Latest Standards, Engineering Specifications, Manuals and Technical Publications

Collection of latest documents from ISO, IEC, CEN, CENELEC, ETSI, and SIST.

This document lays down the requirements for the HBES Point API extension to the EN 50090 series, allowing vendor independent communication between smart home and building devices on IPv6 networks.

  • Draft
    192 pages
    English language
    e-Library read for
    1 day

IEC 61869-20:2025 This part of IEC 61869 specifies the requirements for the safe design and operation, and tests for the safety of instrument transformers whose highest voltage for equipment is higher than 1 kV AC or 1,5 kV DC. Low power instrument transformers are not covered by this document.

  • Draft
    15 pages
    English language
    e-Library read for
    1 day

The purpose of this document is to provide customers and their suppliers with a document specifying the notions of “construction” and “management” of product dependability and safety (RAMS).
It offers programme directors and project managers information likely to help them:
—   determine the tasks to be performed and the application procedures, according to the specific nature of the programme and its goals;
—   define and implement the provisions necessary for performing these tasks;
—   within programme execution, situate the various tasks involved in constructing and managing the RAMS of a product.
This document applies to all programmes that involve customer/supplier relation.
RAMS management concerns not only all the products covered by these programmes, but also the components of these products and the production and support resources and processes to be implemented.
The provisions of this document can be negotiated at all levels between the parties directly concerned by a given programme. This implies, on the part of the ordering parties, that each lower level is provided with the information needed to perform the tasks and meet the specified targets. This also implies, on the part of suppliers, an escalation of information pertaining to the RAMS results of the products for which they are responsible.
This document is mainly concerned with the technical aspects, aspects of a legislative (in particular safety at work and regulatory conformity) and confidential nature are not dealt with in this document.

  • Standard
    44 pages
    English language
    e-Library read for
    1 day

This document defines the common terms, abbreviations and references used throughout the EN 9300 series of standard parts.

  • Standard
    41 pages
    English language
    e-Library read for
    1 day

This document specifies the characteristics of multilayer mechanical locked floor covering with a wear-resistant and decorative surface layer supplied in panels (either tile or plank form). The floor panels are considered suitable for domestic and commercial levels of use and designed for floating installation.
This document does not apply to resilient floor panels for loose-laying according to EN ISO 20326, to multilayer wood floorings according to EN 13489, to wood veneer floor coverings according to EN 14354, to laminate floor covering according to EN 13329, EN 14978 and EN 15468 nor to products specified in EN ISO 10581, EN ISO 10582, EN ISO 24011, EN 12104 and ISO 14486.
This document is applicable to areas which are subject to frequent wetting, e.g. bathrooms, laundry rooms or saunas, only if specified by the producer.
This document also includes requirements for marking and packaging.
In Annex A (informative), optional properties are given. In Annex B (informative), a test method for the classification of the flexibility is given.

  • Standard
    15 pages
    English language
    e-Library read for
    1 day

This document specifies a test method for determining the leak tightness and the ease of operation and stop resistance of a valve made of thermoplastic material following an impact applied to the operating device.

  • Standard
    12 pages
    English language
    e-Library read for
    1 day

The purpose of this document is to provide customers and their suppliers with a document specifying the notions of product reliability "construction" and "management".
It offers programme directors and project managers information likely to help them:
-   determine the tasks to be performed and the application procedures, according to the specific nature of the programme and its goals;
-   define and implement the provisions necessary for performing these tasks;
-   within programme execution, situate the various tasks involved in constructing and managing the reliability of a product.
This document applies to all programmes (in particular aeronautical, space and armament programmes).
These reliability construction procedures concern not only all the products and its constituents covered by these programmes, but also the means and manufacturing processes to be implemented for their realization.
The provisions of this document can be negotiated at all levels between the parties directly concerned by a given programme. This implies, on the part of the customer, that each lower level is provided with the information necessary to perform tasks and meet the specified targets.

  • Standard
    30 pages
    English language
    e-Library read for
    1 day

This document establishes the currently recognized approaches and special considerations needed when evaluating the in vitro and in vivo performance of absorbable metals and implants fabricated, in whole or in part, from them. This document describes how the evaluation of these metals can differ from those utilized for permanent non-absorbable implantable implants (or subcomponents), in that absorbable metal implants (or subcomponents) are – by design – intended to be absorbed in their entirety by the host. This document provides guidance regarding the materials considerations, in vitro degradation/fatigue characterization, and biological evaluation of medical implants made of absorbable metals. The provided content is intended to deliver added clarity to the evaluation of these materials and implants to increase awareness of critical factors and reduce potential for generation of erroneous or misleading test results. While this document and the herein described referenced standards contain many suggested alterations or modifications to currently practiced procedures or specifications, the provided content is intended to complement, and not replace, current conventions regarding the assessment of implantable implants. This document covers the evaluation of absorbable metal specific attributes in general and is not intended to cover application or implant specific considerations. Thus, it is important to consult relevant implant and/or application specific standards. This document does not apply to non-absorbable or non-metallic components (e.g. polymeric coatings, pharmaceuticals, non-absorbable metals) used in conjunction with absorbable metal implants.

  • Technical specification
    14 pages
    English language

IEC 63270-1:2025 provides guidance on the functional structure model, procedure, method, interface of function blocks. It also offers guidance on data requirements for predictive maintenance of equipment, devices and systems for industrial automation applications. Condition monitoring is not only within the scope of this document but can also be an important input for predictive maintenance.

  • Draft
    44 pages
    English language
    e-Library read for
    1 day

IEC 62290-2:2025 specifies the functional requirements of UGTMS (urban guided transport management and command/control systems) for use in urban guided passenger transport lines and networks. This document is applicable for new lines or for upgrading existing signalling and command control systems. The IEC 62290 series specifies the functional, system and interface requirements for the command, control, and management systems intended to be used on urban, guided passenger transport lines and networks. These systems are designated herein as urban guided transport management and command/control systems (UGTMS). UGTMS cover a wide range of operations needs from non-automated (GOA1) to unattended (GOA4) operation. A line may be equipped with UGTMS on its full length or only partly equipped. The IEC 62290 series does not specifically address security issues. However, aspects of safety requirements may apply to ensuring security within the urban guided transit system. The main objectives of this series are as follows: * to provide a baseline system description and functional requirements specification for a transport authority to use in a request for proposal, * to provide recommendations for those transport authorities wishing to acquire an interoperable or interchangeable system. It is the responsibility of the transport authority concerned to decide on how to apply the IEC 62290 series and to take into account their particular needs. This document is applicable to applications using * continuous data transmission, * continuous supervision of train movements by train protection profile, and * localisation of trains by onboard UGTMS equipment (reporting trains), and optionally by external wayside (and optionally onboard) device. In this document, the functional requirements set the framework to which detailed functions are added to define any generic or specific application. Because of that, although this document is applicable as a basis to define SRS, FIS and FFFIS, elements can be added for a generic or specific application. This third edition cancels and replaces the second edition published in 2014. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) the functions 5.1.4.5 Stopping a train en route, 5.1.5.4 Monitor speed limit at discrete location, 5.5.5 Manage UGTMS transfer tracks, 5.6.4.1 Monitor passenger emergency calls and 6.2.4 Ensure connecting services have been deleted; b) the functions 5.5.11 Manage train washing, 5.5.12 Manage non-stopping areas and 6.3.4 Perform progressive shutdown have been added; c) many of the requirements have been reworded: changes in their wording could be only minor and editorial, or it could have technical consequences; d) some requirements of the second edition have been moved from one function/subfunction to another; e) some requirements have been deleted; f) some new requirements have been added in the existing functions; g) an informative annex giving the reader some user’s recommendations about this document has been added; h) another informative annex giving some typical performance-related criteria has been also added. i) an informative annex providing a summary of applicability of functions and subfunctions (mandatory or optional) depending on GOA has been added. In order to avoid any disturbance in the use of the document, when functions or requirements of IEC

  • Draft
    83 pages
    English language
    e-Library read for
    1 day

IEC 61987-41: 2025 provides: • a characterization for the integration of process analysers in the Common Data Dictionary (CDD), • generic structures for operating lists of properties (OLOP) and device lists of properties (DLOP) of measuring equipment in conformance with IEC 61987-10, • generic structures for Dynamic Data, e.g. for condition monitoring of process analysers. The generic structures for the OLOP and DLOP contain the most important blocks for process analysers. Blocks pertaining to a specific equipment type will be described in the corresponding part of the IEC 61987 standard series. Similarly, equipment properties are not part of this document. Thus, OLOP, DLOPs and LOPDs for selected process analysers families will be found in the IEC CDD.

  • Draft
    21 pages
    English language
    e-Library read for
    1 day

This document specifies a test method for determining the fire resistance of various elements of construction when subjected to fire exposure conditions, represented with standardized time-temperature curves. The test data thus obtained will permit subsequent classification on the basis of the duration for which the performance of the tested elements under these conditions satisfies specified criteria.

  • Standard
    48 pages
    English language

This document provides recommendations, requirements and checklists which can be used to support the specification and field testing of cryptographic modules in their field within an organization’s security system. The cryptographic modules have an overall security rating commensurate with the four security levels defined in ISO/IEC 19790:2025, to provide for: — a wide spectrum of data sensitivity (e.g. low-value administrative data, million-dollar funds transfers, life-protecting data, personal identity information, and sensitive information used by government), and — a diversity of application environments (e.g. a guarded facility, an office, removable media, and a completely unprotected location). This document is limited to the security related to the cryptographic module. It does not include assessing the security of the field or application environment. It does not define techniques for the identification, assessment and acceptance of the organization’s operational risk. This document applies to the field testers who perform the field testing for the cryptographic modules in their field and the authorizing officials of cryptographic modules.

  • Technical specification
    44 pages
    English language

This document contains selected examples for good practice approaches for the management of assets of wastewater systems. This document is intended as a supporting document for ISO 24516-3 and ISO 24516-4, which contain guidelines for the management of assets of wastewater systems. As such, this document can contribute to realize value from existing assets when following the guidelines for the management of assets of wastewater systems approaches in the strategic, tactical and operational plans given in ISO 24516-3 and ISO 24516-4. NOTE A recapitulative table of the examples covered in this document is provided in Annex A.

  • Technical report
    33 pages
    English language

IEC 63380-1:2025 defines the secure information exchange between local energy management systems and electric vehicle charging stations. The local energy management systems communicate to the charging station controllers via the resource manager. This document specifies use cases, the sequences of information exchange and generic data models.

  • Draft
    167 pages
    English language
    e-Library read for
    1 day

This document: — describes and specifies globally unique addresses and identifiers (ITS-S object identifiers) that are both internal and external to ITS stations and are used for ITS station management; — describes how ITS-S object identifiers and related technical parameters are used for classification, registration and management of ITS applications and ITS application classes; — describes how ITS-S object identifiers are used in the ITS communication protocol stack; — introduces an organizational framework for registration and management of ITS-S objects; — defines and specifies management procedures at a high functional level; — specifies an ASN.1 module for the identifiers, addresses and registry records identified in this document; and — specifies an ASN.1 module for a C-ITS data dictionary containing ASN.1 type definitions of general interest. This document is based on the architecture of an ITS station specified in ISO 21217 as a bounded secured managed domain (BSMD).

  • Standard
    46 pages
    English language
  • Standard
    49 pages
    French language
  • Standard
    49 pages
    French language

This document augments the capabilities of the mobile driving licence (mDL) standardized in ISO/IEC 18013-5 with the following additional functionality: — presentation of a mobile driving licence to a reader over the internet.

  • Technical specification
    42 pages
    English language

This document specifies the requirements for archival paper. It is applicable to unprinted papers intended for documents and publications required for permanent retention and frequent use. For these documents and publications, paper of high permanence and high durability is required. NOTE 1 Archival paper is primarily required for documents and publications intended to be kept permanently because of their high historical, legal or other significant value. Archival paper is for special purposes, not for common use. The use of the term “archival paper” does not imply that all papers kept in archives are “archival papers”. NOTE 2 For relationships between International Standards on paper permanence (ISO 9706), on archival paper permanence and durability (ISO 11108), and on paper stability for general graphic applications (ISO 20494), refer to Annex B.

  • Standard
    7 pages
    English language
  • Draft
    12 pages
    English language
    e-Library read for
    1 day

This document specifies a procedure for the determination of a rating of the source flow ripple, source impedance and pressure ripple levels generated by positive-displacement hydraulic motors, including bidirectional motors. This document is applicable to all types of positive-displacement motor operating under steady-state conditions, irrespective of size, for frequencies from 50 Hz to 3 500 Hz. It is applicable for the inlet port of positive-displacement motors.

  • Standard
    37 pages
    English language
  • Standard
    39 pages
    French language

This document establishes conformance testing for the requirement described in ISO/IEC 24787-2, which is: — work-sharing on-card biometric comparison. Measuring the performance of on-card biometric comparison algorithms such as error rates or speed is not within the scope of this document.

  • Standard
    6 pages
    English language

This document specifies the quality grades for sorted poly(ethylene terephtalate) (PET) wastes as well as specific test methods laying out those properties for which the supplying party of the waste makes information available to the receiving party. PET waste quality grades are based on pre-determined sets of characteristics, taking into account sectorial and market specificities and related information needs and tests methods. The document provides for a division of information between “Required Data”, where a statement is required, and additional “Optional Data” as agreed between the supplying and receiving party.
This document does not apply to the general characterization addressed in EN 15347-1.

  • Draft
    15 pages
    English language
    e-Library read for
    1 day

1.1   Scope of EN 1993-1-6
(1) EN 1993-1-6 provides rules for the structural design of plated steel structures that have the form of a shell of revolution (axisymmetric shell).
(2) This document is applicable to unstiffened fabricated axisymmetric shells formed from isotropic rolled plates using both algebraic and computational procedures, and to stiffened axisymmetric shells with different wall constructions using computational procedures. It also applies to associated circular or annular plates and to beam section rings and stringer stiffeners where they form part of the complete shell structure. The general computational procedures are applicable to all shell forms.
(3) This document does not apply to manufactured shells or to shell panels or to elliptical shell forms, except that its computational procedures are applicable to all shell structures. This document does not apply to structures under seismic or other dynamic loading. It does not cover the aspects of leakage of stored liquids or solids.
(4) Cylindrical and conical panels are not explicitly covered by this document. However, the provisions of 9.8 can be used provided that appropriate boundary conditions are taken into account.  
(5) This document defines the characteristic and design values of the resistance of the structure.
(6) This document is concerned with the requirements for design against the ultimate limit states of:
—   plastic failure;
—   cyclic plasticity;
—   buckling;
—   fatigue.
(7) Overall equilibrium of the structure (sliding, uplifting, overturning) is not included in this document. Special considerations for specific applications are included in the relevant application parts of EN 1993.
(8) Detailed formulae for the simple calculation of unstiffened cylinders, cones and spherical domes are given in the Annexes.
(9) Provisions for simple calculations on specific stiffened shell types are given in EN 1993-4-1.
(10) This document is intended for application to steel shell structures. Where no standard exists for shell structures made of other metals, including high strength steels, the provisions of this document are applicable provided the appropriate material properties of the metal are taken into account.
(11) The provisions of this document are intended to be applied within the temperature ranges defined in the relevant EN 1993 application parts.
(12) Where no application part defines a different range, this document applies to structures within the following limits:
—   design metal temperatures lie within the range −50 °C to +100 °C, except when using the special provisions given in 5.1;
—   radius to thickness ratios (r/t) within the range 50 to 2 000;
—   manufactured circular hollow sections according to EN 10210 and EN 10219 are outside the scope of this document and are covered by EN 1993-1-1. However, if no other provisions are available, the rules of this document are useful for manufactured circular hollow sections. In particular, this document is applicable to the design of manufactured piles (see EN 1993-5) provided the imperfections and tolerance requirements of EN 1993-5 are adopted in place of those specified in this document, and where no other standard covers the specific pile geometry.
NOTE 1   Experimental and theoretical data relating to manufactured circular hollow sections were not considered when this document was drafted. The application of this document to such structures therefore remains the responsibility of the user.  
NOTE 2   The stress design rules of this document can be rather conservative if applied to some geometries and loading conditions for relatively thick-walled shells.
NOTE 3   Thinner shells than r/t = 2 000 can be treated using these provisions but the provisions have not been verified for such thin shells.
NOTE 4   The maximum temperature is restricted so that the influence of creep can be ignored where high temperature creep effects are not covered by the relevant application part.
[...]

  • Draft
    160 pages
    English language
    e-Library read for
    1 day

This document specifies the quality grades for sorted polystyrene (PS) wastes as well as specific test methods laying out those properties for which the supplying party of the waste makes information available to the receiving party. PS waste quality grades are based on pre-determined sets of characteristics, taking into account sectorial and market specificities and related information needs and tests methods. The document provides for a division of information between “Required Data”, where a statement is required, and additional “Optional Data” as agreed between the supplying and receiving party.
This document does not apply to the general characterization addressed in EN 15347-1.

  • Draft
    15 pages
    English language
    e-Library read for
    1 day

This document is applicable to space heaters, inset appliances and cookers intended for mechanical fuelling with wood pellets and for manual fuelling with wood logs. They can be freestanding or inset appliances.
The intended use of the appliances is space heating in residential buildings and can be cooking. They can be fitted with a boiler (integral part of the appliance containing water to be heated up) for the supply of hot water for central heating systems.
These appliances typically use auxiliary energy which is measured in this standard as well. They are operated with natural draught and can be fan-assisted.
NOTE 1   A fan-assisted appliance does still operate under negative pressure in the flue gas system.
For inset appliances and especially their testing additional information can be necessary from EN 16510-2-2:2022.
These appliances burn wood pellets and wood logs only, in accordance with the appliance instructions. They only operate with the firedoors closed.
NOTE 2   These appliances can have an integral fuel hopper or be combined with an external fuel hopper.
These appliances can be fitted with a single or double combustion chamber having a single flue gas outlet.
This document specifies procedures for assessment and verification of constancy of performance (AVCP) of characteristics of combination appliances fired by wood logs and pellets.
This document is not applicable to appliances:
-   with boiler intended for water systems having water temperatures above 110°C and 3 bar and for sanitary hot water,
-   intended to be used with a pure horizontal exhaust (through the building wall),
-   with flue gas condensation in the appliance,
-   switching on / off for part load operation,
-   with simultaneous wood and pellet operation with a single flue gas outlet,
-   with non-automatic pellet loading,
-   with single combustion chamber and double flue gas outlet,
-   continuous burning appliances.
For clarity, all test methods are addressed in Annex A.

  • Draft
    41 pages
    English language
    e-Library read for
    1 day

This European Standard covers multi-firing sauna stoves in which the heating stones are separated from and indirectly heated by the fire and the flue gases and which may be re-fuelled with several fuel loads.
This European Standard specifies requirements relating to the design, manufacture, construction, safety and performance (efficiency and emission) of multi-firing sauna stoves fired by wood logs and provides instructions for them. Furthermore, it also gives provisions for evaluation of conformity (i.e. initial type testing (ITT) and factory production control (FPC) and marking of these products.
This standard is applicable to hand-fuelled intermittent burning multi-firing sauna stoves, which provide heat into the space where they are installed.
These multi-firing sauna stoves may be supplied either as an assembled appliance or as a manufacturer’s pre-designed unit consisting of pre-fabricated components designed to be built on site in accordance with the manufacturer’s specified assembly instructions. One-off installations are not included.
These multi-firing sauna stoves may burn only natural wood logs in accordance with the appliance operating instructions.
Single-firing heat storage sauna stoves, in which the stones are directly heated by the fire and the flue gases, which pass through them, are not covered by this European Standard. This standard is also not applicable to mechanically fed sauna stoves, sauna stoves having fan assisted combustion air, sauna stoves fitted with a boiler, sauna stoves with incorporated flue or sauna stoves having any electrical connection.

  • Draft
    39 pages
    English language
    e-Library read for
    1 day

This document specifies the quality grades for sorted polypropylene (PP) wastes as well as specific test methods laying out those properties for which the supplying party of the waste makes information available to the receiving party. Polypropylene waste quality grades are based on pre-determined sets of characteristics, taking into account sectorial and market specificities and related information needs and tests methods. The document provides for a division of information between “Required Data”, where a statement is required, and additional “Optional Data” as agreed between the supplying and receiving party.
This document does not apply to the general characterization addressed in EN 15347-1.

  • Draft
    12 pages
    English language
    e-Library read for
    1 day

This document is applicable to residential liquid fuel burning appliances intended for space heating.
This document specifies requirements relating to the design, manufacture, construction, safety and performance (efficiency and emission) of appliances fired by liquid fuel (hereafter referred to as “appliance(s)”) and provides instructions for them. Furthermore, it also gives provisions for the evaluation of conformity, i.e. initial type testing (ITT) and factory production control (FPC) and marking of these appliances.
This document specifies the test methods for the determination of the smoke number, and CO, NOx, and OGC emission test methods.
This document does not apply to:
-   built-in appliances;
-   appliances equipped with an atomizing burner;
-   appliances incorporating a boiler or connected to a water system.

  • Draft
    71 pages
    English language
    e-Library read for
    1 day

This document specifies the quality grades for sorted Polyethylene (PE) wastes as well as specific test methods laying out those properties for which the supplying party of the waste makes information available to the receiving party. Polyethylene waste quality grades are based on pre-determined sets of characteristics, taking into account sectorial and market specificities and related information needs and tests methods. The document provides for a division of information between “Required Data”, where a statement is required, and additional “Optional Data” as agreed between the supplying and receiving party.
This document does not apply to the general characterization addressed in EN 15347-1.

  • Draft
    19 pages
    English language
    e-Library read for
    1 day

This document specifies the quality grades for sorted poly(vinyl chloride) (PVC) wastes as well as specific test methods laying out those properties for which the supplying party of the waste makes information available to the receiving party. PVC waste quality grades are based on pre-determined sets of characteristics, taking into account sectorial and market specificities and related information needs and tests methods. The document provides for a division of information between “Required Data”, where a statement is required, and additional “Optional Data” as agreed between the supplying and receiving party.
This document does not apply to the general characterization addressed in EN 15347-1.

  • Draft
    11 pages
    English language
    e-Library read for
    1 day

The existing Annex ZB is still incorrectly referring to the old 97/23/EC Directive. Reference should be made to Directive 2014/68/EU for pressure equipment. To be done via this WI.

  • Draft
    5 pages
    English language
    e-Library read for
    1 day

This document specifies a method for determination of the mechanical durability of pellets. The mechanical durability is a measure of the resistance of compressed fuels towards shocks and/or abrasion as a consequence of handling and transportation.

  • Standard
    14 pages
    English language
    e-Library read for
    1 day

This document specifies methods for the determination of major and minor element concentrations in solid recovered fuels after digestion by the use of different acid mixtures and by addition of a fluxing agent for solid recovered fuel (SRF) ash.
a)       Method A: Microwave assisted digestion with hydrochloric, nitric and hydrofluoric acid mixture (6 ml HCl; 2 ml HNO3; 2 ml HF) followed by boric acid complexation;
b)       Method AT: Microwave assisted digestion with hydrochloric, nitric and tetrafluoroboric acid mixture (6 ml HCl; 2 ml HNO3; 4 ml HBF4);
c)        Method B: Microwave assisted digestion with hydrochloric, nitric and hydrofluoric acid mixture (0,5 ml HCl; 6 ml HNO3; 1 ml HF) followed by boric acid complexation;
d)       Method BT: Microwave assisted digestion with hydrochloric, nitric and tetrafluoroboric acid mixture (0,5 ml HCl; 6 ml HNO3; 2 ml HBF4);
e)       Method C: Microwave assisted digestion with nitric acid, hydrogen peroxide and hydrofluoric acid mixture (2,5 ml H2O2; 5 ml HNO3; 0,4 ml HF) and optional boric acid complexation;
f)         Method CT: Microwave assisted digestion with nitric acid, hydrogen peroxide and tetrafluoroboric acid mixture (2,5 ml H2O2; 5 ml HNO3; 0,8 ml HBF4);
g)       Method D: Digestion of the ashed SRF sample with fluxing agent lithium metaborate in an oven at 1 050 °C.
This document is applicable for the following major and minor/trace elements:
—     Major elements: aluminium (Al), calcium (Ca), iron (Fe), potassium (K), magnesium (Mg), sodium (Na), phosphorus (P), sulfur (S), silicon (Si) and titanium (Ti).
—     Minor/trace elements: arsenic (As), barium (Ba), beryllium (Be), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), molybdenum (Mo), manganese (Mn), nickel (Ni), lead (Pb), antimony (Sb), selenium (Se), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn).
Method A is applicable for general use for SRF and ashed SRFs, but the amount of the test portion can be very low in case of high concentration of organic matter. Method AT can be used if an alternative to HF is necessary.
Method B with a higher volume of nitric acid is applicable for SRFs with high organic matter (e.g. suitable for high plastic content) that can be difficult to digest with less nitric acid or as a substitute for method A if appropriate equipment is not available. Method BT can be used if an alternative to HF is necessary.
Method C with combination of nitric acid and hydrogen peroxide and addition of hydrofluoric acid is applicable for wood based SRFs (e.g. demolition wood) or when there is a need for comparability to solid biofuel standards. Method CT can be used if an alternative to HF is necessary.
Method D is specifically applicable for determination of major elements in ashed SRF samples.
XRF can be used for the analysis of major elements (Al, Ca, Fe, K, Mg, Na, P, S, Si, Ti) after ashing (815 °C) of the samples and several major and minor/trace elements in SRF can be analysed by XRF after suitable calibration provided that the concentration levels are above instrumental detection limits of the XRF instrumentation and after proper preliminary testing and validation.
Digestion methods with HF and subsequent boric acid complexation or application of method D are applicable for determination of Si and Ti (better digestion efficiency).
Alternative digestion methods can be applied, if their performance is proved to be comparable with those of the methods described in this document.

  • Standard
    92 pages
    English language
    e-Library read for
    1 day

This document specifies a method to determine the influence of site-applied cement based materials and associated non-cement based products/materials (including pre-packaged mortars) on the odour, flavour, colour, turbidity and total organic carbon (TOC) of test waters after contact with the products.
This document is applicable to site-applied or site-formed cement based materials intended to be used for the transport and storage of water intended for human consumption, including raw water used for the production of drinking water. It is also applicable to individual constituents of cement based products/materials and to associated non-cement based products/materials.
Site-applied or site-formed cement based materials which cannot be cast as cubes or prisms e.g. some spray applied systems, should be tested as factory made cement based products according to EN 14944−1.
NOTE   Tests with the specified test water will not necessarily be representative of materials used in different kinds of waters and especially very soft waters.

  • Standard
    56 pages
    English language
    e-Library read for
    1 day

This European Standard deals with the safety of electric commercial amusement machines and personal service machines, their rated voltage being not more than 250 V for single-phase appliances and 480 V for other appliances. Examples of appliances that are within the scope of this standard are: amusement machines; tables; bowling machines; dartboards; driving simulators; gaming machines; kiddie rides; laser shooting appliances; pinball machines; video games; personal service machines; card re-value machines; currency dispensers; luggage lockers; weighing machines; shoe shining appliances. As far as is practicable, this standard deals with the common hazards presented by appliances that are encountered by users and maintenance persons

  • Amendment
    4 pages
    English language
    e-Library read for
    1 day

This part of IEC 60204 applies to electrical, electronic, programmable electronic equipment and systems to hoisting machines and related equipment, including a group of hoisting machines working together in a co-ordinated manner NOTE 1 In this part of IEC 60204, the term "electrical" includes both electrical and electronic matters (i.e. "electrical equipment" means both the electrical, electronic and programmable electronic equipment). NOTE 2 In the context of this part of IEC 60204, the term “person” refers to any individual and includes those persons who are assigned and instructed by the user or user’s agent(s) in the use and care of the hoisting machine in question. The equipment covered by this part of IEC 60204 commences at the point of connection of the supply to the electrical equipment of the hoisting machine (crane-supply-switch) and includes systems for power supply and control feeders situated outside of the hoisting machine, for example, flexible cables or conductor wires or conductor bars (see Figure 3). NOTE 3 The requirements for the electrical supply installation of electrical equipment of a hoisting machine are given in IEC 60364. This standard is applicable to equipment or parts of equipment not exceeding 1 000 V AC or 1 500 V DC between lines and with nominal frequencies not exceeding 200 Hz. NOTE 4 Special requirements for electrical equipment of hoisting machines intended to be operated at higher voltages, see IEC 60204-11 (Annex D) This part of IEC60204 does not cover all the requirements (for example guarding, interlocking, or control) that are needed or required by other standards or regulations in order to protect persons from hazards other than electrical hazards. Each type of hoisting machine has unique requirements to be accommodated to provide adequate safety. This part of 60204 doesn´t cover noise risks and vibration risks. Additional and special requirements can apply to the electrical equipment of hoisting machines including those that - handle or transport potentially explosive material (e.g. paint or sawdust); - are intended for use in potentially explosive and/or flammable atmospheres; - have special risks when transporting or moving certain materials - are intended for use in mines. For the purposes of this standard, hoisting machines include cranes of all types, winches of all types and storage and retrieval machines. The following product groups are included: - overhead travelling cranes; - mobile cranes; - tower cranes; - slewing luffing cranes; - gantry cranes; - offshore cranes; - floating cranes; - winches of all types; - hoists and accessories; - loader cranes; - cable cranes; - load holding devices; - storage and retrieval machines; - monorail hoists; - straddle carriers; - rubber tyred gantry cranes (RTGs). NOTE 5 Definition of the different crane types see ISO 4306-1 This standard does not cover individual items of electrical equipment other than their selection for use and their erection.

  • Draft
    141 pages
    English language
    e-Library read for
    1 day

This European Standard deals with the safety of - portable heated carpets; - heated carpets and similar appliances; - heating units to heat the room in which they are located and that are intended to be installed directly under materials used as a removable floor covering such as carpet, cushion vinyl, or loose laid laminate, their rated voltage being not more than 250 V for single-phase installations and 480 V for other installations, including direct current (DC) supplied appliances.

  • Amendment
    4 pages
    English language
    e-Library read for
    1 day

The present document specifies technical requirements, limits and test methods for Short Range Devices in the non-
specific category operating in the frequency range 25 MHz to 1 000 MHz.
The non specific SRD category is defined by the EU Commission Decision 2019/1345/EU [i.3] as:
"The non-specific short-range device category covers all kinds of radio devices, regardless of the application or the
purpose, which fulfil the technical conditions as specified for a given frequency band. Typical uses include telemetry,
telecommand, alarms, data transmissions in general and other applications".
These radio equipment types are capable of transmitting up to 500 mW effective radiated power and operating indoor or
outdoor.
NOTE: The relationship between the present document and the essential requirements of article 3.2 of
Directive 2014/53/EU [i.2] is given in Annex A

  • Standard
    107 pages
    English language
  • Standard
    107 pages
    English language
  • Standard
    107 pages
    English language
    e-Library read for
    1 day

DEN/ERM-TG28-561

  • Standard
    100 pages
    English language
  • Standard
    100 pages
    English language
  • Standard
    100 pages
    English language
    e-Library read for
    1 day

IEC 63461:2024 applies to laboratory model tests of any type of Pelton hydraulic turbine with unit power greater than 5 MW. It contains the rules governing test conduct and provides measures to be taken if any phase of the tests is disputed.
The main objectives of this document are:
- to define the terms and quantities used;
- to specify methods of testing and of measuring the quantities involved, in order to ascertain the hydraulic performance of the model;
- to specify the methods of computation of results and of comparison with guarantees;
- to determine if the contract guarantees that fall within the scope of this document have been fulfilled;
- and to define the extent, content and structure of the final report.
Full application of the procedures herein described is not generally justified for machines with smaller power. Nevertheless, this document can be used for such machines by agreement between the purchaser and the supplier.

  • Standard
    1 page
    English and French language

IEC TR 62282-7-3:2025 is a generic assessment of the feasibility of standardizing accelerated test procedures (both proton exchange membrane (PEM) and oxide ion-conducting solid oxide cell (SOC) technologies) for fuel cell stacks that have been engineered for a specific system application. This document comprises a review of literature and projects, a discussion of the main physical phenomena of interest in accelerated testing campaigns (focusing on the cell and stack levels, not looking at the system as a black box), a compendium of measurement techniques that are applicable, and it suggests a macroscopic approach to the formulation of a representative accelerated testing campaign.

  • Technical report
    29 pages
    English language

IEC TS 62271-315:2025 is applicable to direct current (DC) transfer switches designed for indoor or outdoor installation and for operation on HVDC transmission systems having direct voltages of 100 kV and above. DC transfer switches normally include metallic return transfer switches (MRTS), earth return transfer switches (ERTS), neutral bus switches (NBS) and neutral bus earthing switches (NBES).

  • Technical specification
    74 pages
    English language

IEC PAS 62443-2-2: 2025 provides guidance on the development, validation, operation, and maintenance of a set of technical, physical, and process security measures called Security Protection Scheme (SPS). The document’s goal is to provide the asset owner implementing an IACS Security Program (SP) with mechanisms and procedures to ensure that the design, implementation and operation of an SPS manage the risks resulting from cyberthreats to each of the IACS included in its operating facility.
The document is based on contents specified in other documents of the IEC 62443 series and explains how these contents can be used to support the development of technical, physical, and process security measures addressing the risks to the IACS during the operation phase.

  • Technical specification
    44 pages
    English language

IEC TR 61850-90-30:2025, which is a Technical Report, describes extensions of the SCL Substation/Process Section allowing the creation of a comprehensive, IED and hardware independent specification of an IEC 61850 based power system.
It addresses how to:
• decompose functions in SCL
• show function classifications in SCL
• relate functions with the SCL Substation and Process Section
• relate functions to Logical Nodes and IEDs/Specification IEDs
• present information flow between functions in a hardware/implementation independent way
• position Functions in relation to "Application Schemes", "Distributed Functions", "Protection Schemes"
• consider the relationship to Basic Application Profiles (BAP) defined in IEC TR 61850-7-6
The document addresses the engineering process as far as it is related to the specification of Functions and their instantiation in IEC 61850 based power system. This includes the impact on the SCL Process Section during system configuration.
The engineering process related to the definition of Applications and their instantiation is addressed in the Basic Application Profile Document (BAP) in IEC TR 61850-7-6.
The System Configuration process is described in IEC 61850-6.
Modifications and extensions of SCL are done in a way to guarantee backwards compatibility.
In addition, this document introduces:
• Some further elements to SCL that improve the content and usefulness of SSD files and facilitate the handling of SCL files for engineering purposes,
• New variants of IED specific files: ISD file and FSD files,
• Evolution of the engineering rights management, to first improve the usage of SED and add a new concept of System Configuration Collaboration (SCC file) which allows collaboration on the same project with different engineers.

  • Technical report
    184 pages
    English language

IEC TR 63515:2025 provides a conceptual framework for power system resilience. It covers the definition, evaluation metrics and methods, improvement strategies and uses cases of power system resilience. This document is applicable to developing resilient power system and implementing resilience improvement strategies.
This document is not exhaustive, and it is possible to consider other aspects, such as different application scenarios, evaluation methods, and improvement measures.

  • Technical report
    39 pages
    English language

IEC 60050-831:2025 gives the terms and definitions used in smart cities and smart city systems, as well as general terms pertaining to specific applications and associated technologies. This terminology is consistent with the terminology developed in the other specialized parts of the IEV. It has the status of a horizontal standard in accordance with IEC Guide 108.

  • Standard
    50 pages
    English and French language

IEC 62282-7-2:2025 applies to SOFC cell/stack assembly units, testing systems, instruments and measuring methods, and specifies test methods to test the performance of SOFC cells and stacks. This document is not applicable to small button cells that are designed for SOFC material testing and provide no practical means of fuel utilization measurement. This document is used based on the recommendation of the entity that provides the cell performance specification or for acquiring data on a cell or stack in order to estimate the performance of a system based on it. Users of this document can selectively execute test items suitable for their purposes from those described in this document.

  • Standard
    98 pages
    English and French language

IEC 62276:2025 applies to the manufacture of synthetic quartz, lithium niobate (LN), lithium tantalate (LT), lithium tetraborate (LBO), and lanthanum gallium silicate (LGS) single crystal wafers intended for use as substrates in the manufacture of surface acoustic wave (SAW) filters and resonators.
This edition includes the following significant technical changes with respect to the previous edition:
a) The terms and definitions, the technical requirements, sampling frequency, test methods and measurement of transmittance, lightness, colour difference for LN and LT have been added in order to meet the needs of industry development;
b) The term “inclusion” (mentioned in 4.13 and 6.10) and its definition have been added because there was no definition for it in Clause 3;
c) The specification of LTV and PLTV, and the corresponding description of sampling frequency for LN and LT have been added, because they are the key performance parameters for the wafers;
d) The tolerance of Curie temperature specification for LN and LT have been added in order to meet the development requirements of the industry;
e) Measurement of thickness, TV5, TTV, LTV and PLTV have been completed, including measurement principle and method of thickness, TV5, TTV, LTV and PLTV.

  • Standard
    82 pages
    English and French language

IEC 61000-4-2: 2025 relates to the immunity requirements and test methods for electrical and electronic equipment subjected to static electricity discharges from operators directly and from personnel to adjacent objects. It additionally specifies ranges of test levels which relate to different environmental, and installation conditions and establishes test procedures. The objective of this document is to establish a common and reproducible basis for evaluating the performance of electrical and electronic equipment when subjected to electrostatic discharges. In addition, it includes electrostatic discharges which can occur from personnel to objects near the equipment. This document specifies:
- ideal waveform of the discharge current;
- range of test levels;
- test equipment;
- test setup;
- test procedure;
- calibration procedure;
- measurement uncertainty.
This document gives specifications for tests performed in laboratories and guidance to post-installation tests. This document is not intended to specify the tests to be applied to particular apparatus or systems. The main aim is to give a general basic reference to all concerned product committees. The product committees remain responsible for the appropriate choice of the tests and the severity level to be applied to their equipment. This document excludes tests intended to evaluate the ESD sensitivity of devices during handling and packaging. It is not intended for use in characterizing the performance of ESD protection circuit IEC Guide 107.
This document forms Part 4-2 of IEC 61000. It has the status of a basic EMC publication in accordance with IEC Guide 107. This third edition cancels and replaces the second edition published in 2008. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) added a calibration requirement for ESD generators with air discharge tip;
b) added a normative annex for test setups for particular kind of equipment (see Annex I);
c) added an informative annex for wearable devices (see Annex J);
d) added an informative annex on how to select test points and give guidance on how to specify the number of pulses for direct contact discharges (see Annex E);
e) moved Clause 9 into a new informative annex (see Annex K);
f) improvement of the current calibration procedure;
g) improvement of the measurement uncertainty considerations with examples of uncertainty budgets;
h) because post-installation tests cannot be performed in a controlled environment, this test method has been moved into a new informative Annex G.

  • Standard
    163 pages
    English and French language

REN/MSG-TFES-15-3

  • Standard
    67 pages
    English language
  • Standard
    67 pages
    English language
  • Standard
    67 pages
    English language
    e-Library read for
    1 day

SIGNIFICANCE AND USE
4.1 This practice is useful as a screening basis for acceptance or rejection of transparencies during manufacturing so that units with identifiable flaws will not be carried to final inspection for rejection at that time.  
4.2 This practice may also be employed as a go-no go technique for acceptance or rejection of the finished product.  
4.3 This practice is simple, inexpensive, and effective. Flaws identified by this practice, as with other optical methods, are limited to those that produce temperature gradients when electrically powered. Any other type of flaw, such as minor scratches parallel to the direction of electrical flow, are not detectable.
SCOPE
1.1 This practice covers a standard procedure for detecting flaws in the conductive coating (heater element) by the observation of polarized light patterns.  
1.2 This practice applies to coatings on surfaces of monolithic transparencies as well as to coatings imbedded in laminated structures.  
1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.  
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 6.  
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    4 pages
    English language

ABSTRACT
This specification covers the physical requirements and testing of three types of lap cement for use with asphalt roll roofing. Type I is a brushing consistency lap cement intended for use in the exposed-nailing method of roll roofing application, and contains no mineral or other stabilizers. This type is further divided into two grades, as follows: Grade 1, which is made with an air-blown asphalt; and Grade 2, which is made with a vacuum-reduced or steam-refined asphalt. Both Types II and III, on the other hand, are heavy brushing or light troweling consistency lap cement intended for use in the concealed-nailing method of roll roofing application, only that Type II cement contains a quantity of short-fibered asbestos, while Type III cement contains a quantity of mineral or other stabilizers, or both, but contains no asbestos. The lap cements shall be sampled for testing, and shall adhere to specified values of the following properties: water content; distillation (total distillate at given temperatures); softening point of residue; solubility in trichloroethylene; and strength at indicated age.
SCOPE
1.1 This specification covers lap cement consisting of asphalt dissolved in a volatile petroleum solvent with or without mineral or other stabilizers, or both, for use with roll roofing. The fibered version of these cements excludes the use of asbestos fibers.  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.  
1.3 The following precautionary caveat applies only to the test method portion, Section 6, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    2 pages
    English language

ABSTRACT
This specification covers coal tar roof cement suitable for trowel application in coal tar roofing and flashing systems. The chemical composition of coal tar roof cement shall conform to the requirements prescribed. The water, non-volatile matter, insoluble matter, behaviour at 60 deg. C, adhesion to wet surfaces, and flash point shall be tested to meet the requirements prescribed.
SCOPE
1.1 This specification covers coal tar roof cement suitable for trowel application in coal tar roofing and flashing systems.  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    2 pages
    English language

ABSTRACT
This specification covers coal tar primer suitable for use with coal tar pitch in roofing, dampproofing, and waterproofing below or above ground level, for application to concrete, masonry, and coal tar surfaces. Different tests shall be conducted in order to determine the following physical properties of coal tar primer: water content, consistency, specific gravity, matter insoluble in benzene, distillation, and coke residue content.
SCOPE
1.1 This specification covers coal tar primer suitable for use with coal tar pitch in roofing, dampproofing, and waterproofing below or above ground level, for application to concrete, masonry, and coal tar surfaces.  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    2 pages
    English language

ABSTRACT
This specification covers emulsified asphalt suitable for use as a protective coating for built-up roofs and other exposed surfaces with specified inclines. The emulsified asphalts are grouped into three types, as follows: Type I, which contains fillers or fibers including asbestos; Type II, which contains fillers or fibers other than asbestos; and Type III, which do not contain any form of fibrous reinforcement. These types are further subdivided into two classes, as follows: Class 1, which is prepared with mineral colloid emulsifying agents; and Class 2, which is prepared with chemical emulsifying agents. Other than consistency and homogeneity of the final products, they shall also conform to specified physical property requirements such as weight, residue by evaporation, ash content of residue, water content flammability, firm set, flexibility, resistance to water, and behavior during heat and direct flame tests.
SCOPE
1.1 This specification covers emulsified asphalt suitable for use as a protective coating for built-up roofs and other exposed surfaces with inclines of not less than 4 % or 42 mm/m [1/2 in./ft].  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    2 pages
    English language

SIGNIFICANCE AND USE
5.1 The carbon residue value of burner fuel serves as a rough approximation of the tendency of the fuel to form deposits in vaporizing pot-type and sleeve-type burners. Similarly, provided alkyl nitrates are absent (or if present, provided the test is performed on the base fuel without additive) the carbon residue of diesel fuel correlates approximately with combustion chamber deposits.  
5.2 The carbon residue value of motor oil, while at one time regarded as indicative of the amount of carbonaceous deposits a motor oil would form in the combustion chamber of an engine, is now considered to be of doubtful significance due to the presence of additives in many oils. For example, an ash-forming detergent additive may increase the carbon residue value of an oil yet will generally reduce its tendency to form deposits.  
5.3 The carbon residue value of gas oil is useful as a guide in the manufacture of gas from gas oil, while carbon residue values of crude oil residuums, cylinder and bright stocks, are useful in the manufacture of lubricants.
SCOPE
1.1 This test method covers the determination of the amount of carbon residue (Note 1) left after evaporation and pyrolysis of an oil, and is intended to provide some indication of relative coke-forming propensities. This test method is generally applicable to relatively nonvolatile petroleum products which partially decompose on distillation at atmospheric pressure. Petroleum products containing ash-forming constituents as determined by Test Method D482 or IP Method 4 will have an erroneously high carbon residue, depending upon the amount of ash formed (Note 2 and Note 4).  
Note 1: The term carbon residue is used throughout this test method to designate the carbonaceous residue formed after evaporation and pyrolysis of a petroleum product under the conditions specified in this test method. The residue is not composed entirely of carbon, but is a coke which can be further changed by pyrolysis. The term carbon residue is continued in this test method only in deference to its wide common usage.
Note 2: Values obtained by this test method are not numerically the same as those obtained by Test Method D524. Approximate correlations have been derived (see Fig. X1.1), but need not apply to all materials which can be tested because the carbon residue test is applied to a wide variety of petroleum products.
Note 3: The test results are equivalent to Test Method D4530, (see Fig. X1.2).
Note 4: In diesel fuel, the presence of alkyl nitrates such as amyl nitrate, hexyl nitrate, or octyl nitrate causes a higher residue value than observed in untreated fuel, which can lead to erroneous conclusions as to the coke forming propensity of the fuel. The presence of alkyl nitrate in the fuel can be detected by Test Method D4046.  
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.  
1.3 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.  
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Prin...

  • Standard
    7 pages
    English language
  • Standard
    7 pages
    English language

SIGNIFICANCE AND USE
5.1 The kinematic viscosity characterizes flow behavior. The method is used to determine the consistency of liquid asphalt as one element in establishing the uniformity of shipments or sources of supply. The specifications are usually at temperatures of 60 and 135 °C.
Note 3: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.
SCOPE
1.1 This test method covers procedures for the determination of kinematic viscosity of liquid asphalts, road oils, and distillation residues of liquid asphalts all at 60 °C [140 °F] and of liquid asphalt binders at 135 °C [275 °F] (see table notes, 11.1) in the range from 6 to 100 000 mm2/s [cSt].  
1.2 Results of this test method can be used to calculate viscosity when the density of the test material at the test temperature is known or can be determined. See Annex A1 for the method of calculation.  
Note 1: This test method is suitable for use at other temperatures and at lower kinematic viscosities, but the precision is based on determinations on liquid asphalts and road oils at 60 °C [140 °F] and on asphalt binders at 135 °C [275 °F] only in the viscosity range from 30 to 6000 mm2/s [cSt].
Note 2: Modified asphalt binders or asphalt binders that have been conditioned or recovered are typically non-Newtonian under the conditions of this test. The viscosity determined from this method is under the assumption that asphalt binders behave as Newtonian fluids under the conditions of this test. When the flow is non-Newtonian in a capillary tube, the shear rate determined by this method may be invalid. The presence of non-Newtonian behavior for the test conditions can be verified by measuring the viscosity with viscometers having different-sized capillary tubes. The defined precision limits in 11.1 may not be applicable to non-Newtonian asphalt binders.  
1.3 Warning—Mercury has been designated by the United States Environmental Protection Agency (EPA) and many state agencies as a hazardous material that can cause central nervous system, kidney, and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury-containing products. See the applicable product Material Safety Data Sheet (MSDS) or Safety Data Sheet (SDS) for details and the EPA’s website—http://www.epa.gov/mercury/faq.htm—for additional information. Users should be aware that selling mercury, mercury-containing products, or both, in your state may be prohibited by state law.  
1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.  
1.5 The text of this standard references notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.  
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior ...

  • Standard
    11 pages
    English language
  • Standard
    11 pages
    English language

ABSTRACT
This specification covers SEBS (styrene-ethylenebutylene-styrene)-modified mopping asphalt intended for use in built-up roof construction, construction of some modified bitumen systems, construction of bituminous vapor retarder systems, and for adhering insulation boards used in various types of roofing systems. This specification is intended as a material specification and issues regarding the suitability of specific roof constructions or application techniques are beyond its scope. The specified tests and property values are intended to establish minimum properties. In place system design criteria or performance attributes are factors beyond the scope of this specification. The base asphalt shall be prepared from crude petroleum and the SEBS-modified asphalt shall incorporate sufficient SEBS as the primary polymeric modifier. The SEBS modified asphalt shall be homogeneous and free of water and shall conform to the prescribed physical properties including (1) softening point before and after heat exposure, (2) softening point change, (3) flash point, (4) penetration before and after heat exposure, (5) penetration change, (6) solubility in trichloroethylene, (7) tensile elongation, (8) elastic recovery, and (9) low temperature flexibility. The sampling and test methods to determine compliance with the specified physical properties, as well as the evaluation for stability during heat exposure are detailed.
SCOPE
1.1 This specification covers SEBS (styrene-ethylene-butylene-styrene)-modified asphalt intended for use in built-up roof construction, construction of some modified bitumen systems, construction of bituminous vapor retarder systems, and for adhering insulation boards used in various types of roof systems.  
1.2 This specification is intended as a material specification. Issues regarding the suitability of specific roof constructions or application techniques are beyond its scope.  
1.3 The specified tests and property values used to characterize SEBS-modified asphalt are intended to establish minimum properties. In-place system design criteria or performance attributes are factors beyond the scope of this specification.  
1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.  
1.5 This standard does not purport to address the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    3 pages
    English language

SIGNIFICANCE AND USE
4.1 This procedure measures the amount of hydrogen gas generation potential of aluminized emulsion roof coating. There is the possibility of water reacting with aluminum pigment to generate hydrogen gas. This situation is to be avoided, so this test was designed to evaluate coating formulations and assess the propensity to gassing.
SCOPE
1.1 This test method covers a hydrogen gas and stability test for aluminum emulsified asphalt coatings.  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    4 pages
    English language

SIGNIFICANCE AND USE
4.1 Flash X-ray facilities provide intense bremsstrahlung radiation environments, usually in a single sub-microsecond pulse, which often fluctuates in amplitude, shape, and spectrum from shot to shot. Therefore, appropriate dosimetry must be fielded on every exposure to characterize the environment, see ICRU Report 34. These intense bremsstrahlung sources have a variety of applications which include the following:
(1) Studies of the effects of X-rays and gamma rays on materials.
(2) Studies of the effects of radiation on electronic devices such as transistors, diodes, and capacitors.
(3) Computer code validation studies.  
4.2 This guide is written to assist the experimenter in selecting the needed dosimetry systems for use at pulsed X-ray facilities. This guide also provides a brief summary on how to use each of the dosimetry systems. Other guides (see Section 2) provide more detailed information on selected dosimetry systems in radiation environments and should be consulted after an initial decision is made on the appropriate dosimetry system to use. There are many key parameters which describe a flash X-ray source, such as dose, dose rate, spectrum, pulse width, etc., such that typically no single dosimetry system can measure all the parameters simultaneously. However, it is frequently the case that not all key parameters must be measured in a given experiment.
SCOPE
1.1 This guide provides assistance in selecting and using dosimetry systems in flash X-ray experiments. Both dose and dose rate techniques are described.  
1.2 Operating characteristics of flash X-ray sources are given, with emphasis on the spectrum of the photon output.  
1.3 Assistance is provided to relate the measured dose to the response of a device under test (DUT). The device is assumed to be a semiconductor electronic part or system.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Guide
    19 pages
    English language
  • Guide
    19 pages
    English language