ISO/TC 147 - Water quality
Standardization in the field of water quality, including definition of terms, sampling of waters, measurement and reporting of water characteristics. Excluded : limits of acceptability for water quality.
Qualité de l'eau
Normalisation dans le domaine de la qualité de l'eau, comprenant le vocabulaire, l'échantillonnage, les mesures des caractéristiques de l'eau et leur expression. À l'exclusion : de la fixation des seuils de pollution de l'eau.
General Information
This document specifies a method for the measurement of 210Pb in all types of waters by liquid scintillation counting (LSC). The method is applicable to test samples of supply/drinking water, rainwater, surface and ground water, as well as cooling water, industrial water, domestic, and industrial wastewater after proper sampling and handling, and test sample preparation. Filtration of the test sample is necessary. Lead‑210 activity concentration in the environment can vary and usually ranges from 2 mBq l-1 to 300 mBq l-1 [27][28]. Using currently available liquid scintillation counters, the limit of detection of this method for 210Pb is generally of the order of 20 mBq l-1 to 50 mBq l-1, which is lower than the WHO criteria for safe consumption of drinking water (100 mBq lâ’1).[4][6] These values can be achieved with a counting time between 180 min and 720 min for a sample volume from 0,5 l to 1,5 l. Higher activity concentrations can be measured by either diluting the sample or using smaller sample aliquots or both. The method presented in this document is not intended for the determination of an ultra-trace amount of 210Pb. The range of application depends on the amount of dissolved material in the water and on the performance characteristics of the measurement equipment (background count rate and counting efficiency). The method described in this document is applicable to an emergency situation. The analysis of Pb adsorbed to suspended matter is not covered by this method. It is the user’s responsibility to ensure the validity of this test method for the water samples tested.
- Standard21 pagesEnglish languagesale 15% off
- Standard22 pagesFrench languagesale 15% off
- Draft21 pagesEnglish languagesale 15% off
- Draft23 pagesFrench languagesale 15% off
This document specifies a method for the quantification of twelve microcystin variants (microcystin-LR, -LA, -YR, -RR, -LY, -WR, -HtyR, -HilR, -LW, -LF, [Dha7]-microcystin-LR, and [Dha7]-microcystin-RR) in drinking water and freshwater samples between 0,05 µg/l to 1,6 µg/l. The method can be used to determine further microcystins, provided that analytical conditions for chromatography and mass spectrometric detection has been tested and validated for each microcystin. Samples are analysed by LC-MS/MS using internal standard calibration. This method is performance based. The laboratory is permitted to modify the method, e.g. increasing direct flow injection volume for low interference samples or diluting the samples to increase the upper working range limit, provided that all performance criteria in this method are met. Detection of microcystins by high resolution mass spectrometry (HRMS) as an alternative for tandem mass spectrometry (MS/MS) is described in Annex A. An alternative automated sample preparation method based on on-line solid phase extraction coupled to liquid chromatography is described in Annex B. When instrumental sensitivity is not sufficient to reach the method detection limits by direct flow injection, a solid phase extraction clean-up and concentration step is described in Annex C.
- Standard32 pagesEnglish languagesale 15% off
- Draft32 pagesEnglish languagesale 15% off
This document specifies a method for the physical pre-treatment and conditioning of water samples and the determination of the activity concentration of various radionuclides emitting gamma-rays with energies between 40 keV and 2 MeV, by gamma‑ray spectrometry according to the generic test method described in ISO 20042. The method is applicable to test samples of drinking water, rainwater, surface and ground water as well as cooling water, industrial water, domestic and industrial wastewater after proper sampling, sample handling, and test sample preparation (filtration when necessary and taking into account the amount of dissolved material in the water). This method is only applicable to homogeneous samples or samples which are homogeneous via timely filtration. The lowest limit that can be measured without concentration of the sample or by using only passive shield of the detection system is about 5·10-2 Bq/l for e.g. 137Cs.1 The upper limit of the activity corresponds to a dead time of 10 %. Higher dead times may be used but evidence of the accuracy of the dead-time correction is required. Depending on different factors, such as the energy of the gamma-rays, the emission probability per nuclear disintegration, the size and geometry of the sample and the detector, the shielding, the counting time and other experimental parameters, the sample may require to be concentrated by evaporation if activities below 5·10-2 Bq/l need to be measured. However, volatile radionuclides (e.g. radon and radioiodine) can be lost during the source preparation. This method is suitable for application in emergency situations.  1The sample geometry: 3l Marinelli beaker; detector: GE HP N relative efficiency 55 % ; counting time: 18h.
- Standard27 pagesEnglish languagesale 15% off
- Standard28 pagesFrench languagesale 15% off
- Draft27 pagesEnglish languagesale 15% off
- Draft28 pagesFrench languagesale 15% off
This document defines terms used in certain fields of water quality characterization.
- Standard63 pagesEnglish languagesale 15% off
- Standard66 pagesFrench languagesale 15% off
- Draft63 pagesEnglish languagesale 15% off
- Draft76 pagesFrench languagesale 15% off
This document specifies a method for the measurement of 14C activity concentration in all types of water samples by liquid scintillation counting (LSC) either directly on the test sample or following a chemical separation. The method is applicable to test samples of supply/drinking water, rainwater, surface and ground water, marine water, as well as cooling water, industrial water, domestic, and industrial wastewater. The detection limit depends on the sample volume, the instrument used, the sample counting time, the background count rate, the detection efficiency and the chemical recovery. The method described in this document, using currently available liquid scintillation counters and suitable technical conditions, has a detection limit as low as 1 Bqâ™lâ’1, which is lower than the WHO criteria for safe consumption of drinking water (100 Bq·l-1). 14C activity concentrations can be measured up to 106 Bqâ™l-1 without any sample dilution. It is the user’s responsibility to ensure the validity of this test method for the water samples tested.
- Standard23 pagesEnglish languagesale 15% off
- Standard25 pagesFrench languagesale 15% off
- Draft23 pagesEnglish languagesale 15% off
- Draft28 pagesFrench languagesale 15% off
This document specifies a test method for the determination of iron-55 (55Fe) activity concentration in samples of all types of water using liquid scintillation counting (LSC). Using currently available liquid scintillation counters, this test method can measure the 55Fe activity concentrations in the range from the limit of detection up to 120 mBq l-1. These values can be achieved with a counting time between 7 200 s and 10 800 s for a sample volume from 0,5 l to 1,5 l. Higher activity concentrations can be measured by either diluting the sample or using smaller sample aliquots or both. NOTE     These performance indicators are wholly dependent on the measurement regimes in individual laboratories; in particular, the detection limits are influenced by amount of stable iron present. The range of application depends on the amount of dissolved material in the water and on the performance characteristics of the measurement equipment (background count rate and counting efficiency). It is the laboratory’s responsibility to ensure the suitability of this test method for the water samples tested.
- Standard20 pagesEnglish languagesale 15% off
- Standard21 pagesFrench languagesale 15% off
- Draft21 pagesEnglish languagesale 15% off
- Draft21 pagesFrench languagesale 15% off
This document specifies a method for the determination of certain cyclic volatile methylsiloxanes (cVMS) in environmental water samples with low density polyethylene (LDPE) as a preservative and subsequent liquid-liquid extraction with hexane containing 13C-labeled cVMS as internal standards. The extract is then analysed by gas chromatography-mass spectrometry (GC-MS). NOTE Using the 13C-labeled, chemically identical substances as internal standards with the same properties as the corresponding analytes, minimizes possible substance-specific discrimination in calibrations. Since these substances are least soluble in water, they are introduced via the extraction solvent hexane into the system.
- Standard16 pagesEnglish languagesale 15% off
- Draft17 pagesEnglish languagesale 15% off
This document sets out the general principles for, and provides guidance on, the design of sampling programmes and sampling techniques for all aspects of sampling of water (including waste waters, sludges, effluents, suspended solids and sediments). It does not include detailed instructions for specific sampling situations, which are covered in the various other parts of ISO 5667 and in ISO 19458.
- Standard39 pagesEnglish languagesale 15% off
- Standard42 pagesFrench languagesale 15% off
- Draft39 pagesEnglish languagesale 15% off
This document specifies a method for the determination of alkylmercury compounds in filtered water samples by gas chromatography-mass spectrometry after phenylation and solvent extraction. This method is applicable to determination of individual methylmercury (MeHg) and ethylmercury (EtHg) compounds in surface water and waste water. The method can be applied to samples containing 0,2 μg/l to 10 μg/l of each compound as mercury mass. Depending on the matrix, the method may also be applicable to higher concentrations after suitable dilution of the sample or reduction in sample size.
- Standard21 pagesEnglish languagesale 15% off
- Draft21 pagesEnglish languagesale 15% off
This document contains details on the sampling of domestic and industrial waste water, i.e. the design of sampling programmes and techniques for the collection of samples. It covers waste water in all its forms, i.e. industrial waste water, radioactive waste water, cooling water, raw and treated domestic waste water. It deals with various sampling techniques used and the rules to be applied so as to ensure the samples are representative. Sampling of accidental spillages is not included, although the methods described in certain cases may also be applicable to spillages.
- Standard50 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard45 pagesEnglish languagesale 15% off
- Draft44 pagesEnglish languagesale 15% off
- Draft49 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies operationally defined methods for the determination of total cyanide in various types of water such as drinking water, ground water, surface water, wastewaters, metallurgical processing tailings reclaim solution, heap leach barren solution, mill slurry tailings filtrate and leaching solutions, with cyanide concentrations from 5 µg/l to 2 000 mg/l expressed as cyanide ions in the undiluted sample. The range of application can be extended by reducing the sensitivity (Figure A.1.). NOTE ISO 2080:2008, 3.105, defines free cyanide. The concentration of total cyanide as defined in ISO 2080:2008, 3.191 includes free cyanide, cyanide complexed with metals in solution as cyanide anion, but not necessarily all of the metal cyanide complexes present as determined by a specified analytical method. In this method, six suitable mass concentration ranges from 5 µg/l to 50 µg/l, from 50 µg/l to 500 µg/l, from 0,5 mg/l to 5 mg/l, from 5 mg/l to 50 mg/l, from 50 mg/l to 500 mg/l and from 500 mg/l to 2 000 mg/l are described.
- Standard15 pagesEnglish languagesale 15% off
- Draft15 pagesEnglish languagesale 15% off
This document specifies a multi‑parameter method for the determination of total organic carbon (TOC), total nitrogen (TNb) and total phosphorus (TP) in drinking water, raw water, ground water, surface water, sea water, saline water, process water, domestic and industrial wastewater, after a chemical oxidation process. It is applicable to both dissolved and bound suspended materials. The method allows for determination of TOC, TN and TP. The lower and upper working ranges for these parameters are dependent upon instrument conditions (for example sample volume, reaction chemistry amounts) and can be adjusted for a wider range. Typical measurement ranges are shown in Figures C.1 to C.3. The analysis procedure is carried out instrumentally by a single oxidation process. Dissolved nitrogen gas is not included in the TNb measurement in this method. When present in the sample, elemental carbon, cyanate and thiocyanate will be included in the TOC result.
- Standard31 pagesEnglish languagesale 15% off
- Standard31 pagesEnglish languagesale 15% off
This document provides guidelines for testing laboratories wanting to use rapid test methods on water samples that may be contaminated following a nuclear or radiological emergency incident. In an emergency situation, consideration should be given to: — taking into account the specific context for the tests to be performed, e.g. a potentially high level of contamination; — using or adjusting, when possible, radioactivity test methods implemented during routine situations to obtain a result rapidly or, for tests not performed routinely, applying specific rapid test methods previously validated by the laboratory, e.g. for 89Sr determination; — preparing the test laboratory to measure a large number of potentially contaminated samples. The aim of this document is to ensure decision makers have reliable results needed to take actions quickly and minimize the radiation dose to the public. Measurements are performed in order to minimize the risk to the public by checking the quality of water supplies. For emergency situations, test results are often compared to operational intervention levels. NOTE Operational intervention levels (OILs) are derived from IAEA Safety Standards[8] or national authorities[9]. A key element of rapid analysis can be the use of routine methods but with a reduced turnaround time. The goal of these rapid measurements is often to check for unusual radioactivity levels in the test sample, to identify the radionuclides present and their activity concentration levels and to establish compliance of the water with intervention levels[10][11][12]. It should be noted that in such circumstances, validation parameters evaluated for routine use (e.g. reproducibility, precision, etc.) may not be applicable to the modified rapid method. However, due to the circumstances arising after an emergency, the modified method may still be fit-for-purpose although uncertainties associated with the test results need to be evaluated and may increase from routine analyses. The first steps of the analytical approach are usually screening methods based on gross alpha and gross beta test methods (adaptation of ISO 10704 and ISO 11704) and gamma spectrometry (adaptation of ISO 20042, ISO 10703 and ISO 19581). Then, if required[13], test method standards for specific radionuclides (see Clause 2) are adapted and applied (for example, 90Sr measurement according to ISO 13160) as proposed in Annex A. This document refers to published ISO documents. When appropriate, this document also refers to national standards or other publicly available documents. Screening techniques that can be carried out directly in the field are not part of this document.
- Standard20 pagesEnglish languagesale 15% off
- Standard22 pagesFrench languagesale 15% off
- Draft20 pagesEnglish languagesale 15% off
This document specifies the conditions for the determination of uranium isotope activity concentration in samples of environmental water (including sea waters) using alpha-spectrometry and 232U as a yield tracer. A chemical separation is required to separate and purify uranium from a test portion of the sample.
- Standard19 pagesEnglish languagesale 15% off
- Standard21 pagesFrench languagesale 15% off
- Draft19 pagesEnglish languagesale 15% off
This document specifies a method for the measurement of 210Po in all types of waters by alpha spectrometry. The method is applicable to test samples of supply/drinking water, rainwater, surface and ground water, marine water, as well as cooling water, industrial water, domestic, and industrial wastewater after proper sampling and handling, and test sample preparation. Filtration of the test sample may be required. The detection limit depends on the sample volume, the instrument used, the counting time, the background count rate, the detection efficiency and the chemical yield. The method described in this document, using currently available alpha spectrometry apparatus, has a detection limit of approximately 5 mBq l−1, which is lower than the WHO criteria for safe consumption of drinking water (100 mBq l−1). This value can be achieved with a counting time of 24 h for a sample volume of 500 ml. The method described in this document is also applicable in an emergency situation. The analysis of 210Po adsorbed to suspended matter in the sample is not covered by this method. If suspended material has to be removed or analysed, filtration using a 0,45 μm filter is recommended. The analysis of the insoluble fraction requires a mineralization step that is not covered by this document [13]. In this case, the measurement is made on the different phases obtained. The final activity is the sum of all the measured activity concentrations. It is the user's responsibility to ensure the validity of this test method for the water samples tested.
- Standard19 pagesEnglish languagesale 15% off
- Standard20 pagesFrench languagesale 15% off
- Draft19 pagesEnglish languagesale 15% off
This document specifies a method for determining the toxicity of environmental samples on growth, fertility and reproduction of Caenorhabditis elegans. The method applies to contaminated whole freshwater sediment (maximum salinity 5 g/l), soil and waste, as well as to pore water, elutriates and aqueous extracts that were obtained from contaminated sediment, soil and waste.
- Standard23 pagesEnglish languagesale 15% off
- Standard25 pagesFrench languagesale 15% off
- Standard13 pagesEnglish languagesale 15% off
- Standard13 pagesEnglish languagesale 15% off
- Standard14 pagesFrench languagesale 15% off
- Standard14 pagesFrench languagesale 15% off
This document summarizes current scientific literature on the occurrence of macroplastics and microplastics, in the environment and biota. It gives an overview of testing methods, including sampling from various environmental matrix, sample preparation and analysis. Further, chemical and physical testing methods for the identification and quantification of plastics are described. This document gives recommendations for three steps necessary for the standardization of methods towards harmonized procedures for sampling, sample preparation and analysis. This document does not apply indoor and health related aspects. NOTE The collection of plastics or microplastics in the environment by citizen social monitoring projects is not in the scope of this document. Although such projects can help sensitize the society to environmental problems and can even reduce the entry and presence of plastics in the environment, this monitoring concept is not considered suitable for a robustly representative and scientific analysis of microplastics in the environment via standardization.
- Technical report41 pagesEnglish languagesale 15% off
This document specifies the determination of radium-226 (226Ra) and radium-228 (228Ra) activity concentrations in drinking water samples by chemical separation of radium and its measurement using liquid scintillation counting. Massic activity concentrations of 226Ra and 228Ra which can be measured by this test method utilizing currently available liquid scintillation counters go down to 0,01 Bq/kg for 226Ra and 0,06 Bq/kg for 228Ra for a 0,5 kg sample mass and a 1 h counting time in a low background liquid scintillation counter[8]. The test method can be used for the fast detection of contamination of drinking water by radium in emergency situations.
- Standard28 pagesEnglish languagesale 15% off
- Standard31 pagesFrench languagesale 15% off
This document specifies a method for the detection, semi-quantitative and quantitative (MPN) enumeration of thermotolerant Campylobacter species. The method can be applied to all kinds of waters including: drinking water, ground water and well water, fresh, brackish and saline surface water, swimming pools, spa and hydrotherapy pools, recreational waters, agricultural waters and runoff, untreated and treated wastewater and also sand and other sediments. This method can be used for the detection of Campylobacter species in a specified sample volume. Clean water samples with low turbidity can be membrane filtered for either a qualitative method, semi-quantitative or quantitative (MPN) method. Water samples with higher turbidity, such as primary and secondary wastewater effluents and sediments, are analysed using the same qualitative, semi-quantitative or quantitative MPN method by direct inoculation of material into bottles or tubes. Sediments can be suspended in a suitable diluent or inoculated directly into enrichment broths. Users wishing to employ this method are expected to verify its performance for the particular matrix under their own laboratory conditions.
- Standard25 pagesEnglish languagesale 15% off
- Standard30 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a method for the measurement of 99Tc in all types of water by inductively coupled plasma mass spectrometry (ICP-MS). The method is applicable to test samples of supply/drinking water, rainwater, surface and ground water, as well as cooling water, industrial water, domestic, and industrial wastewater after proper sampling and handling and test sample preparation. A filtration of the test sample is necessary. The detection limit depends on the sample volume and the instrument used. The method described in this document, using currently available ICP-MS, has a detection limit of approximately 0,2 ng·kg−1 to 0,5 ng·kg−1 (0,1 Bq·kg−1 to 0,3 Bq·kg−1), which is much lower than the WHO criteria for safe consumption of drinking water (100 Bq·l−1)[3]. The method presented in this document is not intended for the determination of ultra-trace amount of 99Tc. The mass concentration values in this document are expressed by sample mass unit instead of sample volume unit as it is usually the case in similar standards. The reason is that 99Tc is measured in various matrix types such as fresh water or sea water, which have significant differences in density. The mass concentration values can be easily converted to sample volume unit by measuring the sample volume. However, it increases the uncertainty on the mass concentration result. The method described in this document is applicable in the event of an emergency situation, but not if 99mTc is present at quantities that could cause interference. The analysis of Tc adsorbed to suspended matter is not covered by this method. It is the user's responsibility to ensure the validity of this test method for the water samples tested.
- Standard22 pagesEnglish languagesale 15% off
- Standard23 pagesFrench languagesale 15% off
This document specifies a method for the measurement of 99Tc in all types of waters by liquid scintillation counting (LSC). The method is applicable to test samples of supply/drinking water, rainwater, surface and ground water, as well as cooling water, industrial water, domestic, and industrial wastewater after proper sampling and handling, and test sample preparation. A filtration of the test sample is necessary. The detection limit depends on the sample volume and the instrument used. The method described in this document, using currently available LSC instruments, has a detection limit of approximately 5 Bq·kg−1 to 20 Bq·kg−1, which is lower than the WHO criteria for safe consumption of drinking water (100 Bq l−1)[3]. These values can be achieved with a counting time of 30 min for a sample volume varying between 14 ml to 40 ml. The method presented in this document is not intended for the determination of ultra-trace amount of 99Tc. The activity concentration values in this document are expressed by sample mass unit instead of sample volume unit as it is usually the case in similar standards. The reason is that 99Tc is measured in various matrix types such as fresh water or sea water, which have significant differences in density. The activity concentration values can be easily converted to sample volume unit by measuring the sample volume. However, it increases the uncertainty on the activity concentration result. The method described in this document is applicable in the event of an emergency situation, but not if 99mTc is present at quantities that could cause interference and not if 99mTc is used as a recovery tracer. The analysis of Tc adsorbed to suspended matter is not covered by this method. It is the user's responsibility to ensure the validity of this test method for the water samples tested.
- Standard21 pagesEnglish languagesale 15% off
- Standard22 pagesFrench languagesale 15% off
This document specifies a method for the determination of selected perfluoroalkyl and polyfluoroalkyl substances (PFAS) in non‑filtrated waters, for example drinking water, natural water (fresh water and sea water) and waste water containing less than 2 g/l solid particulate material (SPM) using liquid chromatography-tandem mass spectrometry (LC‑MS/MS). The compounds monitored by this method are typically the linear isomers. The group of compounds determined by this method are representative of a wide variety of PFAS. The analytes specified in Table 1 can be determined by this method. The list can be modified depending on the purpose for which the method is intended. The lower application range of this method can vary depending on the sensitivity of the equipment used and the matrix of the sample. For most compounds to which this document applies ≥0,2 ng/l as limit of quantification can be achieved. Actual levels can depend on the blank levels realized by individual laboratory. The applicability of the method to further substances, not listed in Table 1, or to further types of water is not excluded, but is intended to be validated separately for each individual case. NOTE 1 PFAS is used in this document to describe the analytes monitored. Many of the compounds in Table 1 are perfluoroalkyl and are also considered polyfluoroalkyl substances. NOTE 2 The linear PFAS isomers are specified in this document. The branched isomers can be present in environmental samples, especially for PFOS. Annex E provides an example of an analytical approach to the chromatographic and spectroscopic separation of individual isomers.
- Standard43 pagesEnglish languagesale 15% off
- Standard48 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies the criteria for developing an in-house mass spectrometry-based method for quantitative analysis of multiple subgroups of organic substances in the scope of physical-chemical analysis of water. This document supplements ISO/TS 13530 which provides guidance on the initial characterization of the measurement performances, by providing details to select the test matrix and internal standards and criteria for analyte and internal standard recoveries. This document is not intended as a substitute for the currently applicable analytical standards dedicated to organic compounds but as a resource bringing additional characterization elements.
- Standard10 pagesEnglish languagesale 15% off
- Standard11 pagesFrench languagesale 15% off
This document specifies the criteria for mass spectrometric identification of target compounds in water samples and is applicable to environmental samples in general. This document is intended to be used in conjunction with standards developed for the determination of specific compounds. If a standard method for analysing specific compounds includes criteria for identification, those criteria are followed.
- Standard21 pagesEnglish languagesale 15% off
- Standard24 pagesFrench languagesale 15% off
This document specifies the determination of the biochemical oxygen demand of waters by dilution and seeding with suppression of nitrification after 5 d or 7 d incubation time. It is applicable to all waters having biochemical oxygen demands usually between 1 mg/l and 6 000 mg/l. It applies particularly to waste waters but also suits for the analysis of natural waters. For biochemical oxygen demands greater than 6 000 mg/l of oxygen, the method is still applicable, but special care is needed taking into consideration the representativeness of subsampling for preparation of the dilution steps. The results obtained are the product of a combination of biochemical and chemical reactions in presence of living matter which behaves only with occasional reproducibility. The results do not have the rigorous and unambiguous character of those resulting from, for example, a single, well‑defined, chemical process. Nevertheless, the results provide an indication from which the quality of waters can be estimated.
- Standard22 pagesEnglish languagesale 15% off
- Standard24 pagesFrench languagesale 15% off
This document specifies a method by liquid scintillation counting for the determination of tritium activity concentration in samples of marine waters, surface waters, ground waters, rain waters, drinking waters or of tritiated water ([3H]H2O) in effluents. The method is not directly applicable to the analysis of organically bound tritium; its determination requires additional chemical processing of the sample (such as chemical oxidation or combustion). With suitable technical conditions, the detection limit may be as low as 1 Bq·l−1. Tritium activity concentrations below 106 Bq·l−1 can be determined without any sample dilution.
- Standard25 pagesEnglish languagesale 15% off
- Standard25 pagesFrench languagesale 15% off
This document specifies a method for the determination of fish acute toxicity using the permanent cell line from rainbow trout (Oncorhynchus mykiss) gill, RTgill-W1. Cells in confluent monolayers in 24-well tissue culture plates are exposed to water samples, such as surface waters or different kinds of effluents, or to chemicals for 24 h and, thereafter, cell viability is assessed based on fluorescent cell viability indicator dyes (see 4.1). Data are then expressed as a percentage of unexposed control and toxicity quantified based on the percentage of cell viability versus the percentage of effluent or the chemical concentration in response curves (see Clause 9).
- Standard38 pagesEnglish languagesale 15% off
- Standard40 pagesFrench languagesale 15% off
This document specifies a method for the detection and quantification of Legionella spp. and L. pneumophila using a quantitative polymerase chain reaction (qPCR). It specifies general methodological requirements, performance evaluation requirements, and quality control requirements. Technical details specified in this document are given for information only. Any other technical solutions complying with the performance requirements are suitable. NOTE 1 For performance requirements, see Clause 9. This document is intended to be applied in the bacteriological investigation of all types of water (hot or cold water, cooling tower water, etc.), unless the nature and/or content of suspended matter and/or accompanying flora interfere with the determination. This interference can result in an adverse effect on both the detection limit and the quantification limit. NOTE 2 For validation requirements, see 9.7. The results are expressed as the number of genome units of Legionella spp. and/or L. pneumophila per litre of sample. The method described in this document is applicable to all types of water. However, some additives, such as chemicals used for water treatment, can interfere with and/or affect the sensitivity of the method. The qPCR methods do not give any information about the physiological state of the Legionella.
- Technical specification47 pagesEnglish languagesale 15% off
- Technical specification53 pagesEnglish languagesale 10% offe-Library read for1 day
- Technical specification53 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a method for the quantitative determination of the sum of short-chain polychlorinated n-alkanes also known as short-chain polychlorinated paraffins (SCCPs) in the carbon bond range n-C10 to n-C13 inclusive, in mixtures with chlorine mass fractions ("contents") between 50 % and 67 %, including approximately 6 000 of approximately 8 000 congeners. This method is applicable to the determination of the sum of SCCPs in unfiltered surface water, ground water, drinking water and waste water using gas chromatography-mass spectrometry with electron capture negative ionization (GC-ECNI-MS). Depending on the capability of the GC-ECNI-MS instrument, the concentration range of the method is from 0,1 µg/l or lower to 10 µg/l. Depending on the waste water matrix, the lowest detectable concentration is estimated to be > 0,1 µg/l. The data of the interlaboratory trial concerning this method are given in Annex I.
- Standard42 pagesEnglish languagesale 15% off
- Standard41 pagesFrench languagesale 15% off
This document specifies a method for the determination of gross alpha and gross beta activity concentration for alpha- and beta-emitting radionuclides. Gross alpha and gross beta activity measurement is not intended to give an absolute determination of the activity concentration of all alpha and beta emitting radionuclides in a test sample, but is a screening analysis to ensure particular reference levels of specific alpha and beta emitters have not been exceeded. This type of determination is also known as gross alpha and gross beta index. Gross alpha and gross beta analysis is not expected to be as accurate nor as precise as specific radionuclide analysis after radiochemical separations. Maximum beta energies of approximately 0,1 MeV or higher are well measured. It is possible that low energy beta emitters can not detected (e.g. 3H, 55Fe, 241Pu) or can only be partially detected (e.g. 14C, 35S, 63Ni, 210Pb, 228Ra). The method covers non-volatile radionuclides, since some gaseous or volatile radionuclides (e.g. radon and radioiodine) can be lost during the source preparation. The method is applicable to test samples of drinking water, rainwater, surface and ground water as well as cooling water, industrial water, domestic and industrial wastewater after proper sampling, sample handling, and test sample preparation (filtration when necessary and taking into account the amount of dissolved material in the water). The method described in this document is applicable in the event of an emergency situation, because the results can be obtained in less than 1 h. Detection limits reached for gross alpha and gross beta are less than 10 Bq/l and 20 Bq/l respectively. The evaporation of 10 ml sample is carried out in 20 min followed by 10 min counting with window-proportional counters. It is the laboratory's responsibility to ensure the suitability of this test method for the water samples tested.
- Standard20 pagesEnglish languagesale 15% off
- Standard21 pagesFrench languagesale 15% off
This document specifies representative materials suitable for the determination of the performance characteristics, including uncertainty, during the initial assessment of a quantitative method, used in a laboratory, for physico-chemical water analysis. This document focuses on five main types of water: — waters intended for consumption (5.2); — natural waters (5.3); — waste waters (5.4); — marine waters (5.5); — recreational waters (5.6). NOTE Other more specific or less common types of water can be incorporated in any of the above types provided appropriate justifications. The characteristics of the standard matrix are compatible with the characteristics of the samples handled.
- Technical specification34 pagesEnglish languagesale 15% off
- Technical specification39 pagesEnglish languagesale 10% offe-Library read for1 day
- Technical specification39 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies the following semi-quantitative methods for the assessment of transparency of waters: a) measurement of visual range using the transparency testing tube (applicable to transparent and slightly cloudy water), see Clause 4; b) measurement of visual range in the upper water layers using the transparency testing disc (especially applicable to surface, bathing water, waste water and often used in marine monitoring), see 5.1; c) measurement of visibility by divers in a destined depth, see 5.2. NOTE The quantitative methods using optical turbidimeters or nephelometers are described in ISO 7027-1.
- Standard12 pagesEnglish languagesale 15% off
- Standard12 pagesFrench languagesale 15% off
- Standard1 pageEnglish languagesale 15% off
- Standard1 pageFrench languagesale 15% off
- Standard1 pageEnglish languagesale 15% off
- Standard1 pageFrench languagesale 15% off
- Standard1 pageEnglish languagesale 15% off
- Standard1 pageFrench languagesale 15% off
This document specifies a method for the determination of gross alpha and gross beta activity concentration for alpha- and beta-emitting radionuclides using liquid scintillation counting (LSC). The method is applicable to all types of waters with a dry residue of less than 5 g/l and when no correction for colour quenching is necessary. Gross alpha and gross beta activity measurement is not intended to give an absolute determination of the activity concentration of all alpha- and beta-emitting radionuclides in a test sample, but is a screening analysis to ensure particular reference levels of specific alpha and beta emitters have not been exceeded. This type of determination is also known as gross alpha and beta index. Gross alpha and beta analysis is not expected to be as accurate nor as precise as specific radionuclide analysis after radiochemical separations. The method covers non-volatile radionuclides below 80 °C, since some gaseous or volatile radionuclides (e.g. radon and radioiodine) can be lost during the source preparation. The method is applicable to test samples of drinking water, rain water, surface and ground water as well as cooling water, industrial water, domestic and industrial waste water after proper sampling and test sample preparation (filtration when necessary and taking into account the amount of dissolved material in the water). The method described in this document is applicable in the event of an emergency situation, because the results can be obtained in less than 4 h by directly measuring water test samples without any treatment. It is the laboratory's responsibility to ensure the suitability of this test method for the water samples tested.
- Standard19 pagesEnglish languagesale 15% off
- Standard19 pagesFrench languagesale 15% off
This document specifies a test method for the determination of gross beta activity concentration in non-saline waters. The method covers non-volatile radionuclides with maximum beta energies of approximately 0,3 MeV or higher. Measurement of low energy beta emitters (e.g. 3H, 228Ra, 210Pb, 14C, 35S and 241Pu) and some gaseous or volatile radionuclides (e.g. radon and radioiodine) might not be included in the gross beta quantification using the test method described in this document. This test method is applicable to the analysis of raw and drinking waters. The range of application depends on the amount of total soluble salts in the water and on the performance characteristics (background count rate and counting efficiency) of the counter used. It is the laboratory's responsibility to ensure the suitability of this method for the water samples tested.
- Standard12 pagesEnglish languagesale 15% off
- Standard18 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard13 pagesFrench languagesale 15% off
This document specifies continuous flow analysis (CFA) methods for the determination of orthophosphate in the mass concentration range from 0,01 mg/l to 1,00 mg/l P, and total phosphorus in the mass concentration range from 0,10 mg/l to 10,0 mg/l P. The method includes the digestion of organic phosphorus compounds and the hydrolysis of inorganic polyphosphate compounds, performed either manually, as described in ISO 6878 and in References [4], [5] and [7], or with an integrated ultraviolet (UV) digestion and hydrolysis unit. This document is applicable to various types of water, such as ground, drinking, surface, leachate and waste water. The range of application can be changed by varying the operating conditions. This method is also applicable to the analysis of seawater, but with changes in sensitivity by adapting the carrier and calibration solutions to the salinity of the samples. It is also applicable to analysis using 10 mm to 50 mm cuvettes depending on the desired range. For extreme sensitivity, 250 mm and 500 mm long way capillary flow cells (LCFCs) can be used. However, the method is not validated for these two uses. Changes in sensitivity and calibration solutions could be required. Annex A provides examples of a CFA system. Annex B gives performance data from interlaboratory trials. Annex C gives information of determining orthophosphate-P and total-P by CFA and tin(II) chloride reduction.
- Standard18 pagesEnglish languagesale 15% off
- Standard19 pagesFrench languagesale 15% off
This document specifies techniques for preparing poorly water-soluble organic compounds (i.e. liquid and solid compounds) with a solubility in water of less than approximately 100 mg/l and introducing them into test vessels for a subsequent biodegradability test in an aqueous medium using standard methods. The subsequent tests on biodegradability are primarily methods using the analysis of the released carbon dioxide described in ISO 9439 and the determination of the oxygen described in ISO 9408 and following the usual precautions for ISO 10707. Thus, one can notice that the methods measuring the removal of dissolved organic carbon (DOC) are not appropriate. This document does not specify the biodegradation test methods. It is restricted to describing techniques for introducing the test compounds into the test medium and to keeping them in a dispersed state[4]. These techniques are implemented while observing the experimental conditions described in the standardized methods for evaluating biodegradability. ISO 9439, based on CO2 evolution, is not suitable for testing volatile compounds. Some of the preparation methods described in this document might not be accepted by regulators for making conclusions on the ready biodegradability of tested compounds. Examples of biodegradability curves are given in Annex A.
- Standard15 pagesEnglish languagesale 15% off
- Standard15 pagesFrench languagesale 15% off
This document specifies a method for the determination of the dissolved fraction of selected active pharmaceutical ingredients and transformation products, as well as other organic substances (see Table 1) in drinking water, ground water, surface water and treated waste water. The lower application range of this method can vary depending on the sensitivity of the equipment used and the matrix of the sample. For most compounds to which this document applies, the range is ≥ 0,025 µg/l for drinking water, ground water and surface water, and ≥ 0,050 µg/l for treated waste water. The method can be used to determine further organic substances or in other types of water (e.g. process water) provided that accuracy has been tested and verified for each case, and that storage conditions of both samples and reference solutions have been validated. Table 1 shows the substances for which a determination was tested in accordance with the method. Table E.1 provides examples of the determination of other organic substances.
- Standard34 pagesEnglish languagesale 15% off
- Standard39 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a method for the determination of total organic carbon (TOC), dissolved organic carbon (DOC), total bound nitrogen (TNb) and dissolved bound nitrogen (DNb) in the form of free ammonia, ammonium, nitrite, nitrate and organic compounds capable of conversion to nitrogen oxides under the conditions described. The procedure is carried out instrumentally. NOTE Generally the method can be applied for the determination of total carbon (TC) and total inorganic carbon (TIC), see Annex A. The method is applicable to water samples (e.g. drinking water, raw water, ground water, surface water, sea water, waste water, leachates). The method allows a determination of TOC and DOC ≥ 1 mg/l and TNb and DNb ≥ 1 mg/l. The upper working range is restricted by instrument-dependent conditions (e.g. injection volume). Higher concentrations can be determined after appropriate dilution of the sample. For samples containing volatile organic compounds (e.g. industrial waste water), the difference method is used, see Annex A. Cyanide, cyanate and particles of elemental carbon (soot), when present in the sample, can be determined together with the organic carbon. The method is not appropriate for the determination of volatile, or purgeable, organic carbon under the conditions described by this method. Dissolved nitrogen gas (N2) is not determined.
- Standard18 pagesEnglish languagesale 15% off
- Standard23 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies requirements and gives guidance for performing the manipulations common to each culture technique for the microbiological examination of water, particularly the preparation of samples, culture media, and general apparatus and glassware, unless otherwise required in the specific standard. It also describes the various techniques available for detection and enumeration by culture and the criteria for determining which technique is appropriate. This document is mainly intended for examinations for bacteria, yeasts and moulds, but some aspects are also applicable to bacteriophages, viruses and parasites. It excludes techniques not based on culturing microorganisms, such as polymerase chain reaction (PCR) methods.
- Standard56 pagesEnglish languagesale 15% off
- Standard58 pagesFrench languagesale 15% off
This document specifies methods used to determine the concentration of plutonium and neptunium isotopes in water by inductively coupled plasma mass spectrometry (ICP-MS) (239Pu, 240Pu, 241Pu and 237Np). The concentrations obtained can be converted into activity concentrations of the different isotopes[9]. Due to its relatively short half-life and 238U isobaric interference, 238Pu can hardly be measured by this method. To quantify this isotope, other techniques can be used (ICP-MS with collision-reaction cell, ICP-MS/MS with collision-reaction cell or chemical separation). Alpha spectrometry measurement, as described in ISO 13167[10], is currently used[11]. This method is applicable to all types of water having a saline load less than 1 g·l−1. A dilution of the sample is possible to obtain a solution having a saline load and activity concentrations compatible with the preparation and the measurement assembly. A filtration at 0,45 μm is needed for determination of dissolved nuclides. Acidification and chemical separation of the sample are always needed. The limit of quantification depends on the chemical separation and the performance of the measurement device. This method covers the measurement of those isotopes in water in activity concentrations between around[12][13]: — 1 mBq·l−1 to 5 Bq·l−1 for 239Pu, 240Pu and 237Np; — 1 Bq·l−1 to 5 Bq·l−1 for 241Pu. In both cases, samples with higher activity concentrations than 5 Bq·l−1 can be measured if a dilution is performed before the chemical separation. It is possible to measure 241Pu following a pre-concentration step of at least 1 000.
- Standard13 pagesEnglish languagesale 15% off
- Standard19 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard19 pagesEnglish languagesale 10% offe-Library read for1 day
- Standard14 pagesFrench languagesale 15% off
This document specifies a method for the determination of the estrogenic potential of water and waste water by means of a reporter gene assay with a genetically modified yeast strain Arxula adeninivorans. This reporter gene assay is based on the activation of the human estrogen receptor alpha. Arxula adeninivorans is a highly robust and salt- and temperature-tolerant test organism and is especially suitable for the analysis of samples with high salinity (conductivity up to 70 mS/cm). The test organism can be cultivated in medium with sodium chloride content up to 20 %. This method is applicable to: — fresh water; — waste water; — sea water; — brackish water; — aqueous extracts and leachates; — eluates of sediments (fresh water); — pore water; — aqueous solutions of single substances or of chemical mixtures; — drinking water. The limit of quantification (LOQ) of this method for the direct analysis of water samples is between 1,5 ng/l and 3 ng/l 17β-estradiol equivalents (EEQ). The upper threshold of the dynamic range for this test is between 25 ng/l and 40 ng/l 17β-estradiol equivalents (EEQ). Samples showing estrogenic potencies above this threshold have to be diluted for a valid quantification. Extraction and pre-concentration of water samples can prove necessary, if their estrogenic potential is below the given LOQ. An international interlaboratory trial for the validation of this document has been carried out. The results are summarized in Annex F. NOTE Extraction and pre-concentration of water samples can prove necessary.
- Standard55 pagesEnglish languagesale 15% off
This document specifies a method for the determination of the estrogenic potential of water and waste water by means of a reporter gene assay utilizing stably transfected human cells. This reporter gene assay is based on the activation of the human estrogen receptor alpha. This method is applicable to: — fresh water; — waste water; — aqueous extracts and leachates; — eluates of sediments (fresh water); — pore water; — aqueous solutions of single substances or of chemical mixtures; — drinking water; — the limit of quantification (LOQ) of this method for the direct analysis of water samples is between 0,3 ng/l and 1 ng/l 17β-estradiol equivalents (EEQ) based on the results of the international interlaboratory trial (see Annex F). The upper working range was evaluated [based on the results of the international interlaboratory trial (see Table F.3)] up to a level of 75 ng EEQ/l. Samples showing estrogenic potencies above this threshold have to be diluted for a valid quantification. Extraction and pre concentration of water samples can prove necessary if their estrogenic potential is below the given LOQ.
- Standard40 pagesEnglish languagesale 15% off
This document specifies a method for the determination of the estrogenic potential of water and waste water by means of a reporter gene assay with genetically modified yeast strains Saccharomyces cerevisiae. This reporter gene assay is based on the activation of the human estrogen receptor alpha. This method is applicable to: — fresh water; — waste water; — aqueous extracts and leachates; — eluates of sediments (fresh water); — pore water; — aqueous solutions of single substances or of chemical mixtures; — drinking water. The limit of quantification (LOQ) of this method for the direct analysis of water samples is between 8 ng/l and 15 ng/l 17β-estradiol equivalents (EEQ) based on the results of the international interlaboratory trial (see Annex F). The upper threshold of the dynamic range for this test is between 120 ng/l and 160 ng/l 17β-estradiol equivalents (EEQ). Samples showing estrogenic potencies above this threshold have to be diluted for a valid quantification. Extraction and pre-concentration of water samples can prove necessary, if their estrogenic potential is below the given LOQ.
- Standard51 pagesEnglish languagesale 15% off
This document specifies a method for the enumeration of Pseudomonas aeruginosa in water. The method is based on the growth of target organisms in a liquid medium and calculation of the most probable number (MPN) of organisms by reference to MPN tables. This document is applicable to a range of types of water. For example, hospital waters, drinking water and non‑carbonated bottled waters intended for human consumption, groundwater, swimming pool and spa pool waters including those containing high background counts of heterotrophic bacteria. This document does not apply to carbonated bottled waters, flavoured bottle waters, cooling tower waters or marine waters, for which the method has not been validated. These waters are, therefore, outside the scope of this document. Laboratories can employ the method presented in this document for these matrices by undertaking appropriate validation of performance of this method prior to use. The test is based on a bacterial enzyme detection technology that signals the presence of P. aeruginosa through the hydrolysis of a 7‑amino‑4‑methylcoumarin aminopeptidase substrate present in a special reagent. P. aeruginosa cells rapidly grow and reproduce using the rich supply of amino acids, vitamins and other nutrients present in the reagent. Actively growing strains of P. aeruginosa have an enzyme that cleaves the 7‑amido‑coumarin aminopeptidase substrate releasing a product which fluoresces under ultraviolet (UV) light. The test described in this document provides a confirmed result within 24 h with no requirement for further confirmation of positive wells.
- Standard122 pagesEnglish languagesale 15% off
- Standard127 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies the measurement method for the determination of total activity concentration of uranium isotopes in non-saline waters by extraction and liquid scintillation counting. This method covers the measurement of soluble uranium isotopes in water in activity concentrations between approximately 2·10−3 Bq/kg and 10 Bq/kg when analysing a 1 l test sample volume with a 60 000 s counting time with a typical alpha LSC instrument. The ratio 234U/238U can also be determined. This method has not been tested for the measurement of other uranium isotopes.
- Standard14 pagesEnglish languagesale 15% off
- Standard15 pagesFrench languagesale 15% off
This document specifies a method for the quantitative determination of selected cyclic volatile methylsiloxanes (cVMS) in non-filtered water samples by purge and trap extraction with isotope dilution gas chromatography-mass spectrometry (GC-MS). This method is applicable to the determination of individual cVMS, including: — octamethylcyclotetrasiloxane (D4); — decamethylcyclopentasiloxane (D5); — dodecamethylcyclohexasiloxane (D6); in surface water, ground water, and wastewater. It can be applied to samples within the concentration range of 0,01 µg/l to 1 µg/l of each of the target compounds. Depending on the matrix, the method may also be applicable to higher concentrations ranging from 1 µg/l to 100 µg/l after suitable dilution of the sample or reduction in sample size.
- Standard23 pagesEnglish languagesale 15% off