IEC 60601-2-68:2025 applies to the BASIC SAFETY and ESSENTIAL PERFORMANCE of X-ray based IMAGE-GUIDED RADIOTHERAPY equipment for use with EXTERNAL BEAM EQUIPMENT (EBE). This document covers safety aspects of kilovoltage (kV) and megavoltage (MV) X-ray imaging devices integrated in a specified geometrical relationship with EBE for the purpose of IGRT. It covers aspects of communication and relationships between the EXTERNAL BEAM EQUIPMENT and X-ray imaging devices, attached or not directly attached to, but in the same RADIATION shielded area as, and dedicated for use only with, the EXTERNAL BEAM EQUIPMENT. This document deals with equipment for OFFLINE X-IGRT, ONLINE X-IGRT and REAL-TIME X-IGRT. It covers procedures to reduce the risk of over-reliance on the X-IGRT EBE SYSTEM. For example, in the case of ONLINE X-IGRT, the MANUFACTURER will provide an interactive interface for user interaction with the correction suggested by the system. This document does not apply to CT SCANNERS, X-RAY EQUIPMENT for RADIOGRAPHY, and X-RAY EQUIPMENT for RADIOSCOPY, which are not intended for use for IGRT. Requirements that are being tested according to another standard can be identified by the manufacturer and if equivalent do not require retesting, instead evidence can refer to the CT SCANNER, X-RAY EQUIPMENT for RADIOGRAPHY, or X-RAY EQUIPMENT for RADIOSCOPY EQUIPMENT manufacturer's providing compliance statements or test reports. If the X-IGRT EQUIPMENT is combined with an MEE, any requirement that is the same for the X-IGRT EQUIPMENT and the MEE, such as a PATIENT POSITIONER, is not required to be tested twice, but can be accepted as tested by the MEE. This document applies for X-ray equipment for radiography, radioscopy, and COMPUTER tomography used for IGRT. If a clause or subclause is specifically intended to be applicable to X-IGRT EBE SYSTEMS, the content of that clause or subclause will say so. Where that is not the case, the clause or subclause applies only to X-IGRT EQUIPMENT. This document, with the inclusion of TYPE TESTS and SITE TESTS, applies respectively to the MANUFACTURER and some installation aspects of X-IGRT EBE SYSTEMS intended to be: • for NORMAL USE, operated under the authority of the RESPONSIBLE ORGANIZATION by QUALIFIED PERSONS having the required skills for a particular medical application, for particular specified clinical purposes, e.g., STATIONARY RADIOTHERAPY or MOVING BEAM RADIOTHERAPY, • maintained in accordance with the recommendations given in the INSTRUCTIONS FOR USE, and • subject to regular quality assurance performance and calibration checks by a QUALIFIED PERSON. IEC 80601-2-68:2024 cancels and replaces the first edition published in 2014. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) alignment with the new editions of the relevant standards: – IEC 60601-2-1:2020; – IEC 60601-2-44:2009, IEC 60601-2-44:2009/AMD1:2012 and IEC 60601-2-44:2009/AMD2:2016; – IEC 60601-2-64:2014; b) clarification of the use of IEC 60601-2-68 for CT SCANNERS, X-RAY EQUIPMENT for RADIOGRAPHY and RADIOSCOPY used in the same room with an EXTERNAL BEAM EQUIPMENT (EBE); c) introduction of updated requirements related to MECHANICAL HAZARDS, RADIATION HAZARDS, PROGRAMMABLE ELECTRICAL MEDICAL SYSTEMS (PEMS), ACCOMPANYING DOCUMENTATION of an ME SYSTEM, and REMOTE OPERATION.
- Draft49 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies safety and quality requirements for detection and avoidance (DAA) systems used between uncrewed aircraft systems (UAS) and other objects including aircraft. This document includes the requirements for radars and optical sensors used for DAA and is derived to meet the requirements for UAS operations involving DAA set out in ISO 21384-3.
- Standard16 pagesEnglish languagesale 15% off
IEC 62276:2025 applies to the manufacture of synthetic quartz, lithium niobate (LN), lithium tantalate (LT), lithium tetraborate (LBO), and lanthanum gallium silicate (LGS) single crystal wafers intended for use as substrates in the manufacture of surface acoustic wave (SAW) filters and resonators. This edition includes the following significant technical changes with respect to the previous edition: a) The terms and definitions, the technical requirements, sampling frequency, test methods and measurement of transmittance, lightness, colour difference for LN and LT have been added in order to meet the needs of industry development; b) The term “inclusion” (mentioned in 4.13 and 6.10) and its definition have been added because there was no definition for it in Clause 3; c) The specification of LTV and PLTV, and the corresponding description of sampling frequency for LN and LT have been added, because they are the key performance parameters for the wafers; d) The tolerance of Curie temperature specification for LN and LT have been added in order to meet the development requirements of the industry; e) Measurement of thickness, TV5, TTV, LTV and PLTV have been completed, including measurement principle and method of thickness, TV5, TTV, LTV and PLTV.
- Draft35 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61000-4-2: 2025 relates to the immunity requirements and test methods for electrical and electronic equipment subjected to static electricity discharges from operators directly and from personnel to adjacent objects. It additionally specifies ranges of test levels which relate to different environmental, and installation conditions and establishes test procedures. The objective of this document is to establish a common and reproducible basis for evaluating the performance of electrical and electronic equipment when subjected to electrostatic discharges. In addition, it includes electrostatic discharges which can occur from personnel to objects near the equipment. This document specifies: - ideal waveform of the discharge current; - range of test levels; - test equipment; - test setup; - test procedure; - calibration procedure; - measurement uncertainty. This document gives specifications for tests performed in laboratories and guidance to post-installation tests. This document is not intended to specify the tests to be applied to particular apparatus or systems. The main aim is to give a general basic reference to all concerned product committees. The product committees remain responsible for the appropriate choice of the tests and the severity level to be applied to their equipment. This document excludes tests intended to evaluate the ESD sensitivity of devices during handling and packaging. It is not intended for use in characterizing the performance of ESD protection circuit IEC Guide 107. This document forms Part 4-2 of IEC 61000. It has the status of a basic EMC publication in accordance with IEC Guide 107. This third edition cancels and replaces the second edition published in 2008. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) added a calibration requirement for ESD generators with air discharge tip; b) added a normative annex for test setups for particular kind of equipment (see Annex I); c) added an informative annex for wearable devices (see Annex J); d) added an informative annex on how to select test points and give guidance on how to specify the number of pulses for direct contact discharges (see Annex E); e) moved Clause 9 into a new informative annex (see Annex K); f) improvement of the current calibration procedure; g) improvement of the measurement uncertainty considerations with examples of uncertainty budgets; h) because post-installation tests cannot be performed in a controlled environment, this test method has been moved into a new informative Annex G.
- Draft74 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62282-7-2:2025 applies to SOFC cell/stack assembly units, testing systems, instruments and measuring methods, and specifies test methods to test the performance of SOFC cells and stacks. This document is not applicable to small button cells that are designed for SOFC material testing and provide no practical means of fuel utilization measurement. This document is used based on the recommendation of the entity that provides the cell performance specification or for acquiring data on a cell or stack in order to estimate the performance of a system based on it. Users of this document can selectively execute test items suitable for their purposes from those described in this document.
- Draft47 pagesEnglish languagesale 10% offe-Library read for1 day
This document a) addresses the support of safety extra low voltage (SELV) and limited power source (LPS) applications that provide remote power over: • 4-pair balanced cabling in accordance with the reference implementations of EN 50173 series using currents per conductor of up to 500 mA; • 1-pair balanced cabling using currents per conductor of up to 2 000 mA; and targets the support of applications that provide remote power over balanced cabling to terminal equipment, b) covers the transmission and electrical parameters needed to support remote power over balanced cabling, c) covers various installation scenarios and how these may impact the capability of balanced cabling to support remote powering, d) specifies design and configuration of cabling as specified in EN 50173-1. NOTE SELV requirements specify a maximum voltage of 60 V DC and LPS is understood in the applications referenced to be up to 100 W supplied within cabling. This document includes a mathematical model to predict the behaviour of different bundle sizes, various cabling constructions, and installation conditions for different current capacities.
- Draft48 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 61753-086-02:2025 contains the minimum initial performance, test and measurement requirements and severities which a fibre optic pigtailed 1 490/1 550 nm downstream and 1 310 nm upstream wide wavelength division multiplexing (WWDM) passive optical network (PON) device will satisfy in order to be categorized as meeting the requirements of category C (indoor controlled environment), as defined in IEC 61753-1:2018, Annex A. WWDM is defined in IEC 62074-1. Annex B gives general information for these PON WWDM devices. This first edition cancels and replaces the first edition of IEC 61753-086-2 published in 2009. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) Change of test conditions harmonizing with IEC 61753-1: 2018.
- Draft14 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies certain characteristics of the essential oil of lavandin super [Lavandula x intermedia Emeric ex Loisel. ‘super’ (Ex Lavandula angustifolia Mill. x Lavandula latifolia Medik. ‘super’)], with a view to facilitating the assessment of its quality.
- Standard7 pagesEnglish languagesale 15% off
- Standard7 pagesFrench languagesale 15% off
IEC 60947-5-1:2024 applies to control circuit devices and switching elements intended for controlling, signalling, interlocking, etc., of switchgear and controlgear. It applies to control circuit devices having a rated voltage not exceeding 1 000 V AC (at a frequency not exceeding 1 000 Hz) or 600 V DC. This fifth edition cancels and replaces the fourth edition published in 2016. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) update of the scope structure and exclusions; b) requirements for control circuits; c) update of the normal service conditions (e.g. shock and vibration); d) update of information and marking requirements including environmental information requirements referencing IEC TS 63058:2021; e) update of the constructional requirements and the corresponding tests considering safety aspects (e.g. artificial optical radiation, security aspects, limited energy source, stored charge energy circuit); f) update of the EMC requirements according to the generic documents; g) new requirements for reed contact magnetic switches in Annex D; h) requirements for class II circuit devices achieved by double or reinforced insulation in Annex F; i) update of pull-out tests in Annex G; j) information requirements for audible signalling device in Annex J; k) insertion of new Annex O.
- Draft126 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies the general requirements and tests for decomposition blockers downstream of pressure regulators in acetylene manifold systems (see ISO 14114). Decomposition blockers can be used in the low-pressure section (downstream of acetylene manifold system outlet) up to 0,15 MPa (1,5 bar) e.g. in pipelines, outlet points or for the protection of low-pressure sections in big pipe systems. Decomposition blockers can only be used in sections with pure acetylene. The possible backflow of oxygen or air into the section where the decomposition blocker is installed needs to be prevented by a non-return valve downstream of the decomposition blocker.
- Standard6 pagesEnglish languagesale 15% off
This document specifies requirements and test methods for electromagnetic emissions and for electromagnetic immunity of electrically powered wheelchairs and scooters, intended for indoor or outdoor use, or both, by people with disabilities. It is also applicable to manual wheelchairs with an add-on power kit. It is not applicable to vehicles designed to carry more than one person. This document also specifies requirements and test methods for the electromagnetic compatibility of battery chargers intended for use with electrically powered wheelchairs and scooters. A reference configuration is specified for adjustable wheelchairs and scooters in order to enable test results to be used for comparison of performance.
- Standard22 pagesEnglish languagesale 15% off
This document specifies the minimum design and performance requirements for a fire hood as part of personal protective equipment (PPE) to be used by firefighters, primarily but not solely to protect against exposure to flame, high thermal loads and particulate protection.
- Standard15 pagesEnglish languagesale 15% off
This document specifies the minimum design and performance requirements for clothing as part of personal protective equipment (PPE) to be used by firefighters, primarily but not solely to protect against exposure to flame and high thermal loads, and particulates (including other products of combustion). To assist with choice based on user risk assessment, a single level of heat and flame protection is included with a number of options that can provide additional protection. For more information on firefighter risk assessment consult ISO/TR 21808. The scope of this document does not include clothing for use in high-risk fire exposures where for example, reflective protective clothing according to ISO 15538 could be more appropriate, or for use in long-term firefighting operations in high ambient temperature, for example bush, wildland, or forest firefighting where clothing according to ISO 15384 (ISO 16073-3) could be more appropriate. Similarly, this document does not include clothing to protect against chemical and biological hazards, other than against short-term and accidental exposure while engaged in firefighting and associated activities when fighting fires occurring in structures. This document describes types, design, and performance of clothing, the specific requirements for clothing, marking, and manufacturer’s instructions.
- Standard23 pagesEnglish languagesale 15% off
This document defines a data format to exchange data that is relevant for exchanging and using measurement equipment between calibration service providers, laboratories and requestors in vehicle safety testing. Additional content found on https://standards.iso.org/iso/ts/23520/ed-1/en defines standard exchange for equipment grouping and metadata definitions for test documentation. Related electronic documents are available for detailed reference based on examples. This document is applicable for all equipment manufacturers, calibration service providers, laboratories and their customers. This document excludes the exchange of test results or test documentation itself which is extensively defined in ISO/TS 13499.
- Technical specification7 pagesEnglish languagesale 15% off
This document addresses the provision of tyre pressure monitoring (TPM) services. It specifies the form and content of the transmission data required to support TPM systems (TPMS) and the access methods for these data. This document provides specifications for common communications and data exchange aspects of the TPM application service that a jurisdiction regulator or operator can elect to require or support as an option, including: a) a high-level definition of the service that a service provider has to provide [the service definition describes common service elements (SEs), but does not specify the detail of how such an application service is instantiated, nor the acceptable value ranges of the data concepts defined]; b) the means to realize the service; c) application data naming, content and quality that an in-vehicle system (IVS) has to deliver, including a number of TPM profiles or data (noting that requirements and constraints of what can/cannot be transmitted over the air can vary between jurisdictions); d) support for a number of defined communication profiles to enable remote inspection. This document provides specifications for the following application profiles: — Application profile A1: the cyclical initiation of TPM message by on-board equipment (TPM-C). — Application profile A2: the exceptional initiation of TPM message by on-board equipment (TPM-E). — Application profile A3: the provision of TPM data as the result of an off-board request (TPM-R). — Application profile A4: The provision of TPM data as the result of an off-board reading of tyre pressures of vehicles which can potentially be unequipped (TPM-O).
- Standard74 pagesEnglish languagesale 15% off
This document specifies graphical symbols for diagrams related to industrial components, products and processing. This document constitutes a symbol library, from which users can use the symbols or created symbol examples for use in diagrams (see Tables 1 to 149). General rules and guidance for the preparation and presentation of graphical symbols are given in ISO 14617-1. Application rules for the symbols are shown in normative Annex A. This document does not apply to: — graphical symbols for fluid power objects, see ISO 1219-1 (the collective application standard of the ISO 14617 series); — symbols of measurement and control functions such as mathematical functions and process functions; — graphical symbols for electrotechnical objects, see the IEC 60617 database. Symbols deleted from the previous edition of the ISO 14617 series are summarized in informative Annex B as a reference. The alphabetic index of symbols defined in this document is shown in informative Annex C.
- Standard237 pagesEnglish languagesale 15% off
This document defines methodologies to measure the energy consumption and productivity of coffee machines based on their characteristics. This document applies to professional and commercial coffee machines used, for example, in kitchens and food preparation areas in restaurants, canteens, hotels, coffee shops, breakfast rooms. This document does not apply to: - household appliances; - machines that use only coffee pods or coffee capsules; - machines powered by non-electrical energy (i.e. gas); - vending machines for hot beverages; - milk refrigerators integrated or not into traditional machines; - accessory equipment provided together with the machine (e.g. cup warmer, milk refrigerator) physically separated from the machine.
- Draft51 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies the framework, concepts, methodology for testing, and criteria to be achieved to claim conformance to multiple parts of the ISO/IEC 21122 series. It lists the conformance testing procedures.
- Standard24 pagesEnglish languagesale 15% off
This document specifies the characteristics of flanged bushes in aluminium alloy with self-lubricating liner and the design recommendation of shafts and housings.
The bushes are intended for use in assembly with an interference fit into fixed and moving aerospace parts.
- Draft12 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies:
- the electrical, mechanical, environmental and dimensional characteristics of electrical contacts used in elements of connection, including coaxial, triaxial and quadrax contacts;
- the conditions for qualification, acceptance testing and quality assurance;
- the test programs and groups.
It is applicable to removable crimp contacts, wrap contacts, solder contacts used in connectors or in other elements of electrical connection.
In case of conflict or missing information between the EN 3155-001 and the product standards, the product standard takes precedence.
- Draft51 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies the requirements and/or measures to eliminate the hazards or reduce the risks in the following groups of stationary grinding machines which are designed primarily to shape metal by grinding:
— Group 1: manually controlled grinding machines without power operated axes and without numerical control;
— Group 2: manually controlled grinding machines with power operated axes and limited numerically controlled capability, if applicable;
— Group 3: numerically controlled grinding machines.
NOTE 1 For detailed information on the groups of grinding machines, see 3.1 and 3.2.
NOTE 2 Requirements in this document are, in general, applicable to all groups of grinding machines. If requirements are applicable to some special group(s) of grinding machines only, then the special group(s) of grinding machine(s) is/are specified.
This document covers the significant hazards listed in Clause 4 and applies to ancillary devices (e.g. for workpieces, tools, workpiece holding devices and handling devices), which are integral to the machine.
This document also applies to machines which are integrated into an automatic production line or grinding cell in as much as the hazards and risks arising are comparable to those of machines working separately.
This document also includes in Clause 7 a minimum list of safety-relevant information which the manufacturer has to provide to the user. See also ISO 12100:2010, Figure 2, which illustrates the interaction of the manufacturer’s and user’s responsibility for the operational safety.
The user's responsibility to identify specific hazards (e.g. fire and explosion) and reduce the associated risks can be critical (e.g. whether the central extraction system is working correctly).
Where additional metalworking processes (e.g. milling, turning, laser processing) are involved, this document can be taken as a basis for safety requirements. Specific information on hazards arising from other metalworking processes are covered by other International Standards.
This document applies to machines that are manufactured after the date of issue of this document.
This document does not apply to stationary honing, polishing and belt grinding machines. This document does not apply to transportable motor-operated electric tools in accordance with IEC 61029-2-4 and IEC 61029-2-10.
- Draft141 pagesEnglish languagesale 10% offe-Library read for1 day
This document presents information to producers and blenders of automotive fuels. It allows the user to assess new products or blends and their production processes to determine what information is helpful to consider:
- the applicable fuel specification standard(s);
- the ‘workmanship clause’ cited by CEN fuel specifications;
- the impact on vehicle emissions systems, material compatibility and vehicle operability;
- the correct functioning of the intended product (fitness for purpose).
This document is a collection of information. It serves as guidance and cannot be considered as a product approval paper in any way.
- Draft9 pagesEnglish languagesale 10% offe-Library read for1 day
1.1 Scope of EN 12309
Appliances covered by this document include one or a combination of the following:
- gas-fired sorption chiller;
- gas-fired sorption chiller/heater;
- gas-fired sorption heat pump.
This document applies to appliances designed to be used for space heating or cooling or refrigeration with or without heat recovery.
This document applies to appliances having flue gas systems of Type B and Type C (according to EN 1749:2020) and to appliances designed for outdoor installations, including Type A. EN 12309 does not apply to air conditioners, it only applies to appliances having:
- integral burners under the control of fully automatic burner control systems,
- closed system refrigerant circuits in which the refrigerant does not come into direct contact with the water or air to be cooled or heated,
- mechanical means to assist transportation of the combustion air and/or the flue gas.
The above appliances can have one or more primary or secondary functions (i.e. heat recovery - see definitions in EN 12309-1:2023).
In the case of packaged units (consisting of several parts), this document applies only to those designed and supplied as a complete package.
The appliances having their condenser cooled by air and by the evaporation of external additional water are not covered by EN 12309.
Installations used for heating and/or cooling of industrial processes are not within the scope of EN 12309.
All the symbols given in this document are used regardless of the language used.
1.2 Scope of this Part 6 to EN 12309
This part of EN 12309 specifies the calculation methods of seasonal performances for gas-fired sorption appliances for heating and/or cooling with a net heat input not exceeding 70 kW. It deals in particular with the calculation methods of reference seasonal performances in cooling and heating mode for monovalent and bivalent appliances.
- Draft47 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies methods for the evaluation of some aspects of the behaviour of nonwoven fabrics in the presence of liquids. In particular:
— the liquid absorbency time;
— the liquid absorptive capacity;
— the liquid wicking rate (capillarity).
The different aspects of absorbency can relate to various end uses of the tested products.
The tests do not apply to any fabric containing super absorbent materials.
- Draft13 pagesEnglish languagesale 10% offe-Library read for1 day
- Draft6 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies requirements for the installation of permanently installed liquefied petroleum gas (LPG) systems and LPG-burning appliances on small craft.
This document is applicable to portable cooking appliances with internal LPG cartridges, with a capacity of 225 g or less (see Annex D).
This document is applicable to the storage of all LPG cylinders.
NOTE 1 National regulations can apply to the technical requirements of LPG cylinders.
This document does not contain procedures for commissioning new LPG installations or system maintenance or upgrades.
This document does not apply to LPG-fuelled propulsion engines or LPG-driven generators.
NOTE 2 National codes and procedures appropriate to the country concerned can be available.
- Draft25 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies the test suite structure (TSS) and test purposes (TPs) for evaluation of on-board equipment (OBE) and roadside equipment (RSE) to EN 15509.
Normative Annex A presents the test purposes for the OBE.
Normative Annex B presents the test purposes for the RSE.
Normative Annex C provides the protocol conformance test report (PCTR) proforma for OBE.
Normative Annex D provides the PCTR proforma for RSE.
- Draft120 pagesEnglish languagesale 10% offe-Library read for1 day
This TS provides requirements and ISO/IEC 17065 interpretations for Conformity Assessment Bodies (CABs) assessing Cloud Services
This TS is intended to be used by the National Accreditation Bodies (NABs), as well as CABs.
- Draft45 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62037-1:2025 deals with the general requirements and measuring methods for intermodulation (IM) level measurement of passive RF and microwave components, which can be caused by the presence of two or more transmitting signals. The test procedures given in this document give the general requirements and measurement methods required to characterize the level of unwanted IM signals using two transmitting signals. The IEC 62037 series addresses the measurement of PIM but does not cover the long-term reliability of a product with reference to its performance. This third edition cancels and replaces the second edition published in 2021. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) added clarification that PIM generation is typically frequency dependent and noted that testing with swept or multiple fixed frequencies often provides more accurate results; b) identified multi-port PIM analyzers as a possible test set-up topography; c) added specification that test power level does not exceed the power handling capability of the DUT; d) updated test specification to include missing parameters needed to properly define a PIM test; e) added clarification that PIM test reports include the maximum PIM value measured over the test duration; f) corrected error in Figure 3 that was erroneously changed in IEC 62037-1:2021.
- Draft19 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 60255-27:2023 specifies the product safety requirements for measuring relays and protection equipment having a rated AC voltage up to 1 000 V, or a rated DC voltage up to 1 500 V. This document specifies essential safety requirements to minimize the risk of fire and hazards caused by electric shock or injury to the user and property. This document specifies only product safety requirements; functional performance of the equipment is not covered. This document covers all the ways in which the equipment can be mounted and used in cabinets, racks and panels. This document also applies to auxiliary devices such as shunts, series resistors, transformers, auxiliary control panels, display devices, etc., that are used in conjunction with measuring relays and protection equipment and are tested together.
- Draft103 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies a test method for the qualification and quantification of organotin compounds by applying gas chromatography coupled with mass spectrometry. This test method is applicable to all types of footwear materials except metal hardware (see ISO/TR 16178).
- Standard22 pagesEnglish languagesale 10% offe-Library read for1 day
REN/ESI-0019411-1v151
- Standard60 pagesEnglish languagesale 15% off
- Standard60 pagesEnglish languagesale 15% off
- Standard60 pagesEnglish languagesale 10% offe-Library read for1 day
This document describes the basic requirements for the design and application of explosion suppression systems. This document also specifies test methods for evaluating the effectiveness and the scaling up of explosion suppression systems against defined explosions. This document covers:
- general requirements for explosion suppression system parts;
- evaluating the effectiveness of an explosion suppression system;
- evaluating the scale up of an explosion suppression system to larger than tested volumes;
- development and evaluation of design tools for explosion suppression systems;
- installation, operation and maintenance instructions for an explosion suppression system.
This document is applicable only to explosion suppression systems intended for the protection of closed, or essentially closed, enclosures in which an explosion could result as a consequence of ignition of an explosible mixture, e.g. dust-air, gas(vapour)-air, dust-gas(vapour)-air and mist-air.
This document is not applicable for explosions of materials listed below, or for mixtures containing some of those materials:
- unstable materials that are liable to dissociate;
- explosive materials;
- pyrotechnic materials;
- pyrophoric materials.
- Standard46 pagesEnglish languagesale 10% offe-Library read for1 day
This part of IEC 60079 specifies the construction and testing of intrinsically safe apparatus intended for use in an explosive atmosphere, and for associated apparatus which is intended for connection to intrinsically safe circuits which enter such atmospheres.
This Type of Protection is applicable to electrical equipment in which the electrical circuits themselves are incapable of causing ignition of a surrounding explosive atmosphere. This includes electrical equipment which contains circuits that are intrinsically safe only under certain conditions, for example under battery supply with mains supply removed.
This standard is also applicable to electrical equipment or parts of electrical equipment located outside the explosive atmosphere or protected by another Type of Protection listed in IEC 60079-0, where the intrinsic safety of the electrical circuits in the explosive atmosphere may depend upon the design and construction of such electrical equipment or parts of such electrical equipment. The electrical circuits exposed to the explosive atmosphere are assessed for use in such an atmosphere by applying this standard.
This standard applies to sensors connected to intrinsically safe circuits but does not apply to the protection of catalytic elements for Group IIC or Group IIB + H2.
The requirements for intrinsically safe systems are provided in IEC 60079-25.
This standard supplements and modifies the general requirements of IEC 60079-0, except as indicated in Table 1. Where a requirement of this standard conflicts with a requirement of IEC 60079-0, the requirement of this standard takes precedence.
Unless otherwise stated, the requirements in this standard are applicable to both intrinsically safe apparatus and associated apparatus, and the generic term "apparatus" is used throughout the standard.
As this standard applies only to electrical equipment, the term "equipment" used in the standard always means “electrical equipment”.
This standard applies to apparatus for use under the atmospheric conditions of IEC 60079-0 with additional requirements for for use at lower atmospheric pressures in the range from 60 kPa (0,6 bar), up to 110 kPa (1,1 bar).
[...]
- Standard222 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 80000-13:2025 specifies names, symbols and definitions for quantities and units used in information science and technology. Where appropriate, conversion factors are also given. Prefixes for binary multiples are also given. International Standard IEC 80000-13 has been prepared by IEC technical committee 25: Quantities and units in close cooperation with ISO/TC 12: Quantities and units.
This second edition cancels and replaces the first edition published in 2008. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
addition of new prefixes for binary multiples.
- Standard22 pagesEnglish languagesale 10% offe-Library read for1 day
NEXT ACTION: CCMC ACTION to request HAS assessment @ PUB when HAS system is operational
2022-01-17: Under discussion with the desk officer. upon the greenlight of the desk officer, it can be published.
- Amendment10 pagesEnglish languagesale 10% offe-Library read for1 day
This document specifies an open and extensible standard for residential, commercial, and industrial control and automation applications using the EN 14908-1 control network protocol and related protocols (EN 14908-2 to EN 14908-9) to provision and manage IoT devices, to access and update data from the devices, and to aggregate data from diverse devices and protocols for delivery to external applications and services.
The web services as specified in this document are implemented on a central gateway or edge server that communicates with multiple sensor, actuator, and controller edge devices using one or more edge protocols such as EN 14908-1, and also interfaces with one or more enterprise and cloud services or applications.
- Standard442 pagesEnglish languagesale 10% offe-Library read for1 day
NEXT ACTION: UNDER BT CONSULTATION SOON (finalization EN with revised Annex Z)
HAS CONSULTANT PUB ASSESSMENT BY 2020-09-24 -- non compliant assessment received
20200325: consultant assessment missing and Annex ZZ was not circulated at FV; document blocked until such a time as this can be resolved
- Amendment10 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 62391-2:2025 applies to electric double-layer capacitors for power application.
Electric double-layer capacitors for power are intended for applications that require discharge currents in the range from mA to A. The characteristics of the capacitors include such performance as relatively high capacitance and low internal resistance, which is applicable to Class 3 and Class 5 of the measurement classification specified in IEC 62391-1:2022.
The object of this document is to specify preferred ratings and characteristics and to select from IEC 62391-1:2022 the appropriate quality assessment procedures, tests and measuring methods and to give general performance requirements for this type of capacitor. Test severities and requirements specified in detail specifications referring to this document provide specific test severities and requirements of an equal or higher performance level.
The definition of power density and its calculating procedure can be found in Annex A.
This edition includes the following significant technical changes with respect to the previous edition:
a) the document has been completely restructured to comply with the ISO/IEC Directives, Part 2;
b) introduction of a new technical categorization for the test methods;
c) reorganization of the test methods have been according to these new categories;
d) revision of the tables, figures and references according to changes.
- Standard31 pagesEnglish languagesale 10% offe-Library read for1 day
1.1 This document specifies the electrical requirements for the design of automatic electrostatic application systems for liquid coating materials which can be ignited in an atomised state, used within a temperature range from 5 °C to 40 °C.
This document considers automatic electrostatic application systems for processing ignitable liquid coating materials, where the conductivity of the complete system is limited up to 50 nS/cm. Together with additional measures like e.g. potential separation systems, these requirements can also be applied to ignitable liquid coating materials, where the conductivity of the complete system is limited up to 2 000 μS/cm.
Ignition hazards related to the generated explosive atmosphere and the protection of persons against electric shock are considered.
1.2 This document specifies
- requirements for an interface to machinery according to EN 16985:2018,
- additional requirements for machinery covered by EN 1953:2025 and EN 12621:2025.
1.3 This document also specifies requirements for a safe operation of electrostatic application systems, including the electrical installation. The requirements consider both the processing of coating materials and the cleaning and purge processes.
1.4 This document applies to three types of spraying systems; see 5.1.1.
Spraying systems are classified as equipment of group II, category 2G (for intended use in zone 1 or zone 2) or category 3G (for intended use in zone 2).
Only electrostatic spraying systems operating with a d.c. sinusoidal ripple of not more than 10 % of the r.m.s. value are considered.
1.5 For electrostatic application systems used in food and pharmaceutical industry, additional requirements may apply.
1.6 This document does not apply to
- potential separation systems;
- selection, installation and application of other electrical and non-electrical equipment in areas with explosion hazard, see EN 60079-14:2014 and EN 16985:2018;
- quality assurance systems for electrostatic spraying equipment (see EN ISO/IEC 80079-34:2020, ZB.11).
- Standard55 pagesEnglish languagesale 10% offe-Library read for1 day
IEC 63461:2024 applies to laboratory model tests of any type of Pelton hydraulic turbine with unit power greater than 5 MW. It contains the rules governing test conduct and provides measures to be taken if any phase of the tests is disputed.
The main objectives of this document are:
- to define the terms and quantities used;
- to specify methods of testing and of measuring the quantities involved, in order to ascertain the hydraulic performance of the model;
- to specify the methods of computation of results and of comparison with guarantees;
- to determine if the contract guarantees that fall within the scope of this document have been fulfilled;
- and to define the extent, content and structure of the final report.
Full application of the procedures herein described is not generally justified for machines with smaller power. Nevertheless, this document can be used for such machines by agreement between the purchaser and the supplier.
- Standard1 pageEnglish and French languagesale 15% off
IEC TR 61850-90-30:2025, which is a Technical Report, describes extensions of the SCL Substation/Process Section allowing the creation of a comprehensive, IED and hardware independent specification of an IEC 61850 based power system.
It addresses how to:
• decompose functions in SCL
• show function classifications in SCL
• relate functions with the SCL Substation and Process Section
• relate functions to Logical Nodes and IEDs/Specification IEDs
• present information flow between functions in a hardware/implementation independent way
• position Functions in relation to "Application Schemes", "Distributed Functions", "Protection Schemes"
• consider the relationship to Basic Application Profiles (BAP) defined in IEC TR 61850-7-6
The document addresses the engineering process as far as it is related to the specification of Functions and their instantiation in IEC 61850 based power system. This includes the impact on the SCL Process Section during system configuration.
The engineering process related to the definition of Applications and their instantiation is addressed in the Basic Application Profile Document (BAP) in IEC TR 61850-7-6.
The System Configuration process is described in IEC 61850-6.
Modifications and extensions of SCL are done in a way to guarantee backwards compatibility.
In addition, this document introduces:
• Some further elements to SCL that improve the content and usefulness of SSD files and facilitate the handling of SCL files for engineering purposes,
• New variants of IED specific files: ISD file and FSD files,
• Evolution of the engineering rights management, to first improve the usage of SED and add a new concept of System Configuration Collaboration (SCC file) which allows collaboration on the same project with different engineers.
- Technical report184 pagesEnglish languagesale 15% off
IEC TS 62271-315:2025 is applicable to direct current (DC) transfer switches designed for indoor or outdoor installation and for operation on HVDC transmission systems having direct voltages of 100 kV and above. DC transfer switches normally include metallic return transfer switches (MRTS), earth return transfer switches (ERTS), neutral bus switches (NBS) and neutral bus earthing switches (NBES).
- Technical specification74 pagesEnglish languagesale 15% off
IEC TR 63515:2025 provides a conceptual framework for power system resilience. It covers the definition, evaluation metrics and methods, improvement strategies and uses cases of power system resilience. This document is applicable to developing resilient power system and implementing resilience improvement strategies.
This document is not exhaustive, and it is possible to consider other aspects, such as different application scenarios, evaluation methods, and improvement measures.
- Technical report39 pagesEnglish languagesale 15% off
IEC TR 62282-7-3:2025 is a generic assessment of the feasibility of standardizing accelerated test procedures (both proton exchange membrane (PEM) and oxide ion-conducting solid oxide cell (SOC) technologies) for fuel cell stacks that have been engineered for a specific system application. This document comprises a review of literature and projects, a discussion of the main physical phenomena of interest in accelerated testing campaigns (focusing on the cell and stack levels, not looking at the system as a black box), a compendium of measurement techniques that are applicable, and it suggests a macroscopic approach to the formulation of a representative accelerated testing campaign.
- Technical report29 pagesEnglish languagesale 15% off
IEC PAS 62443-2-2: 2025 provides guidance on the development, validation, operation, and maintenance of a set of technical, physical, and process security measures called Security Protection Scheme (SPS). The document’s goal is to provide the asset owner implementing an IACS Security Program (SP) with mechanisms and procedures to ensure that the design, implementation and operation of an SPS manage the risks resulting from cyberthreats to each of the IACS included in its operating facility.
The document is based on contents specified in other documents of the IEC 62443 series and explains how these contents can be used to support the development of technical, physical, and process security measures addressing the risks to the IACS during the operation phase.
- Technical specification44 pagesEnglish languagesale 15% off
IEC 60050-831:2025 gives the terms and definitions used in smart cities and smart city systems, as well as general terms pertaining to specific applications and associated technologies. This terminology is consistent with the terminology developed in the other specialized parts of the IEV. It has the status of a horizontal standard in accordance with IEC Guide 108.
- Standard50 pagesEnglish and French languagesale 15% off
IEC 61000-4-2: 2025 relates to the immunity requirements and test methods for electrical and electronic equipment subjected to static electricity discharges from operators directly and from personnel to adjacent objects. It additionally specifies ranges of test levels which relate to different environmental, and installation conditions and establishes test procedures. The objective of this document is to establish a common and reproducible basis for evaluating the performance of electrical and electronic equipment when subjected to electrostatic discharges. In addition, it includes electrostatic discharges which can occur from personnel to objects near the equipment. This document specifies:
- ideal waveform of the discharge current;
- range of test levels;
- test equipment;
- test setup;
- test procedure;
- calibration procedure;
- measurement uncertainty.
This document gives specifications for tests performed in laboratories and guidance to post-installation tests. This document is not intended to specify the tests to be applied to particular apparatus or systems. The main aim is to give a general basic reference to all concerned product committees. The product committees remain responsible for the appropriate choice of the tests and the severity level to be applied to their equipment. This document excludes tests intended to evaluate the ESD sensitivity of devices during handling and packaging. It is not intended for use in characterizing the performance of ESD protection circuit IEC Guide 107.
This document forms Part 4-2 of IEC 61000. It has the status of a basic EMC publication in accordance with IEC Guide 107. This third edition cancels and replaces the second edition published in 2008. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) added a calibration requirement for ESD generators with air discharge tip;
b) added a normative annex for test setups for particular kind of equipment (see Annex I);
c) added an informative annex for wearable devices (see Annex J);
d) added an informative annex on how to select test points and give guidance on how to specify the number of pulses for direct contact discharges (see Annex E);
e) moved Clause 9 into a new informative annex (see Annex K);
f) improvement of the current calibration procedure;
g) improvement of the measurement uncertainty considerations with examples of uncertainty budgets;
h) because post-installation tests cannot be performed in a controlled environment, this test method has been moved into a new informative Annex G.
- Standard163 pagesEnglish and French languagesale 15% off
IEC 62276:2025 applies to the manufacture of synthetic quartz, lithium niobate (LN), lithium tantalate (LT), lithium tetraborate (LBO), and lanthanum gallium silicate (LGS) single crystal wafers intended for use as substrates in the manufacture of surface acoustic wave (SAW) filters and resonators.
This edition includes the following significant technical changes with respect to the previous edition:
a) The terms and definitions, the technical requirements, sampling frequency, test methods and measurement of transmittance, lightness, colour difference for LN and LT have been added in order to meet the needs of industry development;
b) The term “inclusion” (mentioned in 4.13 and 6.10) and its definition have been added because there was no definition for it in Clause 3;
c) The specification of LTV and PLTV, and the corresponding description of sampling frequency for LN and LT have been added, because they are the key performance parameters for the wafers;
d) The tolerance of Curie temperature specification for LN and LT have been added in order to meet the development requirements of the industry;
e) Measurement of thickness, TV5, TTV, LTV and PLTV have been completed, including measurement principle and method of thickness, TV5, TTV, LTV and PLTV.
- Standard82 pagesEnglish and French languagesale 15% off
IEC 62282-7-2:2025 applies to SOFC cell/stack assembly units, testing systems, instruments and measuring methods, and specifies test methods to test the performance of SOFC cells and stacks. This document is not applicable to small button cells that are designed for SOFC material testing and provide no practical means of fuel utilization measurement. This document is used based on the recommendation of the entity that provides the cell performance specification or for acquiring data on a cell or stack in order to estimate the performance of a system based on it. Users of this document can selectively execute test items suitable for their purposes from those described in this document.
- Standard98 pagesEnglish and French languagesale 15% off
REN/MSG-TFES-15-3
- Standard67 pagesEnglish languagesale 15% off
- Standard67 pagesEnglish languagesale 15% off
- Standard67 pagesEnglish languagesale 10% offe-Library read for1 day
SIGNIFICANCE AND USE
4.1 Flash X-ray facilities provide intense bremsstrahlung radiation environments, usually in a single sub-microsecond pulse, which often fluctuates in amplitude, shape, and spectrum from shot to shot. Therefore, appropriate dosimetry must be fielded on every exposure to characterize the environment, see ICRU Report 34. These intense bremsstrahlung sources have a variety of applications which include the following:
(1) Studies of the effects of X-rays and gamma rays on materials.
(2) Studies of the effects of radiation on electronic devices such as transistors, diodes, and capacitors.
(3) Computer code validation studies.
4.2 This guide is written to assist the experimenter in selecting the needed dosimetry systems for use at pulsed X-ray facilities. This guide also provides a brief summary on how to use each of the dosimetry systems. Other guides (see Section 2) provide more detailed information on selected dosimetry systems in radiation environments and should be consulted after an initial decision is made on the appropriate dosimetry system to use. There are many key parameters which describe a flash X-ray source, such as dose, dose rate, spectrum, pulse width, etc., such that typically no single dosimetry system can measure all the parameters simultaneously. However, it is frequently the case that not all key parameters must be measured in a given experiment.
SCOPE
1.1 This guide provides assistance in selecting and using dosimetry systems in flash X-ray experiments. Both dose and dose rate techniques are described.
1.2 Operating characteristics of flash X-ray sources are given, with emphasis on the spectrum of the photon output.
1.3 Assistance is provided to relate the measured dose to the response of a device under test (DUT). The device is assumed to be a semiconductor electronic part or system.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Guide19 pagesEnglish languagesale 15% off
- Guide19 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
3.1 These tests are useful in sampling and testing solvent bearing bituminous compounds to establish uniformity of shipments.
SCOPE
1.1 These test methods cover procedures for sampling and testing solvent bearing bituminous compounds for use in roofing and waterproofing.
1.2 The test methods appear in the following order:
Section
Sampling
4
Uniformity
5
Weight per gallon
6
Nonvolatile content
7
Solubility
8
Ash content
9
Water content
10
Consistency
11
Behavior at 60 °C [140 °F]
12
Pliability at –0 °C [32 °F]
13
Aluminum content
14
Reflectance of aluminum roof coatings
15
Strength of laps of rolled roofing adhered with roof adhesive
16
Adhesion to damp, wet, or underwater surfaces
17
Mineral stabilizers and bitumen
18
Mineral matter
19
Volatile organic content
20
1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard9 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 This test method measures a lubricant's ability to protect hypoid final drive axles from abrasive wear, adhesive wear, plastic deformation, and surface fatigue when subjected to low-speed, high-torque conditions. Lack of protection can lead to premature gear or bearing failure, or both.
5.2 This test method is used, or referred to, in specifications and classifications of rear-axle gear lubricants such as:
5.2.1 Specification D7450.
5.2.2 American Petroleum Institute (API) Publication 1560.
5.2.3 SAE J308.
5.2.4 SAE J2360.
SCOPE
1.1 This test method, commonly referred to as the L-37-1 test, describes a test procedure for evaluating the load-carrying capacity, wear performance, and extreme pressure properties of a gear lubricant in a hypoid axle under conditions of low-speed, high-torque operation.3
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.2.1 Exceptions—Where there is no direct SI equivalent such as National Pipe threads/diameters, tubing size, or where there is a sole source supply equipment specification.
1.2.1.1 The drawing in Annex A6 is in inch-pound units.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are provided in 7.2 and 10.1.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard18 pagesEnglish languagesale 15% off
- Standard18 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The carbon residue value of burner fuel serves as a rough approximation of the tendency of the fuel to form deposits in vaporizing pot-type and sleeve-type burners. Similarly, provided alkyl nitrates are absent (or if present, provided the test is performed on the base fuel without additive) the carbon residue of diesel fuel correlates approximately with combustion chamber deposits.
5.2 The carbon residue value of motor oil, while at one time regarded as indicative of the amount of carbonaceous deposits a motor oil would form in the combustion chamber of an engine, is now considered to be of doubtful significance due to the presence of additives in many oils. For example, an ash-forming detergent additive may increase the carbon residue value of an oil yet will generally reduce its tendency to form deposits.
5.3 The carbon residue value of gas oil is useful as a guide in the manufacture of gas from gas oil, while carbon residue values of crude oil residuums, cylinder and bright stocks, are useful in the manufacture of lubricants.
SCOPE
1.1 This test method covers the determination of the amount of carbon residue (Note 1) left after evaporation and pyrolysis of an oil, and is intended to provide some indication of relative coke-forming propensities. This test method is generally applicable to relatively nonvolatile petroleum products which partially decompose on distillation at atmospheric pressure. Petroleum products containing ash-forming constituents as determined by Test Method D482 or IP Method 4 will have an erroneously high carbon residue, depending upon the amount of ash formed (Note 2 and Note 4).
Note 1: The term carbon residue is used throughout this test method to designate the carbonaceous residue formed after evaporation and pyrolysis of a petroleum product under the conditions specified in this test method. The residue is not composed entirely of carbon, but is a coke which can be further changed by pyrolysis. The term carbon residue is continued in this test method only in deference to its wide common usage.
Note 2: Values obtained by this test method are not numerically the same as those obtained by Test Method D524. Approximate correlations have been derived (see Fig. X1.1), but need not apply to all materials which can be tested because the carbon residue test is applied to a wide variety of petroleum products.
Note 3: The test results are equivalent to Test Method D4530, (see Fig. X1.2).
Note 4: In diesel fuel, the presence of alkyl nitrates such as amyl nitrate, hexyl nitrate, or octyl nitrate causes a higher residue value than observed in untreated fuel, which can lead to erroneous conclusions as to the coke forming propensity of the fuel. The presence of alkyl nitrate in the fuel can be detected by Test Method D4046.
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.3 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Prin...
- Standard7 pagesEnglish languagesale 15% off
- Standard7 pagesEnglish languagesale 15% off
ABSTRACT
This specification covers coal tar roof cement suitable for trowel application in coal tar roofing and flashing systems. The chemical composition of coal tar roof cement shall conform to the requirements prescribed. The water, non-volatile matter, insoluble matter, behaviour at 60 deg. C, adhesion to wet surfaces, and flash point shall be tested to meet the requirements prescribed.
SCOPE
1.1 This specification covers coal tar roof cement suitable for trowel application in coal tar roofing and flashing systems.
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification2 pagesEnglish languagesale 15% off
ABSTRACT
This specification covers grades of fuel oil intended for use in various types of fuel-oil-burning equipment under various climatic and operating conditions. These grades include the following: Grades No. 1 S5000, No. 1 S500, No. 2 S5000, and No. 2 S500 for use in domestic and small industrial burners; Grades No. 1 S5000 and No. 1 S500 adapted to vaporizing type burners or where storage conditions require low pour point fuel; Grades No. 4 (Light) and No. 4 (Heavy) for use in commercial/industrial burners; and Grades No. 5 (Light), No. 5 (Heavy), and No. 6 for use in industrial burners. Preheating is usually required for handling and proper atomization. The grades of fuel oil shall be homogeneous hydrocarbon oils, free from inorganic acid, and free from excessive amounts of solid or fibrous foreign matter. Grades containing residual components shall remain uniform in normal storage and not separate by gravity into light and heavy oil components outside the viscosity limits for the grade. The grades of fuel oil shall conform to the limiting requirements prescribed for: (1) flash point, (2) water and sediment, (3) physical distillation or simulated distillation, (4) kinematic viscosity, (5) Ramsbottom carbon residue, (6) ash, (7) sulfur, (8) copper strip corrosion, (9) density, and (10) pour point. The test methods for determining conformance to the specified properties are given.
SCOPE
1.1 This specification (see Note 1) covers grades of fuel oil intended for use in various types of fuel-oil-burning equipment under various climatic and operating conditions. These grades are described as follows:
1.1.1 Grades No. 1 S5000, No. 1 S500, No. 1 S15, No. 2 S5000, No. 2 S500, and No. 2 S15 are middle distillate fuels for use in domestic and small industrial burners. Grades No. 1 S5000, No. 1 S500, and No. 1 S15 are particularly adapted to vaporizing type burners or where storage conditions require low pour point fuel.
1.1.2 Grades B6–B20 S5000, B6–B20 S500, and B6–B20 S15 are middle distillate fuel/biodiesel blends for use in domestic and small industrial burners.
1.1.3 Grades No. 4 (Light) and No. 4 are heavy distillate fuels or middle distillate/residual fuel blends used in commercial/industrial burners equipped for this viscosity range.
1.1.4 Grades No. 5 (Light), No. 5 (Heavy), and No. 6 are residual fuels of increasing viscosity and boiling range, used in industrial burners. Preheating is usually required for handling and proper atomization.
Note 1: For information on the significance of the terminology and test methods used in this specification, see Appendix X1.
Note 2: A more detailed description of the grades of fuel oils is given in X1.3.
1.2 This specification is for the use of purchasing agencies in formulating specifications to be included in contracts for purchases of fuel oils and for the guidance of consumers of fuel oils in the selection of the grades most suitable for their needs.
1.3 Nothing in this specification shall preclude observance of federal, state, or local regulations which can be more restrictive.
1.4 The values stated in SI units are to be regarded as standard.
1.4.1 Non-SI units are provided in Table 1 and Table 2 and in 7.1.2.1/7.1.2.2 because these are common units used in the industry.
Note 3: The generation and dissipation of static electricity can create problems in the handling of distillate burner fuel oils. For more information on the subject, see Guide D4865.
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification13 pagesEnglish languagesale 15% off
- Technical specification13 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 Since the information provided by this test method is largely qualitative in nature, specific limits covering the following characteristics are required in referring to this test method in specifications for kerosene:
5.1.1 Duration of the test: 16 h is understood, if not otherwise specified;
5.1.2 Permissible change in flame shape and dimensions during the test;
5.1.3 Description of the acceptable appearance of the chimney deposit.
SCOPE
1.1 This test method covers the qualitative determination of the burning properties of kerosene to be used for illuminating purposes. (Warning—Combustible. Vapor harmful.)
Note 1: The corresponding Energy Institute (IP) test method is IP 10 which features a quantitative evaluation of the wick-char-forming tendencies of the kerosene, whereas Test Method D187 features a qualitative performance evaluation of the kerosene. Both test methods subject the kerosene to somewhat more severe operating conditions than would be experienced in typical designated applications.
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements appear throughout the test method.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard5 pagesEnglish languagesale 15% off
- Standard5 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The kinematic viscosity characterizes flow behavior. The method is used to determine the consistency of liquid asphalt as one element in establishing the uniformity of shipments or sources of supply. The specifications are usually at temperatures of 60 and 135 °C.
Note 3: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.
SCOPE
1.1 This test method covers procedures for the determination of kinematic viscosity of liquid asphalts, road oils, and distillation residues of liquid asphalts all at 60 °C [140 °F] and of liquid asphalt binders at 135 °C [275 °F] (see table notes, 11.1) in the range from 6 to 100 000 mm2/s [cSt].
1.2 Results of this test method can be used to calculate viscosity when the density of the test material at the test temperature is known or can be determined. See Annex A1 for the method of calculation.
Note 1: This test method is suitable for use at other temperatures and at lower kinematic viscosities, but the precision is based on determinations on liquid asphalts and road oils at 60 °C [140 °F] and on asphalt binders at 135 °C [275 °F] only in the viscosity range from 30 to 6000 mm2/s [cSt].
Note 2: Modified asphalt binders or asphalt binders that have been conditioned or recovered are typically non-Newtonian under the conditions of this test. The viscosity determined from this method is under the assumption that asphalt binders behave as Newtonian fluids under the conditions of this test. When the flow is non-Newtonian in a capillary tube, the shear rate determined by this method may be invalid. The presence of non-Newtonian behavior for the test conditions can be verified by measuring the viscosity with viscometers having different-sized capillary tubes. The defined precision limits in 11.1 may not be applicable to non-Newtonian asphalt binders.
1.3 Warning—Mercury has been designated by the United States Environmental Protection Agency (EPA) and many state agencies as a hazardous material that can cause central nervous system, kidney, and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury-containing products. See the applicable product Material Safety Data Sheet (MSDS) or Safety Data Sheet (SDS) for details and the EPA’s website—http://www.epa.gov/mercury/faq.htm—for additional information. Users should be aware that selling mercury, mercury-containing products, or both, in your state may be prohibited by state law.
1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.5 The text of this standard references notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior ...
- Standard11 pagesEnglish languagesale 15% off
- Standard11 pagesEnglish languagesale 15% off
ABSTRACT
This specification covers SEBS (styrene-ethylenebutylene-styrene)-modified mopping asphalt intended for use in built-up roof construction, construction of some modified bitumen systems, construction of bituminous vapor retarder systems, and for adhering insulation boards used in various types of roofing systems. This specification is intended as a material specification and issues regarding the suitability of specific roof constructions or application techniques are beyond its scope. The specified tests and property values are intended to establish minimum properties. In place system design criteria or performance attributes are factors beyond the scope of this specification. The base asphalt shall be prepared from crude petroleum and the SEBS-modified asphalt shall incorporate sufficient SEBS as the primary polymeric modifier. The SEBS modified asphalt shall be homogeneous and free of water and shall conform to the prescribed physical properties including (1) softening point before and after heat exposure, (2) softening point change, (3) flash point, (4) penetration before and after heat exposure, (5) penetration change, (6) solubility in trichloroethylene, (7) tensile elongation, (8) elastic recovery, and (9) low temperature flexibility. The sampling and test methods to determine compliance with the specified physical properties, as well as the evaluation for stability during heat exposure are detailed.
SCOPE
1.1 This specification covers SEBS (styrene-ethylene-butylene-styrene)-modified asphalt intended for use in built-up roof construction, construction of some modified bitumen systems, construction of bituminous vapor retarder systems, and for adhering insulation boards used in various types of roof systems.
1.2 This specification is intended as a material specification. Issues regarding the suitability of specific roof constructions or application techniques are beyond its scope.
1.3 The specified tests and property values used to characterize SEBS-modified asphalt are intended to establish minimum properties. In-place system design criteria or performance attributes are factors beyond the scope of this specification.
1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.5 This standard does not purport to address the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification3 pagesEnglish languagesale 15% off
ABSTRACT
This specification covers the physical requirements and testing of three types of lap cement for use with asphalt roll roofing. Type I is a brushing consistency lap cement intended for use in the exposed-nailing method of roll roofing application, and contains no mineral or other stabilizers. This type is further divided into two grades, as follows: Grade 1, which is made with an air-blown asphalt; and Grade 2, which is made with a vacuum-reduced or steam-refined asphalt. Both Types II and III, on the other hand, are heavy brushing or light troweling consistency lap cement intended for use in the concealed-nailing method of roll roofing application, only that Type II cement contains a quantity of short-fibered asbestos, while Type III cement contains a quantity of mineral or other stabilizers, or both, but contains no asbestos. The lap cements shall be sampled for testing, and shall adhere to specified values of the following properties: water content; distillation (total distillate at given temperatures); softening point of residue; solubility in trichloroethylene; and strength at indicated age.
SCOPE
1.1 This specification covers lap cement consisting of asphalt dissolved in a volatile petroleum solvent with or without mineral or other stabilizers, or both, for use with roll roofing. The fibered version of these cements excludes the use of asbestos fibers.
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.
1.3 The following precautionary caveat applies only to the test method portion, Section 6, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Technical specification2 pagesEnglish languagesale 15% off
RTS/TSGC-0329523vh70
- Standard46 pagesEnglish languagesale 15% off
RTS/TSGC-0329521vh50
- Standard77 pagesEnglish languagesale 15% off
DEN/ERM-TGAERO-31-2
- Standard38 pagesEnglish languagesale 15% off
- Standard38 pagesEnglish languagesale 15% off
- Standard38 pagesEnglish languagesale 10% offe-Library read for1 day
RTS/LI-00190-2
- Standard61 pagesEnglish languagesale 15% off
RTS/TSGS-0333128vf40
- Standard69 pagesEnglish languagesale 15% off
RTS/TSGC-0429230vf80
- Standard53 pagesEnglish languagesale 15% off
RTS/TSGR-0537571-4vf40
- Standard40 pagesEnglish languagesale 15% off
RTS/ITS-00190
- Standard24 pagesEnglish languagesale 15% off
RTS/TSGR-0436171vf10
- Standard40 pagesEnglish languagesale 15% off