French languagesale 15% off
- Standard17 pagesEnglish and French languagesale 15% off
- Amendment11 pagesEnglish languagesale 10% offe-Library read for1 day
- Amendment11 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard17 pagesEnglish and French languagesale 15% off
IEC 62109-3:2020 covers the particular safety requirements for electronic elements that are mechanically and/or electrically incorporated with photovoltaic (PV) modules or systems.
Mechanically and/or electrically incorporated means that the whole combination of electronic device with the photovoltaic element is sold as one product. Nevertheless, tests provided in this document may also be used to evaluate compatibility of PV modules and electronic devices that are sold separately and are intended to be installed close to each other.
The purpose of the requirements of this document is to provide additional safety-related testing requirements for the following types of integrated electronics, collectively referred to as module integrated equipment (MIE):
a) Type A MIE where the PV element can be evaluated as a PV module according to IEC 61730-1 and IEC 61730‑2 independently from the electronic element;
b) Type B MIE where the PV element cannot be evaluated as a PV module according to IEC 61730-1 and IEC 61730-2 independently from the electronic element.
- Standard31 pagesEnglish languagesale 10% offe-Library read for1 day
This part of IEC 60700 specifies the service conditions, the definitions of essential ratings and characteristics of thyristor valves utilized in line commutated converters with three-phase bridge connections to realize the conversion from AC to DC and vice versa for high voltage direct current (HVDC) power transmission applications. It is applicable for air insulated, liquid cooled and indoor thyristor valves.
- Standard37 pagesEnglish languagesale 10% offe-Library read for1 day
This standard defines specification and control protocol of D2DWC module for using wireless power TX and RX functions by only one single device. And the related antenna physical design examples are presented in Annex A for sharing information. This standard propose D2DWC module circuit requirement which are consisted with the D2DWC main AP, D2DWC IC, EMT/WPT Antenna Unit and PMIC unit. In the Chapter 5, ‘Specifications and control protocol of D2DWC’, the register information and message protocols for WPT control are defined in order to implement the WPT TX function. In this standard, the interface and protocol in the wireless power process of the mobile device can be used in accordance with the corresponding wireless power transfer standard. Any wireless power transfer standard working inside 100 - 350 kHz frequency range can be included from the scope of this standard. This standard can be used to mobile wireless power transfer in mobile phones and other mobile devices, IoT, and micro-sensor industries and related application fields.
- Standard32 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62477-1:2022 applies to power electronic converter systems (PECS), any specified accessories, and their components for electronic power conversion and electronic power switching, including the means for their control, protection, monitoring and measurement, such as with the main purpose of converting electric power, with rated system voltages not exceeding 1 000 V AC or 1 500 V DC. This document also applies to PECS which intentionally emit or receive radio waves for the purpose of radio communication. This document can also be used as a reference standard for product committees producing product standards for: - adjustable speed electric power drive systems (PDS); - standalone uninterruptible power systems (UPS); - low voltage - stabilized DC power supplies; - bidirectional power converters. For PECS and their specified accessories for which no product standard exists, this document provides minimum requirements for safety aspects. This document has the status of a group safety publication in accordance with IEC Guide 104 for power electronic converter systems for solar, wind, tidal, wave, fuel cell or similar energy sources. According to IEC Guide 104, one of the responsibilities of technical committees is, wherever applicable, to make use of basic safety publications and/or group safety publications in the preparation of their product standards. Guidance for use of this group safety publication for product committees is given in Annex S. This document - establishes a common terminology for safety aspects relating to PECS, - establishes minimum requirements for the coordination of safety aspects of interrelated parts within a PECS, - establishes a common basis for minimum safety requirements for the PECS portion of products that contain PECS, - specifies requirements to reduce risks of fire, electric shock, thermal, energy and mechanical hazards, during use and operation and, where specifically stated, during service and maintenance, and - specifies minimum requirements to reduce risks with respect to PECS designed as pluggable and permanently connected equipment, whether it consists of a system of interconnected units or independent units, subject to installing, operating and maintaining the PECS in the manner prescribed by the manufacturer. This document does not cover - telecommunications apparatus other than power supplies to such apparatus, - functional safety aspects as covered by, for example, IEC 61508 (all parts), and - electrical equipment and systems for railways applications and electr
- Standard257 pagesEnglish languagesale 10% offe-Library read for1 day
This part of IEC 60700 specifies the service conditions, the definitions of essential ratings and characteristics of thyristor valves utilized in line commutated converters with three-phase bridge connections to realize the conversion from AC to DC and vice versa for high voltage direct current (HVDC) power transmission applications. It is applicable for air insulated, liquid cooled and indoor thyristor valves.
- Standard37 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60601-2-83:2019 is applicable to the BASIC SAFETY and ESSENTIAL PERFORMANCE of HOME LIGHT THERAPY EQUIPMENT, intended for use in the HOME HEALTHCARE ENVIRONMENT. HOME LIGHT THERAPY EQUIPMENT is typically used by a LAY OPERATOR.
The scope of this document includes all light sources except laser.
- Standard64 pagesEnglish and French languagesale 15% off
- Standard137 pagesEnglish and French languagesale 15% off
IEC 61800-3:2022 specifies electromagnetic compatibility (EMC) requirements for adjustable speed power drive systems (PDSs) and machine tools (MTs). A PDS is an AC or DC motor drive including an electronic converter. Requirements are stated for AC and DC PDSs and MTs with input and/or output voltages (line-to-line voltage), up to 35 kV AC RMS. This document applies to equipment of all power ratings.
As a product EMC standard, this document can be used for the assessment of PDS and MT. It can also be used for the assessment of complete drive modules (CDM) or basic drive modules (BDM).
Traction applications and electric vehicles are excluded. Equipment which is defined as group 2 in CISPR 11:2015 is excluded.
This document does not give requirements for the electrical machine which converts power between the electrical and mechanical forms within the PDS. Requirements for rotating electrical machines are covered by the IEC 60034 series. In this document, the term "motor" is used to describe the electrical machine, whether rotary or linear, and regardless of the direction of power flow.
This document is applicable to BDMs, CDMs, PDSs and MTs with or without radio function. However, this document does not specify any radio transmission and reception requirements.
This document defines the minimum requirements for emission and immunity in the frequency range from 0 Hz to 400 GHz. Tests are not required in frequency ranges where no requirements are specified.
This fourth edition cancels and replaces the third edition published in 2017. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
extension of the scope to machine tools with one or more embedded PDS;
extension of the frequency range for radiated immunity tests to 6 GHz;
general updates in the normative part and the informative annexes.
- Standard264 pagesEnglish and French languagesale 15% off
IEC 60700-3:2022 specifies the service conditions, the definitions of essential ratings and characteristics of thyristor valves utilized in line commutated converters with three-phase bridge connections to realize the conversion from AC to DC and vice versa for high voltage direct current (HVDC) power transmission applications. It is applicable for air insulated, liquid cooled and indoor thyristor valves.
- Standard71 pagesEnglish and French languagesale 15% off
- Standard5 pagesEnglish and French languagesale 15% off
The specification is primarily targeted at peripheral developers and platform/adapter developers, but provides valuable information for platform operating system/BIOS/device driver, adapter independent hardware vendors/independent software vendors, and system OEMs. This specification can be used for developing new products and associated software.
- Standard606 pagesEnglish languagesale 10% offe-Library read for1 day
The purpose of IEC 62680-1-6:2019 is to create a higher level of interoperability among Hosts and Audio Devices. By establishing a set of essential audio features, users can expect a consistent experience, Device manufacturers have a solid template to follow, and Host drivers may be simplified. The USB Audio Device Class Definition for Basic Audio Functions applies to all USB Audio Functions that are based on the Universal Serial Bus Device Class Definition for Audio Devices Release 3.0. It defines baseline audio functionality for all ADC 3.0 compliant Hosts and Devices.
- Standard45 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62680-1-5:2019 describes the minimum capabilities and characteristics an audio device shall support to comply with the USB. This document also provides recommendations for optional features. The Audio Device Class Definition applies to all devices or functions embedded in composite devices that are used to manipulate audio, voice, and sound-related functionality. This includes both audio data (analog and digital) and the functionality that is used to directly control the audio environment, such as Volume and Tone Control. The Audio Device Class does not include functionality to operate transport mechanisms that are related to the reproduction of audio data, such as tape transport mechanisms or CD-ROM drive control.
- Standard154 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62680-4-1:2022 provides Universal Serial Bus 4™ Specification.
USB 3.1 and USB 3.2 were evolutionary steps to increase bandwidth. The goal for USB4 remains the same with the added goal of helping to converge the USB Type-C® connector ecosystem and minimize end-user confusion. Several key design areas to meet this goal are listed below:
• Offer display, data, and load/store functionality over a single USB Type-C connector.
• Retain compatibility with existing ecosystem of USB and Thunderbolt™ products.
• Define Port Capabilities for predictable and consistent user experience.
• Provide increased host flexibility to configure bandwidth, power management, and other performance-related parameters for system needs
This document contains USB4™ Specification, Version 1.0 with Errata and ECN through May 19, 2021.
- Standard604 pagesEnglish languagesale 15% off
- Standard1314 pagesEnglish and French languagesale 15% off
This part of IEC 62751 gives the detailed method to be adopted for calculating the power
losses in the valves for an HVDC system based on the “modular multi-level converter”, where
each valve in the converter consists of a number of self-contained, two-terminal controllable
voltage sources connected in series. It is applicable both for the cases where each modular
cell uses only a single turn-off semiconductor device in each switch position, and the case
where each switch position consists of a number of turn-off semiconductor devices in series
(topology also referred to as “cascaded two-level converter”). The main formulae are given for
the two-level “half-bridge” configuration but guidance is also given in Annex A as to how to
extend the results to certain other types of MMC building block configuration.
The standard is written mainly for insulated gate bipolar transistors (IGBTs) but may also be
used for guidance in the event that other types of turn-off semiconductor devices are used.
Power losses in other items of equipment in the HVDC station, apart from the converter
valves, are excluded from the scope of this standard.
This standard does not apply to converter valves for line-commutated converter HVDC
systems.
- Amendment14 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61800-5-1:2022 specifies requirements for adjustable speed electrical power drive systems (PDS) or their elements, with respect to electrical, thermal, fire, mechanical, energy and other relevant hazards. It does not cover the driven equipment except for interface requirements. It applies to adjustable speed electrical PDS which include the power conversion, basic drive module (BDM)/complete drive module (CDM) control, and a motor or motors.
Excluded are traction and electric vehicle BDM/CDM.
It applies to low-voltage adjustable speed electrical PDS intended to feed a motor or motors from a BDM/CDM connected to phase-to-phase voltages of up to and including 1,0 kV AC (50 Hz or 60 Hz) and up to and including 1,5 kV DC. It also applies to high-voltage adjustable speed electrical PDS intended to feed a motor or motors from a BDM/CDM connected to phase-to-phase voltages of up to and including 35 kV AC (50 Hz or 60 Hz) and up to and including 52 kV DC.
This document also applies to PDS which intentionally emits or receives radio waves for the purpose of radio communication.
This edition includes the following significant technical changes with respect to the previous edition:
a) harmonization with IEC 62477-1:2022;
b) harmonization with UL 61800-5-1 and CSA C22.2 No. 274, including an annex with a list of national deviation which was considered not possible to harmonize within a reasonable timeframe;
c) more detailed information about the evaluation of components according to this document and relevant safety component standards;
d) updated requirement for mechanical hazards including multiple IP ratings.
The contents of the corrigendum 1 (2023-09) have been included in this copy.
- Standard903 pagesEnglish and French languagesale 15% off
IEC 62040-1:2017 applies to movable, stationary, fixed or built-in UPS for use in low-voltage distribution systems and that are intended to be installed in an area accessible by an ordinary person or in a restricted access area as applicable, that deliver fixed frequency AC output voltage with port voltages not exceeding 1 000 V AC or 1 500 V DC and that include an energy storage device. It applies to pluggable and to permanently connected UPS, whether consisting of a system of interconnected units or of independent units, subject to installing, operating and maintaining the UPS in the manner prescribed by the manufacturer. This document specifies requirements to ensure safety for the ordinary person who comes into contact with the UPS and, where specifically stated, for the skilled person. The objective is to reduce risks of fire, electric shock, thermal, energy and mechanical hazards during use and operation and, where specifically stated, during service and maintenance. This product standard is harmonized with the applicable parts of group safety publication IEC 62477-1:2012 for power electronic converter systems and contains additional requirements relevant to UPS. This edition includes the following significant technical change with respect to the previous edition: the reference document has been changed from IEC 60950-1:2005 (safety for IT equipment) to IEC 62477-1 (group safety standard for power electronic converters).
- Standard74 pagesEnglish languagesale 10% offe-Library read for1 day
- Amendment8 pagesEnglish languagesale 10% offe-Library read for1 day
- Technical report5 pagesEnglish languagesale 15% off
IEC TR 63363-1:2022(E) is to present the "state of the art" with respect to general guidance on the steady-state performance demands of VSC HVDC transmission systems. It concerns the steady-state performance of two-terminal VSC HVDC transmission systems utilizing converters with power flow capability in both directions.
Different configurations of a VSC HVDC transmission system are covered in this document, including the symmetrical monopolar, asymmetrical monopolar, bipolar with earth return, bipolar with dedicated metallic return and rigid bipolar configurations.
There are many variations between different VSC HVDC transmission systems. This document does not consider these in detail; consequently, it cannot be used directly as a specification for a particular project, but rather to provide the general basis for the system steady-state performance demands.
Normally, the performance specifications are based on a complete system including two VSC HVDC converter stations. However, sometimes a VSC HVDC transmission system can also be separately specified and purchased from multiple vendors instead of single turnkey vendor. In such cases, due consideration can be given to the coordination of each part with the overall VSC HVDC system performance objectives and the interface of each with the system can be clearly defined. The major components of the VSC HVDC transmission system are presented in IEC 62747.
Referring to IEC 62747, an HVDC substation/converter station is defined as that part of the VSC HVDC transmission system which consists of one or more VSC converter units installed in a single location together with buildings, reactors, filters, reactive power supply, control, monitoring, protective, measuring and auxiliary equipment. The AC substations are not covered in this document.
This document provides guidance and supporting information on the procedure for system design and the technical issues involved in the system design of VSC HVDC transmission projects for both owners and contractors. This document can be used as the basis for drafting a procurement specification and as a guide during project implementation.
- Technical report61 pagesEnglish languagesale 15% off
IEC 60633:2019 is available as IEC 60633:2019 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 6033:2019 defines terms for high-voltage direct current (HVDC) power transmission systems and for HVDC substations using electronic power converters for the conversion from AC to DC or vice versa. This document is applicable to HVDC substations with line commutated converters, most commonly based on three-phase bridge (double way) connections (see Figure 2) in which unidirectional electronic valves, for example semiconductor valves, are used. For the thyristor valves, only the most important definitions are included in this document. A more comprehensive list of HVDC valve terminology is given in IEC 60700-2. This edition includes the following significant technical changes with respect to the previous edition: - 40 terms and definitions have been amended and 31 new terms and definitions have been added mainly on converter units and valves, converter operating conditions, HVDC systems and substations and HVDC substation equipment; - a new Figure 13 on capacitor commutated converter configurations has been added.
- Standard40 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62477-1:2022 applies to power electronic converter systems (PECS), any specified accessories, and their components for electronic power conversion and electronic power switching, including the means for their control, protection, monitoring and measurement, such as with the main purpose of converting electric power, with rated system voltages not exceeding 1 000 V AC or 1 500 V DC.
This document also applies to PECS which intentionally emit or receive radio waves for the purpose of radio communication.
This document can also be used as a reference standard for product committees producing product standards for:
• adjustable speed electric power drive systems (PDS);
• standalone uninterruptible power systems (UPS);
• low voltage stabilized DC power supplies;
• bidirectional power converters.
For PECS and their specified accessories for which no product standard exists, this document provides minimum requirements for safety aspects.
This document has the status of a group safety publication in accordance with IEC Guide 104 for power electronic converter systems for solar, wind, tidal, wave, fuel cell or similar energy sources.
According to IEC Guide 104, one of the responsibilities of technical committees is, wherever applicable, to make use of basic safety publications and/or group safety publications in the preparation of their product standards.
Guidance for use of this group safety publication for product committees is given in Annex S.
This document
• establishes a common terminology for safety aspects relating to PECS,
• establishes minimum requirements for the coordination of safety aspects of interrelated parts within a PECS,
• establishes a common basis for minimum safety requirements for the PECS portion of products that contain PECS,
• specifies requirements to reduce risks of fire, electric shock, thermal, energy and mechanical hazards, during use and operation and, where specifically stated, during service and maintenance, and
• specifies minimum requirements to reduce risks with respect to PECS designed as pluggable and permanently connected equipment, whether it consists of a system of interconnected units or independent units, subject to installing, operating and maintaining the PECS in the manner prescribed by the manufacturer.
This document does not cover
• telecommunications apparatus other than power supplies to such apparatus,
• functional safety aspects as covered by, for example, IEC 61508 (all parts), and
• electrical equipment and systems for railways applications and electric vehicles.
The contents of the corrigendum of April 2024 have been included in this copy.
- Standard517 pagesEnglish and French languagesale 15% off
- Amendment8 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62909-2:2019 specifies GCPC interface requirements for particular distributed energy resources, namely electric vehicle (EV), battery, and photovoltaic (PV) systems. These requirements are in addition to the general requirements given in IEC 62909-1. This International Standard is to be used in conjunction with IEC 62909-1:2017. The clauses of particular requirements in this document supplement or modify the corresponding clauses in IEC 62909-1:2017. Where the text of subsequent clauses indicates an "addition" to or a "replacement" of the relevant requirement, test specification or explanation of IEC 62909-1:2017, these changes are made to the relevant text of IEC 629091:2017. Where no change is necessary and the clause is applicable, the words "The provisions of IEC 62909-1:2017, Clause XX shall apply" are used. Additional clauses, tables, figures and notes which are not included in IEC 62909-1:2017, are numbered starting from 101.
- Standard26 pagesEnglish languagesale 10% offe-Library read for1 day
IEC TR 62543:2022 is available as IEC TR 62543:2022 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.
IEC TR 62543:2022 gives general guidance on the subject of voltage sourced converters (VSC) used for transmission of power by high voltage direct current (HVDC). It describes converters that are not only voltage sourced (containing a capacitive energy storage medium and where the polarity of DC voltage remains fixed) but also self-commutated, using semiconductor devices which can both be turned on and turned off by control action. The scope includes 2‑level and 3-level converters with pulse-width modulation (PWM), along with multi-level converters, modular multi-level converters and cascaded two-level converters, but excludes 2‑level and 3-level converters operated without PWM, in square-wave output mode. HVDC power transmission using voltage sourced converters is known as "VSC transmission". The various types of circuit that can be used for VSC transmission are described in this document, along with their principal operational characteristics and typical applications. The overall aim is to provide a guide for purchasers to assist with the task of specifying a VSC transmission scheme. Line-commutated and current-sourced converters are specifically excluded from this document. This edition includes the following significant technical changes with respect to the previous edition:
- in Clause 3, some redundant definitions which were identical to those listed in IEC 62747 have been deleted;
- in 4.3.4, description and diagrams have been added for the cases of a bipole with dedicated metallic return and a rigid bipole;
- in 4.4, mention is made of the bi-mode insulated gate transistor (BiGT) and injection enhanced gate transistor (IEGT) as possible alternatives to the IGBT;
- in 5.6, the reference to common-mode blocking reactors has been deleted since these are very rarely used nowadays.
- Technical report64 pagesEnglish languagesale 15% off
- Technical report133 pagesEnglish languagesale 15% off
- Standard12 pagesEnglish and French languagesale 15% off