Latest Standards, Engineering Specifications, Manuals and Technical Publications

Collection of latest documents from ISO, IEC, CEN, CENELEC, ETSI, and SIST.

IEC 60704-2-11:2025 applies to electrically-operated food preparation appliances, either in the form of separate machines with a single function or in the form of multi-purpose machines with appropriate tools or attachments for several functions. These machines are intended for placing on counters, tables, work tops or sinks, for built-in, or for hand-held use, supplied from mains or from batteries and able to ensure the functions described in IEC 60619:1993, Clause 4 and IEC 60619:1993/AMD1:1995, Clause 4. This second edition cancels and replaces the first edition published in 1998. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) definition of various kind of food preparation appliances added; b) revision of the test conditions; c) coffee mills and coffee grinders are removed from the scope. This Part 2-11 is intended to be used in conjunction with the fourth edition of IEC 60704-1:2021, Household and similar electrical appliances - Test code for the determination of airborne acoustical noise - Part 1: General requirements.

  • Draft
    15 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61753-084-02:2025 contains the minimum initial performance, test and measurement requirements and severities which a fibre optic pigtailed 980/1 550 nm wide wavelength division multiplexing (WWDM) device will satisfy in order to be categorized as meeting the requirements of category C (indoor controlled environment), as defined in IEC 61753-1:2018, Annex A. WWDM is defined in IEC 62074-1. The requirements cover devices with single-mode non‑connectorised pigtails. This device has three ports; 980 nm port, 1 550 nm port and common port for output or combining 980 nm and 1 550 nm. This first edition cancels and replaces the first edition of IEC 61753-084-2 published in 2007. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) Change of test conditions harmonizing with IEC 61753-1: 2018.

  • Draft
    13 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies requirements for five types of compact, wire-braid-reinforced hoses and hose assemblies of nominal size from 5 to 76. They are suitable for use with: — oil-based hydraulic fluids HH, HL, HM, HR and HV as defined in ISO 6743-4 at temperatures ranging from −40 °C to +100 °C; — water-based fluids HFC, HFAE, HFAS and HFB as defined in ISO 6743-4 at temperatures ranging from 0 °C to +70 °C; — water at temperatures ranging from 0 °C to +70 °C. This document does not include requirements for end fittings. It is limited to requirements for hoses and hose assemblies. The hose assembly maximum working pressure is governed by the lowest maximum working pressure of the components. NOTE It is the responsibility of the user, in consultation with the hose manufacturer, to establish the compatibility of the hose with the fluid to be used.

  • Standard
    13 pages
    English language
    sale 15% off

This document specifies two test methods for the determination of water absorption resistance of rubber– or plastics-coated fabrics: — Method A: Using red ink, which is applied to coated fabric where water absorption phenomenon can be visually observed; — Method B: Using a water detection test paper.

  • Standard
    15 pages
    English language
    sale 15% off

IEC 61340-4-11:2025 specifies the electrostatic testing, design and safe use requirements for composite intermediate bulk containers (IBC) intended for use in hazardous areas. Composite IBC are often filled with flammable liquids which can create an explosive atmosphere in the inner receptacle. The design requirements for composite IBC intended for such use are defined in 7.3.4.5 of IEC TS 60079-32-1:2013. The test procedures described in this document can be used by manufacturers, suppliers and product users for product qualification and compliance verification of new and reconditioned composite IBC. Additionally, the requirements of this document can be used for testing the electrostatic properties of composite IBC, independent of any inspection periods. Precautions regarding the use of composite IBC (e.g., stirring, cleaning etc.) are defined in 7.3.4.5 of IEC TS 60079-32-1:2013. Compliance with the requirements of this document does not mitigate the need for full risk assessment.

  • Draft
    26 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 63185:2025 relates to a measurement method for complex permittivity of dielectric substrates at microwave and millimeter-wave frequencies. This method has been developed to evaluate the dielectric properties of low-loss materials used in microwave and millimeter-wave circuits and devices. It uses higher-order modes of a balanced-type circular disk resonator and provides broadband measurements of dielectric substrates by using one resonator, where the effect of excitation holes and that of fringing fields are taken into account accurately on the basis of the mode-matching analysis. This second edition cancels and replaces the first edition published in 2020. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) the upper limit of the applicable frequency range has been extended from 110 GHz to 170 GHz; b) circular disk resonators used for the measurements now include one with waveguide interfaces; c) in calculating the complex permittivity from the measured resonant properties, the fringing fields are now accurately taken into account based on the mode-matching analysis.

  • Draft
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61400-15-1:2025 defines a framework for assessment and reporting of the wind turbine suitability conditions for both onshore and offshore wind power plants. This includes: a) definition, measurement, and prediction of the long-term meteorological and wind flow characteristics at the site; b) integration of the long-term meteorological and wind flow characteristics with wind turbine and balance-of-plant characteristics; c) characterizing environmental extremes and other relevant plant design drivers; d) addressing documentation and reporting requirements to help ensure the traceability of the assessment processes. This document is framed to complement and support the scope of related IEC 61400 series by defining environmental input conditions. It is not intended to supersede the design and suitability requirements presented in those documents. Specific analytical and modelling procedures as described in IEC 61400-1, IEC 61400-2, IEC 61400-3-1 and IEC TS 61400-3-2 are excluded from the scope of this document.

  • Draft
    40 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62037-3:2025 defines the impact test on coaxial connectors to evaluate their robustness against weak connections and particles inside the connector, as independently as possible from the effects of cable passive intermodulation (PIM). For other connectors (e.g. panel mounted connectors), the cable can be replaced by an adequate transmission line (e.g. airline, stripline). In order to evaluate the effects of mechanical stresses on the connectors, a series of impacts is applied to the connectors while measuring the PIM. This third edition cancels and replaces the second edition published in 2021. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) impact test requirements for multi-channel connectors added; b) method for calculating impact energy added for connector shapes other than round; c) revised test considerations for achieving maximum PIM in reverse (reflected) PIM measurements; d) added clarification that PIM tests reports shall include the maximum PIM value measured.

  • Draft
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62037-8:2025 defines a radiated passive intermodulation (PIM) test to determine PIM levels generated by a device or object when it is exposed to RF radiation. This test can be conducted on any material or object and is not limited to devices designed to propagate RF signals. This test can be conducted as either a near field or far field test as defined by the test specification in an outdoor test site or in an anechoic test chamber. This second edition cancels and replaces the first edition published in 2021. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) added safety warning to verify that transmitters are switched off before connecting or disconnecting any component; b) corrected formula for calculating directivity; c) corrected antenna orientation labels in Figure 6; d) added clarification that PIM tests reports shall include maximum PIM and VSWR values.

  • Draft
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies two methods for determination of the total moisture of brown coals and lignites using an indirect gravimetric single-stage method and a two-stage method.

  • Standard
    8 pages
    English language
    sale 15% off

This document provides guidance and requirements for the maintenance and the use of triaryl phosphate esters as fire-resistant fluids for turbine control, other hydraulic systems in power generation and fire-resistant turbine fluids. This document is applicable to fluids under the HFDR category defined in ISO 6743-4 and under the TCD, TSD and TGD categories defined in ISO 6743-5.

  • Standard
    22 pages
    English language
    sale 15% off
  • Standard
    24 pages
    French language
    sale 15% off

This document provides information on how electrical designers determine the allowable limit of electric wire in space condition. This document provides the basis of the allowable wire current and its derated value in published technical standards. This document also provides the results of comparing the derated wire current values depending on the number of bundled wires, wire type and temperature environments, which can help the system designer to handle the difference when determining the limit of wire ampacity.

  • Technical report
    11 pages
    English language
    sale 15% off

This document establishes requirements and recommendations for the design format and data content of a drone or UAS remote pilot and remote crew licence, encompassing both visual human-readable features and machine-readable technologies. By establishing a common basis, this document aims to standardize drone or UAS remote pilot and remote crew licence without impeding the efforts of individual national or regional drone or UAS-related authorities. NOTE Not all jurisdictions require drone or UAS remote pilot and remote crew licences.

  • Standard
    35 pages
    English language
    sale 15% off

This document specifies the minimum values for expected strength as a function of time and temperature in the form of reference lines, for use in calculations on unplasticized polyamide (PA-U 180) extruded pipes. NOTE 1 PA-U 180 follows ISO 16486-1 in terms of minimum strength values and covers both PA-U11 180 and PA-U12 180. NOTE 2 As there is not test data available for other types of polyamide (e.g. PA-U 160) this document does not currently contain appropriate reference lines for these materials. Future revisions will include other types of polyamide when sufficient test data becomes available.

  • Standard
    7 pages
    English language
    sale 15% off

This document specifies a test method for determining the coefficient of friction and its evolution in mechanical transmission fluids tribologically interacting with materials used in synchronizers in manual transmission (MT) gears under high-frequency linear oscillation motion using the linear-oscillation (SRV) test machine. A flat areal contact geometry is applied.

  • Standard
    15 pages
    English language
    sale 15% off
  • Standard
    15 pages
    French language
    sale 15% off

This document describes a digital twin for monitoring and controlling the semiconductor ingot growth process. The use case is analysed and designed using the ISO 23247 series. The result is a systematic view of the use case implementation and a high-level design of the digital twins, which can be directly implemented using the readily available tools and languages, including those supported by the relevant standards.

  • Technical report
    15 pages
    English language
    sale 15% off

This document specifies design and performance criteria arising out of the combination of a reciprocating internal combustion (RIC) engine and an alternating current (AC) generator when operating as a unit. This unit can run in parallel to the grid or not. This document applies to AC generating sets driven by RIC engines for land and marine use, excluding generating sets used on aircraft, or to propel land vehicles and locomotives. For some specific applications (e.g. essential hospital supplies and high-rise buildings), supplementary requirements can apply. The provisions of this document are a basis for establishing any supplementary requirements. For generating sets driven by other reciprocating-type prime movers (e.g. steam engines), the provisions of this document can be used as a basis for establishing these requirements.

  • Standard
    42 pages
    English language
    sale 15% off
  • Standard
    42 pages
    French language
    sale 15% off

This document specifies test methods and values for sterilization wrap made of
-   single-use creped paper
-   single-use nonwoven materials
-   reusable woven textile materials
used as sterile barrier systems and/or packaging systems for terminally sterilized medical devices.
Other than the general requirements as specified in EN ISO 11607-1 and EN ISO 11607-2, this part of EN 868 specifies materials, test methods and values that are specific to the products covered by this document.

  • Draft
    27 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies requirements for design, performance, test methods and markings for industrial protective helmets. The requirements apply to helmets for general use in industry.
Additional performance requirements for special applications are included to apply only when specifically claimed by the helmet manufacturer.
Industrial protective helmets are intended to reduce the risk of head injuries caused by impacts and therefore can reduce consequential effects.

  • Draft
    42 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies test methods and values for sealable adhesive coated paper manufactured from paper complying with EN 868-6, used as single-use sterile barrier systems and/or single-use packaging systems for terminally sterilized medical devices by the means of low temperature sterilization processes.
Other than the general requirements as specified in EN ISO 11607-1 and EN ISO 11607-2 [2], this part of EN 868 specifies materials, test methods and values that are specific to the products covered by this document.

  • Draft
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document applies to general purpose offshore cranes including their supporting pedestals and structures.
This document is applicable to general purpose offshore cranes, whose structures are made of steel.
This document provides requirements for all significant hazards, hazardous situations and events relevant to general purpose offshore cranes, for lifting of goods and lifting of persons, when used as intended and under the conditions foreseen by the risk assessment (see Clause 4).
This document is applicable to general purpose offshore cranes, which are manufactured after the date of approval by CEN of this document.
This document is not applicable for:
a)   transportation, assembly, disabling, scrapping, installation or erecting of the crane;
b)   any item attached to the hook, such as loads, non-fixed load lifting attachments, lifting accessories, baskets, carriers and containers;
c)   lifting operations in ambient temperatures below - 20 °C;
d)   lifting operations in ambient temperatures above 45 °C;
e)   accidental loads as result of collisions, earthquakes, explosions, etc., which are not covered by exceptional loads defined in Table B.7 ;
f)   floating cranes (covered by EN13852-2), light offshore cranes (covered by FprEN13852-3) and 2D/3D motion compensated cranes;
g)   subsea lifting operations;
h)   lifting operations involving more than one crane;
i)   emergency rescue operations (except training).

  • Draft
    89 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the requirements for materials, design and installation of the insulation of refrigerated liquefied gas (RLG) storage tank systems.
RLG storage tank systems store liquefied gas with a low boiling point, i.e. below normal ambient temperature.
The concept of storing such products in liquid form and in non-pressurized tanks therefore depends on the combination of latent heat of vaporization and thermal insulation.
Consequently, thermal insulation for RLG storage tank systems is not an ancillary part of the containment system (as for most ambient atmospheric hydrocarbon tanks) but it is an essential component and the storage tank system cannot operate without a properly designed, installed and maintained insulation system.
The main functions of the insulation in RLG storage tank systems are:
-   to maintain the boil off due to heat in-leak at or below the specified limits;
-   to limit the thermal loading of the outer tank components, so to prevent both their sudden damage and premature ageing (e.g. due to external condensation and ice formation);
-   to prevent damage by frost heave of the foundation/soil beneath the tank base slab (in combination with the slab heating system for tanks resting at grade);
-   to minimize condensation and icing on the outer surfaces of the tank.
A wide range of insulation materials is available. However, the material properties differ greatly amongst the various generically different materials and also within the same generic group of materials.
Therefore, within the scope of this document, only general guidance on selection of materials is given.
NOTE   For general guidance on selection of materials, see Annex A.
This document deals with the design and manufacture of site built, vertical, cylindrical, flat-bottomed tank systems for the storage of refrigerated, liquefied gases with operating temperatures between 0 °C and −196 °C.

  • Draft
    34 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies performance levels and test methods for the following characteristics of slide fasteners made from interlocking components mounted on tapes: strengths of puller attachment, closed-end slide fastener bottom stop, top stop, open-end slide fastener box, reciprocating mechanism, closed slide fastener when extended laterally, open-end attachment when extended laterally, slider locking device, and open-end slide fastener single stringer slider retention and slider resistance to torque.
NOTE   The tests specified in Annexes B to K have been specifically devised to permit their direct application to finished slide fasteners with a view to giving the user reasonable assurance that a slide fastener conforming to the requirements of this document can satisfactorily fulfil its intended purpose. Annex L gives information about sampling procedures for bulk quantities of slide fasteners.
In addition, performance levels are also specified for colour fastness to washing, dry cleaning and water, and for dimensional stability to washing and dry cleaning.
This document is applicable to all different types of slide fasteners for general use and is not applicable to slide fasteners for specialist purposes (for example: pressure sealed slide fasteners for diving suits).

  • Draft
    45 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies test methods and values for single-use paper bags manufactured from paper specified in EN 868-3, used as sterile barrier systems and/or packaging systems for terminally sterilized medical devices.
Other than the general requirements as specified in EN ISO 11607-1 and EN ISO 11607-2, this part of EN 868 specifies materials, test methods and values that are specific to the products covered by this document.

  • Draft
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a test method, including the degradation of certain side-chain fluorinated polymers during the extraction with simultaneous alkaline hydrolysis, and using liquid chromatography (LC) and tandem mass spectrometry (MS/MS) for identification and quantification of certain per- and polyfluoroalkyl substances (PFAS). The document is applicable to all materials of textile products.
Table 2 indicates a list of target PFAS which can be analysed with this document. PFAS of Table 2 marked with the footnote e) and footnote f) undergo alkaline hydrolysis and only their per- or polyfluorinated degradation products such as PFOA or n:2 fluorotelomer alcohols (n:2 FTOHs, n = 4, 6, 8, 10) can be determined.
Through the methods outlined in the informative Annex E and Annex F, free n:2 FTOHs, PFOA and non-polymeric PFAS of Table 2 marked with the footnote e) and footnote f), that are not stable to alkaline hydrolysis, can be identified and quantified.
Certain side-chain fluorinated polymers release n:2 FTOHs (n = 4, 6, 8, 10) under the described extraction conditions. Since these side-chain fluorinated polymers can be PFOA or C9-C14 PFCA-related substances restricted by the EU-POPs [1] or EU-REACH [2] regulations, the amounts of released n:2 FTOHs can be used to indirectly assess whether the concentration of the aforementioned side-chain fluorinated polymers exceed limits for PFOA or C9-C14 PFCA-related substances.
This document is also applicable to the determination of further PFAS, provided that the method is validated with the additional substances and that these PFAS are stable to alkaline hydrolysis and dehydrofluorination.

  • Draft
    43 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies test methods and values for paper used in the manufacture of single-use preformed sterile barrier systems and/or packaging systems for terminally sterilized medical devices by means of low temperature sterilization processes.
Other than the general requirements as specified in EN ISO 11607-1 and EN ISO 11607-2 [2], this part of EN 868 specifies materials, test methods and values that are specific to the products covered by this document.

  • Draft
    23 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document is applicable to slow heat release appliances for solid fuel (freestanding manually fuelled intermittent burning slow heat release appliances (SHRA) having heat storage capacity such that they can provide heat and release it for an extended period after the fire has gone out).
The intended use of the appliances is space heating in residential buildings. They can be fitted with a boiler or heat exchanger (integral part of the appliance containing water to be heated up) for the supply of hot water for central heating systems.
These slow heat release appliances may be supplied either as an assembled appliance or as a pre-designed unit consisting of prefabricated components designed to be built on site in accordance with the-specified assembly instructions.
These appliances can burn one or more types of the following solid fuels as specified:
—   wood logs;
—   compressed untreated wood;
—   wood pellets;
—   lignite briquettes;
—   solid mineral fuels;
—   peat briquettes.
This document is not applicable to:
—   mechanically fed appliances
—   appliances with fan assisted combustion air
—   one off installations
This document specifies procedures for assessment and verification of constancy of performance (AVCP) of characteristics of solid fuel burning slow heat release appliances.

  • Draft
    60 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62282-7-2:2025 applies to SOFC cell/stack assembly units, testing systems, instruments and measuring methods, and specifies test methods to test the performance of SOFC cells and stacks. This document is not applicable to small button cells that are designed for SOFC material testing and provide no practical means of fuel utilization measurement. This document is used based on the recommendation of the entity that provides the cell performance specification or for acquiring data on a cell or stack in order to estimate the performance of a system based on it. Users of this document can selectively execute test items suitable for their purposes from those described in this document.

  • Draft
    47 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62276:2025 applies to the manufacture of synthetic quartz, lithium niobate (LN), lithium tantalate (LT), lithium tetraborate (LBO), and lanthanum gallium silicate (LGS) single crystal wafers intended for use as substrates in the manufacture of surface acoustic wave (SAW) filters and resonators. This edition includes the following significant technical changes with respect to the previous edition: a) The terms and definitions, the technical requirements, sampling frequency, test methods and measurement of transmittance, lightness, colour difference for LN and LT have been added in order to meet the needs of industry development; b) The term “inclusion” (mentioned in 4.13 and 6.10) and its definition have been added because there was no definition for it in Clause 3; c) The specification of LTV and PLTV, and the corresponding description of sampling frequency for LN and LT have been added, because they are the key performance parameters for the wafers; d) The tolerance of Curie temperature specification for LN and LT have been added in order to meet the development requirements of the industry; e) Measurement of thickness, TV5, TTV, LTV and PLTV have been completed, including measurement principle and method of thickness, TV5, TTV, LTV and PLTV.

  • Draft
    35 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a test method for the qualification and quantification of organotin compounds by applying gas chromatography coupled with mass spectrometry. This test method is applicable to all types of footwear materials except metal hardware (see ISO/TR 16178).

  • Standard
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day

REN/ESI-0019411-1v151

  • Standard
    60 pages
    English language
    sale 15% off
  • Standard
    60 pages
    English language
    sale 15% off
  • Standard
    60 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document describes the basic requirements for the design and application of explosion suppression systems. This document also specifies test methods for evaluating the effectiveness and the scaling up of explosion suppression systems against defined explosions. This document covers:
-   general requirements for explosion suppression system parts;
-   evaluating the effectiveness of an explosion suppression system;
-   evaluating the scale up of an explosion suppression system to larger than tested volumes;
-   development and evaluation of design tools for explosion suppression systems;
-   installation, operation and maintenance instructions for an explosion suppression system.
This document is applicable only to explosion suppression systems intended for the protection of closed, or essentially closed, enclosures in which an explosion could result as a consequence of ignition of an explosible mixture, e.g. dust-air, gas(vapour)-air, dust-gas(vapour)-air and mist-air.
This document is not applicable for explosions of materials listed below, or for mixtures containing some of those materials:
-   unstable materials that are liable to dissociate;
-   explosive materials;
-   pyrotechnic materials;
-   pyrophoric materials.

  • Standard
    46 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of IEC 60079 specifies the construction and testing of intrinsically safe apparatus intended for use in an explosive atmosphere, and for associated apparatus which is intended for connection to intrinsically safe circuits which enter such atmospheres.
This Type of Protection is applicable to electrical equipment in which the electrical circuits themselves are incapable of causing ignition of a surrounding explosive atmosphere. This includes electrical equipment which contains circuits that are intrinsically safe only under certain conditions, for example under battery supply with mains supply removed.
This standard is also applicable to electrical equipment or parts of electrical equipment located outside the explosive atmosphere or protected by another Type of Protection listed in IEC 60079-0, where the intrinsic safety of the electrical circuits in the explosive atmosphere may depend upon the design and construction of such electrical equipment or parts of such electrical equipment. The electrical circuits exposed to the explosive atmosphere are assessed for use in such an atmosphere by applying this standard.
This standard applies to sensors connected to intrinsically safe circuits but does not apply to the protection of catalytic elements for Group IIC or Group IIB + H2.
The requirements for intrinsically safe systems are provided in IEC 60079-25.
This standard supplements and modifies the general requirements of IEC 60079-0, except as indicated in Table 1. Where a requirement of this standard conflicts with a requirement of IEC 60079-0, the requirement of this standard takes precedence.
Unless otherwise stated, the requirements in this standard are applicable to both intrinsically safe apparatus and associated apparatus, and the generic term "apparatus" is used throughout the standard.
As this standard applies only to electrical equipment, the term "equipment" used in the standard always means “electrical equipment”.
This standard applies to apparatus for use under the atmospheric conditions of IEC 60079-0 with additional requirements for for use at lower atmospheric pressures in the range from 60 kPa (0,6 bar), up to 110 kPa (1,1 bar).
[...]

  • Standard
    222 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 80000-13:2025 specifies names, symbols and definitions for quantities and units used in information science and technology. Where appropriate, conversion factors are also given. Prefixes for binary multiples are also given. International Standard IEC 80000-13 has been prepared by IEC technical committee 25: Quantities and units in close cooperation with ISO/TC 12: Quantities and units.
This second edition cancels and replaces the first edition published in 2008. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
addition of new prefixes for binary multiples.

  • Standard
    22 pages
    English language
    sale 10% off
    e-Library read for
    1 day

NEXT ACTION: UNDER BT CONSULTATION SOON (finalization EN with revised Annex Z)
HAS CONSULTANT PUB ASSESSMENT BY 2020-09-24 -- non compliant assessment received
20200325: consultant assessment missing and Annex ZZ was not circulated at FV; document blocked until such a time as this can be resolved

  • Amendment
    10 pages
    English language
    sale 10% off
    e-Library read for
    1 day

NEXT ACTION: CCMC ACTION to request HAS assessment @ PUB when HAS system is operational
2022-01-17: Under discussion with the desk officer. upon the greenlight of the desk officer, it can be published.

  • Amendment
    10 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 62391-2:2025 applies to electric double-layer capacitors for power application.
Electric double-layer capacitors for power are intended for applications that require discharge currents in the range from mA to A. The characteristics of the capacitors include such performance as relatively high capacitance and low internal resistance, which is applicable to Class 3 and Class 5 of the measurement classification specified in IEC 62391-1:2022.
The object of this document is to specify preferred ratings and characteristics and to select from IEC 62391-1:2022 the appropriate quality assessment procedures, tests and measuring methods and to give general performance requirements for this type of capacitor. Test severities and requirements specified in detail specifications referring to this document provide specific test severities and requirements of an equal or higher performance level.
The definition of power density and its calculating procedure can be found in Annex A.
This edition includes the following significant technical changes with respect to the previous edition:
a) the document has been completely restructured to comply with the ISO/IEC Directives, Part 2;
b) introduction of a new technical categorization for the test methods;
c) reorganization of the test methods have been according to these new categories;
d) revision of the tables, figures and references according to changes.

  • Standard
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day

1.1   This document specifies the electrical requirements for the design of automatic electrostatic application systems for liquid coating materials which can be ignited in an atomised state, used within a temperature range from 5 °C to 40 °C.
This document considers automatic electrostatic application systems for processing ignitable liquid coating materials, where the conductivity of the complete system is limited up to 50 nS/cm. Together with additional measures like e.g. potential separation systems, these requirements can also be applied to ignitable liquid coating materials, where the conductivity of the complete system is limited up to 2 000 μS/cm.
Ignition hazards related to the generated explosive atmosphere and the protection of persons against electric shock are considered.
1.2   This document specifies
-   requirements for an interface to machinery according to EN 16985:2018,
-   additional requirements for machinery covered by EN 1953:2025 and EN 12621:2025.
1.3   This document also specifies requirements for a safe operation of electrostatic application systems, including the electrical installation. The requirements consider both the processing of coating materials and the cleaning and purge processes.
1.4   This document applies to three types of spraying systems; see 5.1.1.
Spraying systems are classified as equipment of group II, category 2G (for intended use in zone 1 or zone 2) or category 3G (for intended use in zone 2).
Only electrostatic spraying systems operating with a d.c. sinusoidal ripple of not more than 10 % of the r.m.s. value are considered.
1.5   For electrostatic application systems used in food and pharmaceutical industry, additional requirements may apply.
1.6   This document does not apply to
-   potential separation systems;
-   selection, installation and application of other electrical and non-electrical equipment in areas with explosion hazard, see EN 60079-14:2014 and EN 16985:2018;
-   quality assurance systems for electrostatic spraying equipment (see EN ISO/IEC 80079-34:2020, ZB.11).

  • Standard
    55 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 63461:2024 applies to laboratory model tests of any type of Pelton hydraulic turbine with unit power greater than 5 MW. It contains the rules governing test conduct and provides measures to be taken if any phase of the tests is disputed.
The main objectives of this document are:
- to define the terms and quantities used;
- to specify methods of testing and of measuring the quantities involved, in order to ascertain the hydraulic performance of the model;
- to specify the methods of computation of results and of comparison with guarantees;
- to determine if the contract guarantees that fall within the scope of this document have been fulfilled;
- and to define the extent, content and structure of the final report.
Full application of the procedures herein described is not generally justified for machines with smaller power. Nevertheless, this document can be used for such machines by agreement between the purchaser and the supplier.

  • Standard
    1 page
    English and French language
    sale 15% off

IEC TS 62271-315:2025 is applicable to direct current (DC) transfer switches designed for indoor or outdoor installation and for operation on HVDC transmission systems having direct voltages of 100 kV and above. DC transfer switches normally include metallic return transfer switches (MRTS), earth return transfer switches (ERTS), neutral bus switches (NBS) and neutral bus earthing switches (NBES).

  • Technical specification
    74 pages
    English language
    sale 15% off

IEC TR 62282-7-3:2025 is a generic assessment of the feasibility of standardizing accelerated test procedures (both proton exchange membrane (PEM) and oxide ion-conducting solid oxide cell (SOC) technologies) for fuel cell stacks that have been engineered for a specific system application. This document comprises a review of literature and projects, a discussion of the main physical phenomena of interest in accelerated testing campaigns (focusing on the cell and stack levels, not looking at the system as a black box), a compendium of measurement techniques that are applicable, and it suggests a macroscopic approach to the formulation of a representative accelerated testing campaign.

  • Technical report
    29 pages
    English language
    sale 15% off

IEC TR 61850-90-30:2025, which is a Technical Report, describes extensions of the SCL Substation/Process Section allowing the creation of a comprehensive, IED and hardware independent specification of an IEC 61850 based power system.
It addresses how to:
• decompose functions in SCL
• show function classifications in SCL
• relate functions with the SCL Substation and Process Section
• relate functions to Logical Nodes and IEDs/Specification IEDs
• present information flow between functions in a hardware/implementation independent way
• position Functions in relation to "Application Schemes", "Distributed Functions", "Protection Schemes"
• consider the relationship to Basic Application Profiles (BAP) defined in IEC TR 61850-7-6
The document addresses the engineering process as far as it is related to the specification of Functions and their instantiation in IEC 61850 based power system. This includes the impact on the SCL Process Section during system configuration.
The engineering process related to the definition of Applications and their instantiation is addressed in the Basic Application Profile Document (BAP) in IEC TR 61850-7-6.
The System Configuration process is described in IEC 61850-6.
Modifications and extensions of SCL are done in a way to guarantee backwards compatibility.
In addition, this document introduces:
• Some further elements to SCL that improve the content and usefulness of SSD files and facilitate the handling of SCL files for engineering purposes,
• New variants of IED specific files: ISD file and FSD files,
• Evolution of the engineering rights management, to first improve the usage of SED and add a new concept of System Configuration Collaboration (SCC file) which allows collaboration on the same project with different engineers.

  • Technical report
    184 pages
    English language
    sale 15% off

IEC PAS 62443-2-2: 2025 provides guidance on the development, validation, operation, and maintenance of a set of technical, physical, and process security measures called Security Protection Scheme (SPS). The document’s goal is to provide the asset owner implementing an IACS Security Program (SP) with mechanisms and procedures to ensure that the design, implementation and operation of an SPS manage the risks resulting from cyberthreats to each of the IACS included in its operating facility.
The document is based on contents specified in other documents of the IEC 62443 series and explains how these contents can be used to support the development of technical, physical, and process security measures addressing the risks to the IACS during the operation phase.

  • Technical specification
    44 pages
    English language
    sale 15% off

IEC TR 63515:2025 provides a conceptual framework for power system resilience. It covers the definition, evaluation metrics and methods, improvement strategies and uses cases of power system resilience. This document is applicable to developing resilient power system and implementing resilience improvement strategies.
This document is not exhaustive, and it is possible to consider other aspects, such as different application scenarios, evaluation methods, and improvement measures.

  • Technical report
    39 pages
    English language
    sale 15% off

IEC 60050-831:2025 gives the terms and definitions used in smart cities and smart city systems, as well as general terms pertaining to specific applications and associated technologies. This terminology is consistent with the terminology developed in the other specialized parts of the IEV. It has the status of a horizontal standard in accordance with IEC Guide 108.

  • Standard
    50 pages
    English and French language
    sale 15% off

ISO/IEC TR 30189-1:2025 describes a framework for the use of IoT technology for management of tangible cultural heritage assets, which includes the associated functional entities and information flows.

  • Technical report
    21 pages
    English language
    sale 15% off

IEC 62282-7-2:2025 applies to SOFC cell/stack assembly units, testing systems, instruments and measuring methods, and specifies test methods to test the performance of SOFC cells and stacks. This document is not applicable to small button cells that are designed for SOFC material testing and provide no practical means of fuel utilization measurement. This document is used based on the recommendation of the entity that provides the cell performance specification or for acquiring data on a cell or stack in order to estimate the performance of a system based on it. Users of this document can selectively execute test items suitable for their purposes from those described in this document.

  • Standard
    98 pages
    English and French language
    sale 15% off

IEC 62276:2025 applies to the manufacture of synthetic quartz, lithium niobate (LN), lithium tantalate (LT), lithium tetraborate (LBO), and lanthanum gallium silicate (LGS) single crystal wafers intended for use as substrates in the manufacture of surface acoustic wave (SAW) filters and resonators.
This edition includes the following significant technical changes with respect to the previous edition:
a) The terms and definitions, the technical requirements, sampling frequency, test methods and measurement of transmittance, lightness, colour difference for LN and LT have been added in order to meet the needs of industry development;
b) The term “inclusion” (mentioned in 4.13 and 6.10) and its definition have been added because there was no definition for it in Clause 3;
c) The specification of LTV and PLTV, and the corresponding description of sampling frequency for LN and LT have been added, because they are the key performance parameters for the wafers;
d) The tolerance of Curie temperature specification for LN and LT have been added in order to meet the development requirements of the industry;
e) Measurement of thickness, TV5, TTV, LTV and PLTV have been completed, including measurement principle and method of thickness, TV5, TTV, LTV and PLTV.

  • Standard
    82 pages
    English and French language
    sale 15% off

REN/MSG-TFES-15-3

  • Standard
    67 pages
    English language
    sale 15% off
  • Standard
    67 pages
    English language
    sale 15% off
  • Standard
    67 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ABSTRACT
This specification covers the testing and requirements for two types and two classes of asbestos-free asphalt roof cement consisting of an asphalt base, volatile petroleum solvents, and mineral and/or other stabilizers, mixed to a smooth, uniform consistency suitable for trowel application to roofing and flashing. Type I is made from asphalts characterized as self-healing, adhesive, and ductile, while Type II is made from asphalt characterized by high softening point and relatively low ductility. Class I is used for application to essentially dry surfaces, while Class II is used for application to damp, wet, or underwater surfaces. The roof cements shall comply with composition limits for water, nonvolatile matter, mineral and/or other stabilizers, and bitumen (asphalt). They shall also meet physical requirements such as uniformity, workability, and pliability and behavior at given temperatures.
SCOPE
1.1 This specification covers asbestos-free asphalt roof cement suitable for trowel application to roofings and flashings.  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.  
1.3 The following precautionary caveat pertains only to the test method portion, Section 8 of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    2 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 The edgewise compressive strength of short sandwich construction specimens provides a basis for judging the load-carrying capacity of the construction in terms of developed facing stress.  
5.2 This test method provides a standard method of obtaining sandwich edgewise compressive strengths for panel design properties, material specifications, research and development applications, and quality assurance.  
5.3 The reporting section requires items that tend to influence edgewise compressive strength to be reported; these include materials, fabrication method, facesheet lay-up orientation (if composite), core orientation, results of any nondestructive inspections, specimen preparation, test equipment details, specimen dimensions and associated measurement accuracy, environmental conditions, speed of testing, failure mode, and failure location.
SCOPE
1.1 This test method covers the compressive properties of structural sandwich construction in a direction parallel to the sandwich facing plane. Permissible core material forms include those with continuous bonding surfaces (such as balsa wood and foams) as well as those with discontinuous bonding surfaces (such as honeycomb).  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text the inch-pound units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    8 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Research O.N. correlates with commercial automotive spark-ignition engine antiknock performance under mild conditions of operation.  
5.2 Research O.N. is used by engine manufacturers, petroleum refiners and marketers, and in commerce as a primary specification measurement related to the matching of fuels and engines.  
5.2.1 Empirical correlations that permit calculation of automotive antiknock performance are based on the general equation:
Values of k1,  k2, and k3 vary with vehicles and vehicle populations and are based on road-O.N. determinations.  
5.2.2 Research O.N., in conjunction with Motor O.N., defines the antiknock index of automotive spark-ignition engine fuels, in accordance with Specification D4814. The antiknock index of a fuel approximates the Road octane ratings for many vehicles, is posted on retail dispensing pumps in the U.S., and is referred to in vehicle manuals.
This is more commonly presented as:
5.2.3 Research O.N. is also used either alone or in conjunction with other factors to define the Road O.N. capabilities of spark-ignition engine fuels for vehicles operating in areas of the world other than the United States.  
5.3 Research O.N. is used for measuring the antiknock performance of spark-ignition engine fuels that contain oxygenates.  
5.4 Research O.N. is important in relation to the specifications for spark-ignition engine fuels used in stationary and other nonautomotive engine applications.
SCOPE
1.1 This laboratory test method covers the quantitative determination of the knock rating of liquid spark-ignition engine fuel in terms of Research O.N., including fuels that contain up to 25 % v/v of ethanol. However, this test method may not be applicable to fuel and fuel components that are primarily oxygenates.2 The sample fuel is tested using a standardized single cylinder, four-stroke cycle, variable compression ratio, carbureted, CFR engine run in accordance with a defined set of operating conditions. The O.N. scale is defined by the volumetric composition of PRF blends. The sample fuel knock intensity is compared to that of one or more PRF blends. The O.N. of the PRF blend that matches the K.I. of the sample fuel establishes the Research O.N.  
1.2 The O.N. scale covers the range from 0 to 120 octane number but this test method has a working range from 40 to 120 Research O.N. Typical commercial fuels produced for spark-ignition engines rate in the 88 to 101 Research O.N. range. Testing of gasoline blend stocks or other process stream materials can produce ratings at various levels throughout the Research O.N. range.  
1.3 The values of operating conditions are stated in SI units and are considered standard. The values in parentheses are the historical inch-pound units. The standardized CFR engine measurements continue to be in inch-pound units only because of the extensive and expensive tooling that has been created for this equipment.  
1.4 For purposes of determining conformance with all specified limits in this standard, an observed value or a calculated value shall be rounded “to the nearest unit” in the last right-hand digit used in expressing the specified limit, in accordance with the rounding method of Practice E29.  
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see Section 8, 14.4.1, 15.5.1, 16.6.1, Annex A1, A2.2.3.1, A2.2.3.3 (6) and (9), A2.3.5, X3.3.7, X4.2.3.1, X4.3.4.1, X4.3.9.3, X4.3.11.4, and X4.5.1.8.  
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Gu...

  • Standard
    48 pages
    English language
    sale 15% off
  • Standard
    48 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Coefficients of linear thermal expansion are used, for example, for design purposes and to determine if failure by thermal stress may occur when a solid body composed of two different materials is subjected to temperature variations.  
5.2 This test method is comparable to Test Method D3386 for testing electrical insulation materials, but it covers a more general group of solid materials and it defines test conditions more specifically. This test method uses a smaller specimen and substantially different apparatus than Test Methods E228 and D696.  
5.3 This test method may be used in research, specification acceptance, regulatory compliance, and quality assurance.
SCOPE
1.1 This test method determines the technical coefficient of linear thermal expansion of solid materials using thermomechanical analysis techniques.  
1.2 This test method is applicable to solid materials that exhibit sufficient rigidity over the test temperature range such that the sensing probe does not produce indentation of the specimen.  
1.3 The recommended lower limit of coefficient of linear thermal expansion measured with this test method is 5 μm/(m·°C). The test method may be used at lower (or negative) expansion levels with decreased accuracy and precision (see Section 12).  
1.4 This test method is applicable to the temperature range from −120 °C to 900 °C. The temperature range may be extended depending upon the instrumentation and calibration materials used.  
1.5 SI units are the standard. No other units of measurement are included in this standard.  
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    5 pages
    English language
    sale 15% off
  • Standard
    5 pages
    English language
    sale 15% off

ABSTRACT
This specification establishes the manufacture, testing, and performance requirements of two types of asphalt-based emulsions for use in a relatively thick film as a protective coating for metal surfaces. Type I are quick-setting emulsified asphalt suitable for continuous exposure to water within a few days after application and drying. Type II, on the other hand, are emulsified asphalt suitable for continuous exposure to the weather, only after application and drying. Upon being sampled appropriately, the materials shall conform to composition requirements as to density, residue by evaporation, nonvolatile matter soluble in trichloroethylene, and ash and water content. They shall also adhere to performance requirements as to uniformity, consistency, stability, wet flow, firm set, heat test, flexibility, resistance to water, and loss of adhesion.
SCOPE
1.1 This specification covers emulsified asphalt suitable for application in a relatively thick film as a protective coating for metal surfaces.  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.  
1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    2 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 This test method is useful in characterizing certain petroleum products, as one element in establishing uniformity of shipments and sources of supply.  
5.2 See Guide D117 for applicability to mineral oils used as electrical insulating oils.  
5.3 The Saybolt Furol viscosity is approximately one tenth the Saybolt Universal viscosity, and is recommended for characterization of petroleum products such as fuel oils and other residual materials having Saybolt Universal viscosities greater than 1000 s.  
5.4 Determination of the Saybolt Furol viscosity of bituminous materials at higher temperatures is covered by Test Method E102/E102M.
SCOPE
1.1 This test method covers the empirical procedures for determining the Saybolt Universal or Saybolt Furol viscosities of petroleum products at specified temperatures between 21 and 99 °C [70 and 210 °F]. A special procedure for waxy products is indicated.  
Note 1: Test Methods D445 and D2170/D2170M are preferred for the determination of kinematic viscosity. They require smaller samples and less time, and provide greater accuracy. Kinematic viscosities may be converted to Saybolt viscosities by use of the tables in Practice D2161. It is recommended that viscosity indexes be calculated from kinematic rather than Saybolt viscosities.  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    7 pages
    English language
    sale 15% off

ABSTRACT
This specification covers unreinforced vulcanized rubber sheets made from ethylene propylene diene terpolymer (EPDM) or butyl (IIR), intended for use in preventing water under hydrostatic pressure from entering a structure. The tests and property limits used to characterize these sheets are specific for each classification and are minimum values to make the product fit for its intended purpose. Types used to identify the principal polymer component of the sheet include: type I - ethylene propylene diene terpolymer, and type II - butyl. The sheet shall be formulated from the appropriate polymers and other compounding ingredients. The thickness, tensile strength, elongation, tensile set, tear resistance, brittleness temperature, and linear dimensional change shall be tested to meet the requirements prescribed. The water absorption, factory seam strength, water vapour permeance, hardness durometer, resistance to soil burial, resistance to heat aging, and resistance to puncture shall be tested to meet the requirements prescribed.
SCOPE
1.1 This specification covers unreinforced vulcanized rubber sheets made from ethylene propylene diene terpolymer (EPDM) or butyl (IIR), intended for use in preventing water under hydrostatic pressure from entering a structure.  
1.2 The tests and property limits used to characterize these sheets are specific for each classification and are minimum values to make the product fit for its intended purpose.  
1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    3 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 The force required to separate a metallic coating from its plastic substrate is determined by the interaction of several factors: the generic type and quality of the plastic molding compound, the molding process, the process used to prepare the substrate for electroplating, and the thickness and mechanical properties of the metallic coating. By holding all others constant, the effect on the peel strength by a change in any one of the above listed factors may be noted. Routine use of the test in a production operation can detect changes in any of the above listed factors.  
4.2 The peel test values do not directly correlate to the adhesion of metallic coatings on the actual product.  
4.3 When the peel test is used to monitor the coating process, a large number of plaques should be molded at one time from a same batch of molding compound used in the production moldings to minimize the effects on the measurements of variations in the plastic and the molding process.
SCOPE
1.1 This test method gives two procedures for measuring the force required to peel a metallic coating from a plastic substrate.2 One procedure (Procedure A) utilizes a universal testing machine and yields reproducible measurements that can be used in research and development, in quality control and product acceptance, in the description of material and process characteristics, and in communications. The other procedure (Procedure B) utilizes an indicating force instrument that is less accurate and that is sensitive to operator technique. It is suitable for process control use.  
1.2 The tests are performed on standard molded plaques. This method does not cover the testing of production electroplated parts.  
1.3 The tests do not necessarily measure the adhesion of a metallic coating to a plastic substrate because in properly prepared test specimens, separation usually occurs in the plastic just beneath the coating-substrate interface rather than at the interface. It does, however, reflect the degree that the process is controlled.  
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    4 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 The determination of the creep rate provides information on the behavior of sandwich constructions under constant applied force. Creep is defined as deflection under constant force over a period of time beyond the initial deformation as a result of the application of the force. Deflection data obtained from this test method can be plotted against time, and a creep rate determined. By using standard specimen constructions and constant loading, the test method may also be used to evaluate creep behavior of sandwich panel core-to-facing adhesives.  
5.2 This test method provides a standard method of obtaining flexure creep of sandwich constructions for quality control, acceptance specification testing, and research and development.  
5.3 Factors that influence the sandwich construction creep response and shall therefore be reported include the following: facing material, core material, adhesive material, methods of material fabrication, facing stacking sequence and overall thickness, core geometry (cell size), core density, core thickness, adhesive thickness, specimen geometry, specimen preparation, specimen conditioning, environment of testing, specimen alignment, loading procedure, speed of testing, facing void content, adhesive void content, and facing volume percent reinforcement. Further, facing and core-to-facing strength and creep response may be different between precured/bonded and co-cured facesheets of the same material.
SCOPE
1.1 This test method covers the determination of the creep characteristics and creep rate of flat sandwich constructions loaded in flexure, at any desired temperature. Permissible core material forms include those with continuous bonding surfaces (such as balsa wood and foams) as well as those with discontinuous bonding surfaces (such as honeycomb).  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text the inch-pound units are shown in brackets. The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    5 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Motor O.N. correlates with commercial automotive spark-ignition engine antiknock performance under severe conditions of operation.  
5.2 Motor O.N. is used by engine manufacturers, petroleum refiners and marketers, and in commerce as a primary specification measurement related to the matching of fuels and engines.  
5.2.1 Empirical correlations that permit calculation of automotive antiknock performance are based on the general equation:
Values of k1, k2, and k3 vary with vehicles and vehicle populations and are based on road-octane number determinations.  
5.2.2 Motor O.N., in conjunction with Research O.N., defines the antiknock index of automotive spark-ignition engine fuels, in accordance with Specification D4814. The antiknock index of a fuel approximates the road octane ratings for many vehicles, is posted on retail dispensing pumps in the United States, and is referred to in vehicle manuals.
This is more commonly presented as:
5.3 Motor O.N. is used for measuring the antiknock performance of spark-ignition engine fuels that contain oxygenates.  
5.4 Motor O.N. is important in relation to the specifications for spark-ignition engine fuels used in stationary and other nonautomotive engine applications.  
5.5 Motor O.N. is utilized to determine, by correlation equation, the Aviation method O.N. or performance number (lean-mixture aviation rating) of aviation spark-ignition engine fuel.7
SCOPE
1.1 This laboratory test method covers the quantitative determination of the knock rating of liquid spark-ignition engine fuel in terms of Motor octane number, including fuels that contain up to 25 % v/v of ethanol. However, this test method may not be applicable to fuel and fuel components that are primarily oxygenates.2 The sample fuel is tested in a standardized single cylinder, four-stroke cycle, variable compression ratio, carbureted, CFR engine run in accordance with a defined set of operating conditions. The octane number scale is defined by the volumetric composition of primary reference fuel blends. The sample fuel knock intensity is compared to that of one or more primary reference fuel blends. The octane number of the primary reference fuel blend that matches the knock intensity of the sample fuel establishes the Motor octane number.  
1.2 The octane number scale covers the range from 0 to 120 octane number, but this test method has a working range from 40 to 120 octane number. Typical commercial fuels produced for automotive spark-ignition engines rate in the 80 to 90 Motor octane number range. Typical commercial fuels produced for aviation spark-ignition engines rate in the 98 to 102 Motor octane number range. Testing of gasoline blend stocks or other process stream materials can produce ratings at various levels throughout the Motor octane number range.  
1.3 The values of operating conditions are stated in SI units and are considered standard. The values in parentheses are the historical inch-pounds units. The standardized CFR engine measurements continue to be in inch-pound units only because of the extensive and expensive tooling that has been created for this equipment.  
1.4 For purposes of determining conformance with all specified limits in this standard, an observed value or a calculated value shall be rounded “to the nearest unit” in the last right-hand digit used in expressing the specified limit, in accordance with the rounding method of Practice E29.  
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For more specific hazard statements, see Section 8, 14.4.1, 15.5.1, 16.6.1, Annex A1, A2.2.3.1, A2.2.3.3(6) and (9), A2.3.5, X3.3.7, X4.2.3.1, X4.3.4.1, X4.3.9.3, X4.3.12.4, and X4.5.1.8. ...

  • Standard
    59 pages
    English language
    sale 15% off
  • Standard
    59 pages
    English language
    sale 15% off

DEN/ERM-TGAERO-31-2

  • Standard
    38 pages
    English language
    sale 15% off
  • Standard
    38 pages
    English language
    sale 15% off
  • Standard
    38 pages
    English language
    sale 10% off
    e-Library read for
    1 day