IEC 63002:2025 defines common charging interoperability guidelines for power sources (external power supplies (EPSs) and other Sources) used with computing and consumer electronics devices that implement IEC 62680‑1‑3 (USB Type-C® Cable and Connector Specification). This document defines normative requirements for an EPS to ensure interoperability; in particular, it specifies the data communicated from a power source to a device and certain safety elements of the EPS, cable, and device. While the requirements focus of this document is on the EPS and the behaviour at its USB Type-C connector interface, it is also important to comprehend cable assembly and device capabilities and behaviours in order to assure end-to-end charging interoperability. This document does not apply to all design aspects of an EPS. This document does not specify regulatory compliance requirements for aspects such as product safety, EMC, or energy efficiency. This document provides recommendations for the behaviour of a device when used with a power source compliant with this document. It specifies the minimum hardware specification for an EPS implementing IEC 62680‑1‑3. This document also specifies the data objects used by a charging system utilizing IEC 62680‑1‑2 to understand the identity, design and performance characteristics, and operating status of an external power supply. IEC 62680‑1‑2 focuses on power delivery applications ranging to 240 W for a variety of computing and consumer electronics devices including notebook computers, tablets, smartphones, small form-factor desktops, monitor displays and other multimedia devices. This document relies on established mechanical and electrical specifications, and communication protocols specified by IEC 62680‑1‑2 and IEC 62680‑1‑3. These specifications support methods for establishing the best performing interoperability between untested combinations of EPS and devices with the aim of improving consumer satisfaction. Information describing the USB charging interoperability model, overview of USB Type-C and USB Power Delivery specifications, and factors for charging performance are also provided to support implementation of this document. This third edition cancels and replaces the second edition published in 2021. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) power range is increased to 240 W; b) AVS mode is introduced; c) Annex A updates issues of arbitrary combinations of AC adapter and device; d) Annex B describes new safeguards for EPR mode; e) Annex C and Annex D are updated.

  • Draft
    37 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61326-2-6:2025 applies to the BASIC SAFETY and ESSENTIAL PERFORMANCE of IN VITRO DIAGNOSTIC MEDICAL ELECTRICAL EQUIPMENT (IVD MEE). This part of IEC 61326 applies to the BASIC SAFETY and ESSENTIAL PERFORMANCE of IVD MEE in the presence of electromagnetic disturbances and to electromagnetic disturbances emitted by IVD MEE. BASIC SAFETY with regard to electromagnetic disturbances is applicable to all IVD MEE. NOTE 1 Performance with respect to electromagnetic disturbances other than ESSENTIAL PERFORMANCE is the subject of IEC 61326-1:2020 NOTE 2 IT equipment can be a part of an IVD MEE, if it is required to maintain BASIC SAFETY or ESSENTIAL PERFORMANCE. This edition includes the following significant technical changes with respect to the previous edition: - Update of the document with respect to test levels and documentation.

  • Draft
    34 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62508: 2025 provides guidance on current knowledge and practice concerning dependability in an operational environment, in terms of the humans, teams and organizations involved in conducting the work. It is part of a suite of IEC standards that are intended to address the dependability of both the technical and human elements of equipment and organizations. This document describes the human elements of a typical operational system, and the importance of those elements to overall dependability. It also describes the means of assessing how well these elements are functioning, and general concepts on how the reliability of humans can be improved. These elements typically include the individual workers, the groups or teams into which they are organized, the interfaces between humans and technical systems, and the overall organization. The following guidance is applicable to any industry that depends on human-systems interactions involving the technology, software, or systems of work required to support the production and safety objectives of an organization. This document primarily addresses complex technical systems, but some parts are also applicable to the manufacturing of industrial and consumer products. Principles for design of the human-machine interface (usability) are described, and further information can be found in the technical literature and in relevant product standards. Although this document does not specifically cover worker health or safety, the application of this document can raise related issues, particularly in process safety, which is closely associated with system reliability. This second edition cancels and replaces the first edition published in 2010. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) The emphasis on user-centred design in the previous edition was reduced in favour of a greater emphasis on human dependability in an existing operational environment. b) The emphasis on human error and error-rate determination methods was reduced in favour of a greater emphasis on means of providing organizational support for the workforce in their execution of required tasks. c) Where appropriate, discussions of human factors in an operational environment were aligned with current theory, terminology and practice.

  • Draft
    51 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61643-41:2025 is applicable to devices for surge protection against indirect and direct effects of lightning or other transient overvoltages. These devices are intended to be connected to DC power circuits and equipment rated up to 1 500 V DC. Performance and safety requirements, tests and ratings are specified in this document. These devices contain at least one nonlinear component and are intended to limit surge voltages and divert surge currents. The test requirements provided by this document are based on the assumption that the SPD is connected to a DC power circuit fed by a power source providing a linear voltage-current characteristic. When the SPD is to be connected to a different kind of source, careful consideration is required. This mainly applies with regard to system and fault conditions to be expected in such a system (e.g. expected short circuit current, TOV-stresses). This document can apply for railway applications, when related product standards do not exist for that area or for certain applications. Based on a risk assessment it might not be necessary to apply all requirements of this document to SPDs designed for specific power applications only, e.g. circuits with a low power capability, circuits supplied by nonlinear sources, circuits with protective separation from the utility supply. NOTE 1 More information on risk assessment is provided in IEC Guide 116. SPDs for PV applications are not covered by this document. NOTE 2 Such SPDs for PV applications are covered by IEC 61643-31. NOTE 3 Other exclusions based on national regulations are possible. This International Standard is to be used in conjunction with IEC 61643-01.

  • Draft
    33 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60749-34-1:2025 describes a test method that is used to determine the capability of power semiconductor modules to withstand thermal and mechanical stress resulting from cycling the power dissipation of the internal semiconductors and the internal connectors. It is based on IEC 60749-34, but is developed specifically for power semiconductor module products, including insulated-gate bipolar transistor (IGBT), metal-oxide-semiconductor field-effect transistor (MOSFET), diode and thyristor. If there is a customer request for an individual use or an application specific guideline (for example ECPE Guideline AQG 324), details of the test method can be based on these requirements if they deviate from the content of this document. This test caused wear-out and is considered destructive.

  • Standard
    32 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of IEC 61340 provides electrical and mechanical test methods and performance limits for evaluation, acceptance and periodic verification testing of wrist straps. NOTE All dimensions are nominal except where indicated. This standard is intended for testing wrist straps and wrist strap systems used for the grounding of personnel engaged in working with ESD sensitive assemblies and devices. It does not address constant monitoring systems.

  • Standard
    24 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The particular requirements of this part of IEC 60364 apply to: - fixed equipment within conducting locations with restricted movement; and - supplies to equipment used within conducting locations with restricted movement.

  • Standardization document
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62074-1: 2025 applies to fibre optic wavelength division multiplexing (WDM) devices. These have all of the following general features: - they are passive, in that they contain no optoelectronic or other transducing elements; however they can use temperature control only to stabilize the device characteristics; they exclude any optical switching functions; - they have three or more ports for either the entry or exit of optical power, or both, and share optical power among these ports in a predetermined fashion depending on the wavelength; - the ports are optical fibres, or optical fibre connectors. This document establishes uniform requirements for the following: - optical, mechanical and environmental properties. This third edition cancels and replaces the second edition published in 2014. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) harmonization of terms and definitions with IEC TS 62627-09; b) simplified classification, documentation and standardization system in Clause 4, and moving interface style to Annex H.

  • Standard
    55 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60068‑2-88:2025 establishes test methods for the resistance of electronic and electromechanical components, unpopulated circuit boards and assemblies to liquid cleaning media and cleaning processes, which are agreed between user and supplier for applications, where cleaning is required. These tests are not applicable to components, unpopulated circuit boards and assemblies, which are not intended to be subjected to cleaning processes. Tests XD1 and XD2 primarily are intended for qualification testing of components and unpopulated circuit boards suitable for cleaning processes, but can be adopted as well to testing of material compatibility and specific cleaning media used in manufacturing processes of components and unpopulated circuit boards. Test XD3 is intended to determine the resistance of electronic assemblies suitable for cleaning processes to the various cleaning processes to which they are exposed during manufacturing, including the effects of assembly and soldering processes.

  • Standard
    34 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60794-1-124:2025 contains test procedures, referred to as Method E24, for evaluating the behaviour of microduct cabling (microduct optical cable, fibre unit or hybrid cable etc.) when blown into a microduct or protected microduct. This document describes two blowing track layouts: Method A consists of two mandrels and two long straight sections in between (same curvature). Method B consists of 3 mandrels. The middle mandrel forces the cable to experience both left- and right-hand bending, which is a feature of any realistic blowing route. In addition, this document describes an optional procedure to check the capability of blowing out an installed cable. This first edition cancels and replaces Method E24 of the first edition of IEC 60794‑1‑21 published in 2015 and Amendment 1:2020. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) addition of a blowing route (see Figure 2) which includes a change in the direction of curvature. This was achieved by introducing a third mandrel; b) addition of Annex A (Figure A.1 which shows a practical implementation of the blowing route; c) addition of Annex B which describes the so-called Crash Test; d) addition of Annex C which describes a cable blowing out procedure.

  • Standard
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 63522-29:2025 This part is used for testing the appropriate severities and conditions for measurements and tests designed to assess the ability of DUTs to perform under expected conditions of transportation, storage and all aspects of operational use. It specifies how to ensure that the capacitances formed by parts of a relay do not exceed specified limits.

  • Standard
    10 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60974-4:2025 specifies test procedures for periodic inspection and, after repair, to ensure electrical safety. These test procedures are also applicable for maintenance. This document is applicable to power sources for arc welding and allied processes designed in accordance with IEC 60974-1 or IEC 60974-6. Stand-alone ancillary equipment designed in accordance with other parts of IEC 60974 can be tested in accordance with relevant requirements of this part of IEC 60974. This document includes requirements for battery-powered arc welding power sources, which are given in Annex D. NOTE 1 The welding power source can be tested with any ancillary equipment fitted that can affect the test results. This document is not applicable to testing of new power sources or engine-driven power sources. NOTE 2 For a power source not built in accordance with IEC 60974-1, see Annex C. This fourth edition cancels and replaces the third edition published in 2016. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: - examples for the measurements in respect of EN 50699, - consideration of measuring equipment in respect of IEC 61557 series, - more determinations of no-load voltage for welding equipment built according to IEC 60974-1:1998 and IEC 60974-1:1998/AMD1:2000 or earlier, - new Annex D providing additional information to be considered when testing battery-powered welding power sources and connected chargers.

  • Standard
    27 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 63522-2:2025 This part is used for testing all kinds of electrical relays and for evaluating their ability to perform under expected conditions of transportation, storage and all aspects of operational use. This document defines a standard test method to ensure that particular mechanical properties (such as contact force, armature travel, contact gaps) and weight, are within specified limits.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This standard deals with the safety of appliances for generation of directly inhalable aerosols, their rated voltage being not more than 250 V for single-phase appliances, and other appliances including direct current (DC) supplied appliances and battery-operated appliances.

  • Standard
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 63366:2025 defines product category rules (PCR) for electrical and electronic products and systems (EEPS) to develop Type III environmental declarations for electrical and electronic products and systems (EEPS). It specifies the process and requirements on how to conduct life cycle assessment (LCA) in the context of environmental declarations. This document provides common rules for: a) LCA, including the requirements for developing default scenarios; b) the LCA report; c) the development of PSR. This document provides further guidelines for environmental declarations. The LCA principles and framework are based on ISO 14040 and ISO 14044, and are therefore out of scope of this document. PCR is complemented by additional product-specific rules (PSR), which further define, for example, functional units and default scenarios in the product-specific context. Therefore, this document also provides guidance on how to develop PSR in corresponding technical committees. This document has the status of a horizontal publication in accordance with IEC Guide 108. In accordance with IEC Guide 108, this generic essential horizontal standard is intended for use by product committees as a starting point in preparing PSR standards. Specific requirements developed by product committees in PSR standard take precedence over requirements in this standard. When there is no PSR available in a product committee, this generic essential horizontal standard could be applied by LCA practitioners with recorded complementary specifications.

  • Standard
    60 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Standard deals with the safety of appliances for generation of directly inhalable aerosols, their rated voltage being not more than 250 V for single-phase appliances, and other appliances including direct current (DC) supplied appliances and battery-operated appliances.

  • Amendment
    4 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies requirements for protective provisions against the effects of stray currents, which result from the operation of DC electric traction power supply systems. As several decades' experience has not shown evident corrosion effects from AC electric traction power supply systems, this document only deals with stray currents flowing from a DC electric traction power supply system. This document applies to all metallic fixed installations which form part of the traction system, and also to any other metallic components located in any position in the earth, which can carry stray currents resulting from the operation of the railway system. This document applies to all new DC lines and to all major revisions to existing DC lines. The principles can also be applied to existing electrified transportation systems where it is necessary to consider the effects of stray currents. This document does not specify working rules for maintenance but provides design requirements to allow maintenance. The range of application includes: a) railways, b) guided mass transport systems such as: 1) tramways, 2) elevated and underground railways, 3) mountain railways, 4) magnetically levitated systems, which use a contact line system, and 5) trolleybus systems, c) material transportation systems. This document does not apply to a) electric traction power supply systems in underground mines, b) cranes, transportable platforms and similar transportation equipment on rails, temporary structures (e.g. exhibition structures) in so far as these are not supplied directly from the contact line system and are not endangered by the electric traction power supply system, c) suspended cable cars, d) funicular railways.

  • Amendment
    10 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies requirements for the protective provisions relating to electrical safety in fixed installations associated with AC and/or DC traction systems and to any installations that can be endangered by the electric traction power supply system. This also includes requirements applicable to vehicles on electrified lines. It also applies to all aspects of fixed installations which are necessary to ensure electrical safety during maintenance work within electric traction power supply systems. This document applies to new electric traction power supply systems and major revisions to electric traction power supply systems for: a) railways; b) guided mass transport systems such as 1) tramways, 2) elevated and underground railways, 3) mountain railways, 4) trolleybus systems, 5) electric traction power supply systems for road vehicles, which use an overhead contact line system, and 6) magnetically levitated systems, which use a contact line system; c) material transportation systems. This document does not apply to: a) electric traction power supply systems in underground mines, b) cranes, transportable platforms and similar transportation equipment on rails, temporary structures (e.g. exhibition structures) in so far as these are not supplied directly or via transformers from the contact line system and are not endangered by the electric traction power supply system, c) suspended cable cars, d) funicular railways, e) existing vehicles. This document does not specify working rules for maintenance. The requirements within this document related to protection against electric shock are applicable to persons only.

  • Amendment
    13 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60270:2025 is applicable to the charge-based measurement of partial discharges which occur in electrical apparatus, components or systems when tested with alternating voltages (AC) up to 500 Hz or with direct voltage (DC). This document: – defines the terms used; – defines the quantities to be measured; – describes the measurement frequencies as well as the test and measuring circuits which may be used; – defines analogue and digital measuring methods required for common applications; – specifies methods for calibration and requirements of instruments used for calibration; – gives guidance on test procedures; – gives some assistance concerning the discrimination of partial discharges from external interference. The provisions of this document are used in the drafting of specifications relating to partial discharge measurements for specific power apparatus. It deals with electrical measurements of impulsive (short-duration) partial discharges, but reference is also made to non-electrical methods primarily used for partial discharge location (see Annex F). Diagnosis of the behaviour of specific power apparatus can be aided by digital processing of partial discharge data (see Annex E) and also by non-electrical methods that are primarily used for partial discharge location (see Annex F). This document is primarily concerned with electrical measurement of partial discharge in terms of apparent charge for specific power apparatus made during tests with alternating voltage, but specific problems which arise when tests are made with direct voltage are considered in Clause 11. The terminology, definitions, basic test circuits and procedures often also apply to tests at other frequencies, but special test procedures and measuring system characteristics which are not considered in this document may be required. For measurements at higher frequency ranges, see IEC TS 62478. Annex A provides normative requirements for performance tests on calibrators. This fourth edition cancels and replaces the third edition published in 2000, and Amendment 1:2015. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) Title modified. b) Use with alternating voltages up to 500 Hz or with direct voltage. c) Clear focus on charge-based partial discharge measurements. d) Streamlined performance checks for partial discharge measurement system components. e) Improved normative Annex A for performance tests on calibrators. f) Revised and new informative Annexes. In a future revision, this document will seek horizontal publication status in accordance with IEC Guide 108.

  • Standard
    74 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document is for shock detectors installed in buildings to detect the shock or series of shocks due to a forcible attack through a physical barrier (for example doors or windows). It specifies four security grades 1-4 (in accordance with EN 50131-1), specific or non-specific wired or wire-free shock detectors and uses environmental Classes I-IV (in accordance with EN 50130-5). This document does not include requirements for detectors intended to detect penetration attacks on safes and vaults for example by drilling, cutting or thermal lance. This document does not include requirements for shock detectors intended for use outdoors. A shock detector needs to fulfil all the requirements of the specified grade. Functions additional to the mandatory functions specified in this document can be included in the shock detector, providing they do not adversely influence the correct operation of the mandatory functions. This document does not deal with requirements for compliance with regulatory directives, such as EMC-directive, low-voltage directive, etc., except that it specifies the equipment operating conditions for EMC- susceptibility testing as required by EN 50130-4. This document does not apply to system interconnections.

  • Standard
    42 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60034-15: 2025 relates to AC machines incorporating form-wound stator coils that are intended to be connected to a standard grid supply. It specifies the test procedures and voltages to be applied to sample coils, as well as routine tests performed on coils mounted in the stator core. The purpose of this document is to show the ability of a stator winding to resist voltage transients originating from the grid the machine is connected to. Annex A gives further information. The stator windings and coils for converter-fed machines are excluded from the scope of this document. This document is not intended for use on complete windings since it is difficult to determine when the turn insulation has failed due to the test. This fourth edition cancels and replaces the third edition published in 2009. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: - harmonize the standard test levels with IEEE Std 522TM [2]; - introduce an enhanced surge impulse voltage withstand level; - introduce the option to test up to the point of electrical breakdown; - improve the evaluation of the recorded impulses in case of oscillations and overshoot; - indicate that converter fed machines are excluded from the scope; - provide guidance on the execution of impulse tests.

  • Draft
    39 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of IEC 60684 gives the requirements for two types of heat-shrinkable, polyolefin sleeving, semiconductive, with a nominal shrink ratio of 3:1. This sleeving has been found suitable up to temperatures of 100 °C. - Type A: Thin wall Internal diameter up to 195,0 mm typically - Type B: Medium wall Internal diameter up to 120,0 mm typically This sleeving is normally supplied in the colour black. Since these types of sleevings cover a significantly large range of sizes and wall thicknesses, Annex A in this standard provides guidance to the range of sizes available. The actual size will be agreed between the user and the supplier. Materials which conform to this specification meet established levels of performance. However, the selection of a material by a user for a specific application need to be based on the actual requirements necessary for adequate performance in that application and not based on this specification alone. This sleeving is designed to be used in MV cable accessories and as such electrical performance will be proven as part of the assembly. Examples of this are described in HD 629 and IEC 60502 (all parts)

  • Standard
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies requirements for the protective provisions relating to electrical safety in fixed installations, when it is reasonably likely that hazardous voltages or currents will arise for people or equipment, as a result of the mutual interaction of AC and DC electric power supply traction systems. It also applies to all aspects of fixed installations that are necessary to ensure electrical safety during maintenance work within electric power supply traction systems. The mutual interaction can be of any of the following kinds: - parallel running of AC and DC electric traction power supply systems; - crossing of AC and DC electric traction power supply systems; - shared use of tracks, buildings or other structures; - system separation sections between AC and DC electric traction power supply systems. The scope is limited to galvanic, inductive and capacitive coupling of the fundamental frequency voltages and currents and their superposition. This document applies to all new lines, extensions and to all major revisions to existing lines for the following electric traction power supply systems: a) railways; b) guided mass transport systems such as: 1) tramways, 2) elevated and underground railways, 3) mountain railways, 4) magnetically levitated systems, which use a contact line system, 5) trolleybus systems, and 6) electric traction power supply systems for road vehicles, which use an overhead contact line system; c) material transportation systems. The document does not apply to: a) electric traction power supply systems in underground mines; b) cranes, transportable platforms and similar transportation equipment on rails, temporary structures (e.g. exhibition structures) in so far as these are not supplied directly or via transformers from the contact line system and are not endangered by the electric traction power supply system for railways; c) suspended cable cars; d) funicular railways; e) procedures or rules for maintenance. The rules given in this document can also be applied to mutual interaction with non-electrified tracks, if hazardous voltages or currents can arise from AC or DC electric traction power supply systems.

  • Amendment
    4 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Amendment
    4 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document is applicable to lead-acid batteries with a nominal voltage of 12 V, used primarily as power source for the starting of internal combustion engines (ICE), lighting and also for auxiliary equipment of ICE vehicles. These batteries are commonly called "starter batteries". Batteries with a nominal voltage of 6 V are also included in the scope of this document. All referenced voltages need to be divided by two for 6 V batteries. The batteries under the scope of this document are used for micro-cycle applications in vehicles which can also be called Start-Stop (or Stop-Start, idling-stop system, micro-hybrid or idle-stop-and-go) applications. In cars with this special capability, the internal combustion engine is switched off during a complete vehicle stop, during idling with low speed or during idling without the need of supporting the vehicle movement by the internal combustion engine. During the phases in which the engine is switched off, most of the electric and electronic components of the car need to be supplied by the battery without support of the alternator. In addition, in most cases an additional regenerative braking (recuperation or regeneration of braking energy) function is installed. The batteries under these applications are stressed in a completely different way compared to classical starter batteries. Aside of these additional properties, those batteries need to crank the ICE and support the lighting and also auxiliary functions in a standard operating mode with support of the alternator when the internal combustion engine is switched on. All batteries under this scope need to fulfil basic functions, which are tested under application of EN 50342 1:2015. This document is applicable to batteries for the following purposes: - Lead-acid batteries of the dimensions according to EN 50342 2 for vehicles with the capability to automatically switch off the ICE during vehicle operation either in standstill or moving (“Start-Stop”); - Lead-acid batteries of the dimensions according to EN 50342 2 for vehicles with Start-Stop applications with the capability to recover braking energy or energy from other sources. This document is not applicable to batteries for purposes other than mentioned above, but it is applicable to EFB delivered in dry-charged conditions according to EN 50342 1:2015, Clause 7. NOTE The applicability of this document also for batteries according to EN 50342 4 is under consideration.

  • Standard
    29 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61554:2025 defines a system of dimensions for panel mounting of equipment. It is applicable to electrical and electrically operated indicating, recording and control instruments. The purpose of this document is to establish dimensional interchangeability between instruments made by different manufacturers.

  • Draft
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60350-2:2025 defines methods for measuring the performance of electric hobs for household use. Appliances covered by this document can be built-in or designed to be placed on a work surface. The hob can be part of a cooking range and it can have an integrated cooking fume extractor, i.e. a hob with down-draft system . This document defines the main performance characteristics of hobs which are of interest to the user and specifies methods for measuring these characteristics. This document does not specify a classification or ranking for performance. Some of the tests which are specified in this document are not considered to be reproducible since the results can vary between laboratories. They are therefore intended for comparative testing purposes only. This document does not deal with safety requirements (IEC 60335-2-6 and IEC 60335-2-9). This document is also applicable for portable appliances with similar functionality. This third edition cancels and replaces the second edition published in 2017 and Amendment 1:2021. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) new definitions for portable hob, hob with down-draft system and low power modes are amended in Clause 3; b) revision of Clause 5: Tolerance for water amount added, requirements for dimension measurement added; c) removal of 6.4 Level of solid hotplates; d) revision of Clause 7 in order to improve the application of the smoothing average; e) revision of Table 1 and Table 3 in order to amend missing tolerances: f) Ry replaced by L* in Clause 9 and reference to IEC TS 63350; g) requirements for digital assessment in 9.1.6 removed as they are covered in IEC TS 63350; h) revision of Clause 12 Power measurement of low power modes; i) removal of Clause 13 Spillage capacity of hobs; j) Annex G Low-power mode measurements added; k) removal of Annex D 'Shade chart' as the shade charts are specified in IEC TS 63350; l) removal of Annex E 'Data and calculation sheet' as the calculation sheet is substituted by a supporting document located on the IEC web site; m) update of former Annex F 'Addresses of suppliers' by removal of former Clause F.6, F.7 and F.8 and by adding a further possible supplier in new D.4

  • Standard
    81 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60068-2-83:2025 is available as IEC 60068-2-83:2025 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.IEC 60068-2-83:2025 provides methods for comparative investigation of the wettability of the metallic terminations or metallized terminations of SMDs with solder paste. Data obtained by these methods are not intended to be used as absolute quantitative data for pass/fail purposes. NOTE Different solderability test methods for SMD are described in IEC 60068‑2‑58 and IEC 60068‑2‑69. IEC 60068‑2‑58 specifies visual evaluation using solder bath and reflow method, IEC 60068‑2‑69 specifies wetting balance evaluation using solder bath and solder globule method. This edition includes the following significant technical change with respect to the previous edition: a) revise Clause 5 to align with that in IEC 60068‑2‑20:2021.

  • Standard
    40 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard deals with the safety of sealed (hermetic and semi-hermetic type) motor-compressors, their protection and control systems, if any, which are intended for use in equipment for household and similar purposes and which conform with the standards applicable to such equipment. It applies to motor-compressors tested separately, under the most severe conditions that may be expected to occur in normal use, their rated voltage being not more than 250 V for single-phase motor-compressors and 480 V for other motor-compressors

  • Amendment
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60730-2-8:2025 applies to electrically operated water valves • for use in, on, or in association with equipment for household appliance and similar use; NOTE 1 Throughout this document, the word "equipment" means "appliance and equipment" and "control" means "electrically operated water valve". EXAMPLE 1 Electrically operated water valves for appliances within the scope of IEC 60335. • for building automation within the scope of ISO 16484 series and IEC 63044 series (HBES/BACS); EXAMPLE 2 Independently mounted water valves, controls in smart grid systems and controls for building automation systems within the scope of ISO 16484-2. • for equipment that is used by the public, such as equipment intended to be used in shops, offices, hospitals, farms and commercial and industrial applications; EXAMPLE 3 Electrically operated water valves for commercial catering, heating and air-conditioning equipment. • that are smart enabled electrically operated water valves; EXAMPLE 4 Smart grid control, remote interfaces and controls of energy-consuming equipment including computer or smart phone. • that are AC or DC powered electrically operated water valves with a rated voltage not exceeding 690 V AC or 600 V DC; • used in, on, or in association with equipment that uses electricity, gas, oil, solid fuel, solar thermal energy, etc., or a combination thereof; • utilized as part of a control system or controls which are mechanically integral with multifunctional controls having non-electrical outputs; • using NTC or PTC thermistors and to discrete thermistors, requirements for which are contained in Annex J of Part 1; • responsive to or controlling such characteristics as temperature, pressure, passage of time, humidity, light, electrostatic effects, flow, or liquid level, current, voltage, acceleration, or combinations thereof; • in which actuators and valve bodies are designed to be fitted to each other. • as well as manual controls when such are electrically or mechanically integral with automatic controls. NOTE 2 Requirements for manually actuated mechanical switches not forming part of an automatic control are contained in IEC 61058-1-1. This document applies to - the inherent safety of electrically operated water valves, and - functional safety of electrically operated water valves and safety related systems, - controls where the performance (for example the effect of EMC phenomena) of the product can impair the overall safety and performance of the controlled system, - the operating values, operating times, and operating sequences where such are associated with equipment safety. This document specifies the requirements for construction, operation and testing of electrically operated water valves used in, on, or in association with an equipment. This document contains requirements for electrical features of water valves and requirements for mechanical features of valves that affect their intended operation. This document does not • apply to electrically operated water valves intended exclusively for industrial process applications unless explicitly mentioned in the relevant Part 2 or the equipment standard. However, this document can be applied to evaluate automatic electrical controls intended specifically for industrial applications in cases where no relevant safety standard exists. • apply to - electrically operated water valves of nomi

  • Standard
    52 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60364-8-82:2022 provides requirements and recommendations that apply to low-voltage electrical installations connected or not to a distribution network able to operate: – with local power supplies, and/or – with local storage units, and that monitors and controls the energy from the locally connected sources delivering it to: – current-using equipment, and/or – local storage units, and/or – distribution networks. Such electrical installations are designated as prosumer's electrical installations (PEIs). These requirements and recommendations apply to new installations and modifications of existing installations. This document also provides requirements and recommendations for the safe, efficient and correct behaviour of these installations when integrated into a smart grid. Information related to grid interaction to ensure the stability of the electrical system for grid connected PEIs is given in Annex B. This document covers the requirements related to stability of islanded and stand-alone PEIs. This first edition cancels and replaces IEC 60364-8-2 published in 2018. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to IEC 60364­8­2:2018: a) the vocabulary and concepts have been aligned as much as possible with those used by TC 8 and SC 8B, taking notably into account the IEC 62898 and IEC 62786 series, still respecting the installers mindset (installers being the first users of the IEC 60364 series and being used to only refer to the IEC 60364 series); b) the type of system earthing and the change of type of system earthing (sequencing) when there is a change of mode of the prosuming installation, have been clarified; c) the conditions of connection and disconnection from the DSO network have also been described, both from the safety point of view and the proper functioning point of view; d) additional requirements have been introduced; e) the figures have been updated; f) a new normative Annex D on single dwelling or similar application islandable PEIs has been added; g) the numbering has also been reviewed to follow the updated numbering system of the IEC 60364 series, in line with the IEC Directives and compatible with Parts 7.

  • Standardization document
    72 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61847:2025 specifies: – the essential non-thermal output characteristics of ultrasonic surgical units; – methods of measurement of these output characteristics; – those characteristics to be declared by the manufacturers of such equipment. This document is applicable to equipment which meets the criteria of a), b) and c) below: a) ultrasonic surgical systems operating in the frequency range 20 kHz to 120 kHz; and b) ultrasonic surgical systems whose use is the fragmentation, emulsification, debridement, or cutting of human tissue, whether or not those effects are delivered in conjunction with tissue removal or coagulation; and c) ultrasonic surgical systems in which an acoustic wave is conducted by means of a specifically designed wave guide to deliver energy to the surgical site. This document is not applicable to: – lithotripsy equipment which uses extracorporeally induced pressure pulses, focused through liquid conducting media and the soft tissues of the body; – surgical systems used as part of the therapeutic process (hyperthermia systems); – surgical systems whose mechanism of action is through frictional heat generated by tissue in contact with the wave guide, e.g. clamp coagulators or clamping vibrational cutters; – surgical systems whose mechanism of action is through focused ultrasound for either thermal degradation (high intensity focused ultrasound – HIFU or HITU) or cavitation erosion (Histotripsy) of tissue remote from the ultrasound transducer; – surgical systems whose mechanism of action is through erosion of hard tissues in contact with the applicator tip, e.g. bone cutting or drilling. This document does not deal with the effectiveness or safety of ultrasonic surgical systems. This document does not deal with airborne noise from the systems, which can affect operators and patients. IEC 61847:2025 cancels and replaces the first edition published in 1998. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) The upper frequency covered by this document has been raised from 60 kHz to 120 kHz. b) The hydrophone method of measuring ultrasound power is now normative. Because of difficulties in using the calorimetry method of measuring ultrasound power, it is no longer the primary approach. c) It is recognised that some systems can have more than one mode of vibration under user control, and the measurement techniques and declarations have been updated to address this. d) The high-frequency component, which relates to cavitation developed at the applicator tip and the vibration amplitude at which cavitation occurs is addressed. e) Specific requirements for measurement at excursion levels where no cavitation is present, and extrapolation to maximum excursion level(s) are described. f) Guidance is provided to adapt the methodology described to more complex designs and vibration patterns, excursion directions, and their output characteristics. g) Guidance is provided with respect to measurement tank arrangements for different types of systems. h) The list of ultrasound methods and systems not covered by this document was extended to incorporate recent developments. i) Definitions for cavitation related terms were added. j) Requirements for the measurement of directivity characteristics of the applicator tip were changed. k) Annex A was modified and Figure A.1 wa

  • Standard
    38 pages
    English language
    sale 10% off
    e-Library read for
    1 day

2022-05-30: Fragments 1 to 7 circulated to parallel CDV separately, then merged into this PR before FDIS stage
2020-10-06: PR changed from A3 to new edition furhter to same change at IEC

  • Standard
    99 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 63522-5:2025 This part of IEC 63522 is used for testing all kinds of electrical relays and for evaluating their ability to perform under expected conditions of transportation, storage and all aspects of operational use. This document defines a standard test method for insulation resistance.

  • Standard
    13 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document defines the standard mechanical interface dimensions for the type of SAC family of connectors.

  • Standard
    34 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This New Work Item Proposal has the scope to provide an amendment of the European standard EN 50463-4 in order to update the reference to prEN 61375-2-6:2016 following the publication of the EN 61375-2-6:2018.

  • Amendment
    4 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 82474-1:2025 specifies the requirements and guidance for the content, format and exchange relating to material declarations for products. The main intended use of this document is to provide data up and down the supply chain that: - allows organizations to assess products against material and substance requirements, - allows organizations to assess process chemical substances used in manufacturing and other stages of the product life, - allows organizations to use this information in their activities related to environmentally conscious design process and across all product life cycle stages, - allows organisations to obtain information about material efficiency and circularity of their products. This document specifies mandatory declaration requirements and also provides optional declaration requirements. This document does not suggest any specific software solution to capture material declaration data in the supply chain. However, it provides a data format used to transfer information within the supply chain. Organizations can determine the most appropriate method to capture material declaration data without compromising data utility and quality. This document is intended to allow declaration based on engineering judgement, responder (supplier) material declarations, and/or sampling and testing. This document has the status of a horizontal publication in accordance with IEC Guide 123. This edition includes the following technical changes with respect to IEC 62474:2018 (edition 2): a) Definitions were sharpened to fulfil needs from sectors other than electrical and electronic products and systems and new terms have been added that support new topics introduced such as webservice methods, material efficiency and circularity, and new reference list types. b) A new subclause (4.6) covering process chemical declaration was included. This subclause covers requirements related to the information required about process chemical substances, the applicable processes where they are used, and the respective product life cycle phase(s). c) A new clause (8) covering web services on material declaration was included. This clause covers requirements related to topics such as machine-machine communication, authentication service, and data representation. d) Requirements and guidance for the development of reference lists such as query list (QL), and application/exemption lists (AL/EL) were included. This document has been given the status of a horizontal document in accordance with ISO/IEC Directives, Part 1. It is published as a double logo standard,

  • Standard
    62 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61203:2025 This document provides procedures and supervision for the use and maintenance of synthetic esters in transformers and other electrical equipment. This document includes recommendations on tests and evaluation procedures and outlines methods for reconditioning and reclaiming the liquid, when necessary

  • Standard
    38 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 63522-18:2025 This part of IEC 63522 is used for testing along with the appropriate severities and conditions for measurements and tests designed to assess the ability of DUTs to perform under expected conditions of transportation, storage and all aspects of operational use. The object of this test is to determine the thermal resistance of the relay coil.

  • Standard
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61300-3-46:2025 provides a standard for the measurement of guide pin bore and fibre bore diameters for rectangular ferrules used in connectors specified in the IEC 61754 series. This second edition cancels and replaces the first edition published in 2011. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) addition of fibre bore measurement; b) addition of force gauge method; c) addition of Annex A on temperature dependence.

  • Standard
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61169-1-9:2025 specifies test methods for the safety wire hole pull-out of RF connectors. This document is applicable to the connectors with safety wire holes.

  • Standard
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day