Latest Standards, Engineering Specifications, Manuals and Technical Publications

Collection of latest documents from ISO, IEC, CEN, CENELEC, ETSI, and SIST.

This document specifies polymers commonly used in manufacturing dental instruments.
It is applicable to polymers used to manufacture either an entire instrument or part of an instrument.
It is applicable to single-use and reusable dental instruments, whether they are connected to a power-driven system or not.
This document does not apply to oral appliances and devices (e.g. splints, mouthpieces, crowns, bridges, implants), to instruments used long-term in the mouth of the patient or to devices and instruments not made of polymers.
This document contains a selection of polymers suitable for use in the manufacture of dental instruments.

  • Standard
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a real-time PCR procedure for the quantitation of the amount of roe deer DNA relative to total mammalian DNA in meat and meat products.
Results of this roe deer assay are expressed in terms of roe deer (Capreolus capreolus) haploid genome copy numbers relative to total mammalian haploid genome copy numbers. The content of roe deer can also be expressed as mass fraction in % using gravimetrically prepared calibration material from meat mixtures or model samples.
The method has been previously validated in a collaborative study and applied to DNA extracted from samples that consist of raw roe deer meat in a raw pig meat background as well as raw and boiled sausages.
The limit of detection of the roe deer PCR has been determined experimentally to be at least 5 target gene copies or at least 0,1 % roe deer.
The compliance assessment process is not part of this document.

  • Standard
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the requirements and their test methods for elastomeric impression and bite registration materials.

  • Standard
    41 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the requirements for the function, design, performance and testing of brake indicators. It applies to brake indicators visible from the outside of the rail vehicle.

  • Standard
    26 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies laboratory test methods, test requirements and classifications for the casings of non-residential air handling units (AHU). For the leakage tests, a method for on-site testing is also included.
The test methods and requirements are applicable to both model boxes and real units, except for the thermal and acoustic performance of the casing.
The test method for the thermal performance of the casing is applicable to the comparison of different casing constructions, but not for the calculation of thermal losses through casing or the risk of condensation.
The test method for the acoustic performance of the casing is applicable for the comparison of different constructions, but not for the provision of accurate acoustic data for specific units.
This document is not applicable for fan-coil units and similar products.
The filter bypass test specified in this document is not applicable to high efficiency particulate air (HEPA) filter installations.

  • Standard
    56 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies general requirements and their test methods for dusters for applying formulated products in the form of dust with regard to minimizing the potential risk of environmental contamination during use.
Hand operated portable dusters (knapsack) are not included in this document.
This document deals with all the significant environmental hazards related to the duster, namely:
-   hazards due to involuntary or unnecessary application of PPP;
-   hazards due to point pollution;
-   hazards due to losses to other areas than the target;
-   hazards due to maintenance, servicing and cleaning operations;
-   hazards due to inspections, such as unavailability of means to connect measuring instruments.
This document does not deal with safety requirements for protection of the operator only.
NOTE   General safety requirements to protect the operator are covered by EN ISO 4254-1.
This document is not applicable to dusters manufactured before the date of its publication.

  • Standard
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the minimum requirements to meet by measuring systems fitted on track geometry measuring trolleys and manually operated devices to give an evaluation of track geometry quality when using one or more of the parameters described in EN 13848 1. It sets out the acceptable differences from EN 13848 1 when using track geometry measuring trolleys and manually operated devices to measure track geometry.
It applies to all track geometry measuring systems fitted to track geometry measuring trolleys and manually operated devices after the date of implementation of this document.
In the case of lightweight devices working at a speed higher than walking speed, or in the case of track geometry measuring systems installed on track recording cars but not measuring in loaded conditions as defined in EN 13848 1, the test procedure defined in EN 13848 2 is applicable.

  • Standard
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document applies to passenger body side entrance systems of all newly designed railway vehicles such as tram, metro, suburban, main-line and high-speed trains that carry passengers. The requirements of this document also apply to existing vehicles undergoing refurbishment of the door equipment, as far as it is reasonably practicable.
This document also specifies the requirements for testing of entrance systems.
This document makes reference to manual and power operated entrance systems. For manual doors, clauses referring to power operation are not applicable.
This document does not apply to the following:
-   Entrance systems for equipment access, inspection or maintenance purposes and for crew only use;
-   Doors on freight wagons; and
-   Doors or hatches specifically provided for escape under emergency conditions.
Where passenger bodyside entrance doors are to be used for staff access, EN 16116-1:2022, EN 16186-4:2019 and EN 16186-8:2022+A1:2024 provide the details for the staff access requirements.

  • Standard
    91 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 60730-2-8:2025 applies to electrically operated water valves • for use in, on, or in association with equipment for household appliance and similar use; NOTE 1 Throughout this document, the word "equipment" means "appliance and equipment" and "control" means "electrically operated water valve". EXAMPLE 1 Electrically operated water valves for appliances within the scope of IEC 60335. • for building automation within the scope of ISO 16484 series and IEC 63044 series (HBES/BACS); EXAMPLE 2 Independently mounted water valves, controls in smart grid systems and controls for building automation systems within the scope of ISO 16484-2. • for equipment that is used by the public, such as equipment intended to be used in shops, offices, hospitals, farms and commercial and industrial applications; EXAMPLE 3 Electrically operated water valves for commercial catering, heating and air-conditioning equipment. • that are smart enabled electrically operated water valves; EXAMPLE 4 Smart grid control, remote interfaces and controls of energy-consuming equipment including computer or smart phone. • that are AC or DC powered electrically operated water valves with a rated voltage not exceeding 690 V AC or 600 V DC; • used in, on, or in association with equipment that uses electricity, gas, oil, solid fuel, solar thermal energy, etc., or a combination thereof; • utilized as part of a control system or controls which are mechanically integral with multifunctional controls having non-electrical outputs; • using NTC or PTC thermistors and to discrete thermistors, requirements for which are contained in Annex J of Part 1; • responsive to or controlling such characteristics as temperature, pressure, passage of time, humidity, light, electrostatic effects, flow, or liquid level, current, voltage, acceleration, or combinations thereof; • in which actuators and valve bodies are designed to be fitted to each other. • as well as manual controls when such are electrically or mechanically integral with automatic controls. NOTE 2 Requirements for manually actuated mechanical switches not forming part of an automatic control are contained in IEC 61058-1-1. This document applies to - the inherent safety of electrically operated water valves, and - functional safety of electrically operated water valves and safety related systems, - controls where the performance (for example the effect of EMC phenomena) of the product can impair the overall safety and performance of the controlled system, - the operating values, operating times, and operating sequences where such are associated with equipment safety. This document specifies the requirements for construction, operation and testing of electrically operated water valves used in, on, or in association with an equipment. This document contains requirements for electrical features of water valves and requirements for mechanical features of valves that affect their intended operation. This document does not • apply to electrically operated water valves intended exclusively for industrial process applications unless explicitly mentioned in the relevant Part 2 or the equipment standard. However, this document can be applied to evaluate automatic electrical controls intended specifically for industrial applications in cases where no relevant safety standard exists. • apply to - electrically operated water valves of nomi

  • Draft
    48 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the minimum requirements to quantify boil-off gas (BOG) consumed on liquefied natural gas (LNG) carriers for their own functions, in particular for power generation and during cargo transfer operations. This document provides requirements for the metering of BOG and the subsequent calorific value calculations, which can be taken into account when the energy transferred during cargo transfer is determined. This document also gives performance requirements and calibration of the elements included in the BOG measurement system. This document, with some modifications, can also be applied to the measurement of BOG consumed by LNG carriers at sea.

  • Standard
    13 pages
    English language
    sale 15% off
  • Draft
    13 pages
    English language
    sale 15% off
  • Draft
    13 pages
    English language
    sale 15% off

This document specifies advanced video coding for coding of audio-visual objects.

  • Standard
    997 pages
    English language
    sale 15% off
  • Draft
    997 pages
    English language
    sale 15% off
  • Draft
    997 pages
    English language
    sale 15% off

This document applies to the determination of beta emitters activity concentration using liquid scintillation counting. The method requires the preparation of a scintillation source, which is obtained by mixing the test sample and a scintillation cocktail. The test sample can be liquid (aqueous or organic), or solid (particles or filter or planchet). NOTE Planchet are samples, described in REF Section_sec_8.5 \r \h 8.5, out of solid material e.g. small metal, plastic or glass pans or support material made of these materials This document describes the conditions for measuring the activity concentration of beta emitter radionuclides by liquid scintillation counting[ REF Reference_ref_8 \r \h 2 08D0C9EA79F9BACE118C8200AA004BA90B0200000008000000100000005200650066006500720065006E00630065005F007200650066005F0038000000 ]. The choice of the test method using liquid scintillation counting involves the consideration of the potential presence of other beta-, alpha- and gamma emitter radionuclides in the test sample. In this case, a specific sample treatment by separation or extraction is implemented to isolate the radionuclide of interest in order to avoid any interference with other beta-, alpha- and gamma-emitting radionuclides during the counting phase. This document is applicable to all types of liquid samples having an activity concentration ranging from about 1 Bq·l−1 to 106 Bq·l−1. For a liquid test sample, it is possible to dilute liquid test samples in order to obtain a solution having an activity compatible with the measuring instrument. For solid samples, the activity of the prepared scintillation source shall be compatible with the measuring instrument. The measurement range is related to the test method used: nature of test portion, preparation of the scintillator - test portion mixture, measuring assembly as well as to the presence of the co-existing activities due to interfering radionuclides. Test portion preparations (such as distillation for 3H measurement, or benzene synthesis for 14C measurement, etc.) are outside the scope of this document and are described in specific test methods using liquid scintillation[3][[4][5][6][7][8][9][10].

  • Standard
    22 pages
    English language
    sale 15% off
  • Standard
    22 pages
    French language
    sale 15% off
  • Draft
    22 pages
    English language
    sale 15% off
  • Draft
    22 pages
    English language
    sale 15% off
  • Draft
    24 pages
    French language
    sale 15% off

This document specifies viewing conditions for images on both reflective and transmissive media, such as prints (both photographic and photomechanical) and transparencies. This document applies to — critical evaluation of and comparison between transparencies, backlighted signs, reflection photographic or photomechanical prints and/or a reference object or image, — appraisal of the tone reproduction and colourfulness of prints and transparencies at illumination levels similar to those for practical use, including routine inspection, and — critical appraisal of transparencies which are viewed by projection, for comparison with prints, objects, or other reproductions. This document is not applicable to soft-proofing displays, for paper manufacture, and other applications outside of graphic technology and photography.

  • Standard
    29 pages
    English language
    sale 15% off
  • Draft
    29 pages
    English language
    sale 15% off
  • Draft
    29 pages
    English language
    sale 15% off

This document specifies the Spatial Reference Model (SRM) defining relevant aspects of spatial positioning and related information processing. The SRM allows precise and unambiguous specification of geometric properties such as position, direction, orientation, and distance. The SRM addresses the needs of a broad community of users, who have a range of accuracy and performance requirements in computationally intensive applications. Aspects of this document apply to, but are not limited to: a) mapping, charting, geodesy, and imagery; b) topography; c) location-based services; d) oceanography; e) meteorology and climatology; f) interplanetary and planetary sciences; g) embedded systems; and h) modelling and simulation. The SRM specifies an application program interface (API) that supports the representations, conversion, and transformation of position and orientation information in a variety of forms. To ensure that spatial operations are performed consistently, the application program interface specifies conversion operations between alternative representations of geometric properties. This document is not intended to replace the standards and specifications developed by ISO/TC 211, ISO/TC 184, the International Astronomical Union (IAU), and the International Association of Geodesy (IAG). It is applicable to applications whose spatial information requirements overlap two or more of the application areas that are the scope of the work of ISO/TC 211, ISO/TC 184, the IAU, and the IAG.

  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off
  • Standard
    703 pages
    English language
    sale 15% off

This document specifies the general principles for the application of the time-of-flight diffraction (TOFD) technique for both detection and sizing of discontinuities in low-alloyed carbon steel components. This document also applies to other types of materials, provided the application of the TOFD technique is performed with necessary consideration of geometry, acoustical properties of the materials, and the test sensitivity. Although this document is applicable, in general terms, for discontinuities in materials and applications covered by ISO 16810, it contains references to the application on welds. This approach has been chosen for reasons of clarity as to the probe positions and directions of scanning. Unless otherwise specified in the referencing documents, the minimum requirements specified in this document apply. Unless explicitly stated otherwise, this document is applicable to the following categories of test objects as specified in ISO 16811: — category 1, without restrictions; — categories 2 and 3, specified restrictions apply (see REF Section_sec_10 \r \h Clause 10 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000F000000530065006300740069006F006E005F007300650063005F00310030000000 ); — categories 4 and 5 require special procedures, which are also addressed (see REF Section_sec_10 \r \h Clause 10 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000F000000530065006300740069006F006E005F007300650063005F00310030000000 ). NOTE Techniques for the use of TOFD for weld testing are described in ISO 10863 and the related acceptance criteria are given in ISO 15626.

  • Standard
    21 pages
    English language
    sale 15% off
  • Standard
    22 pages
    French language
    sale 15% off
  • Draft
    21 pages
    English language
    sale 15% off
  • Draft
    21 pages
    English language
    sale 15% off
  • Draft
    24 pages
    French language
    sale 15% off

This document defines terms for classifying and assessing green tea for commerce.

  • Standard
    57 pages
    English language
    sale 15% off
  • Draft
    56 pages
    English language
    sale 15% off
  • Draft
    56 pages
    English language
    sale 15% off

This document specifies the safety requirements for the design of must and grape harvest pumps and the means for verifying these requirements and gives information for the safe use of the machines covered.
This document applies to must and grape harvest pumps, as defined in 3.1, intended for the transfer of fresh, de-stemmed grapes and pomace.
This document deals with all significant hazards, hazardous situations or hazardous events relevant to grape harvest pumps, when it is used as intended and under conditions of misuse which are reasonably foreseeable by the manufacturer, specified in Annex B.
This document does not deal with hazardous phenomena associated with the integration of grape harvest pumps with other machinery.
This document does not give additional requirements for operations subject to special rules (e.g. explosive atmosphere, power supply from electrical networks where the voltage, frequency and tolerance differ from those of the public network).
This document is not applicable to:
-   adaptations intended for other fruit harvests;
-   pumps for building materials (covered by EN 12001 [1]);
-   pumps on grape harvesters;
-   reception conquests;
-   machines upstream or downstream of the pump.
This document is not applicable to grape harvest pumps manufactured before the date of its publication.

  • Draft
    53 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the test method for determining the content of oil vapour in compressed air using pressurized sampling and gas chromatography. This document elaborates sampling, measurement, evaluation, uncertainty considerations and reporting in respect of the compressed air purity class for oil, in accordance with ISO 8573-1. For organic vapours and other gaseous contaminants, the same sampling procedure can be used, however the analysis method will be different depending on the target component. As guidance, ISO 8573-6 and ISO 16000-6 can be used.

  • Standard
    12 pages
    English language
    sale 15% off
  • Draft
    12 pages
    English language
    sale 15% off
  • Draft
    12 pages
    English language
    sale 15% off

This document specifies the constructional and performance requirements and methods of tests for light emitting diode destination board systems (LEDDBSs) for use in all categories of buses and coaches (including mini/midi buses).

  • Standard
    19 pages
    English language
    sale 15% off
  • Draft
    19 pages
    English language
    sale 15% off
  • Draft
    19 pages
    English language
    sale 15% off

This document specifies a test method for determining the screen-touch properties of fabrics. The method is applicable to all types of fabrics intended for use in products that serve as an interface when handling touchscreens.

  • Standard
    14 pages
    English language
    sale 15% off
  • Standard
    14 pages
    French language
    sale 15% off
  • Draft
    14 pages
    English language
    sale 15% off
  • Draft
    14 pages
    English language
    sale 15% off
  • Draft
    16 pages
    French language
    sale 15% off

This document deals with the technical requirements and the means for their verification for additive manufacturing (AM) machines using a bed of metallic powder, pyrophoric feedstock excluded, and a laser herein designated as machine.
This document deals with all significant hazards, hazardous situations or hazardous events during all phases of the life of the machine (ISO 12100:2010, 5.4), as listed in Annex A, caused by AM machines using a bed of metallic powder and a laser when used as intended and under conditions of misuse which are reasonably foreseeable by the manufacturer.
This document does not deal with hazards which can occur:
—     during the design and construction phase of the laser beam powder ped fusion (PBF-LB) machine itself;
—     operating in potentially explosive atmospheres.
This document does not apply to technologies other than AM metals PBF-LB.
This document is not applicable to machines manufactured before the date of its publication.

  • Draft
    38 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies requirements for qualification of welding operators and weld setters for mechanized and automatic welding of metallic materials.
This document does not apply to personnel who:
—     do not control or adjust welding parameters;
—     are not involved in the setup of welding equipment.
Qualification of welding operators and weld setters for friction stir welding and friction stir spot welding are covered by ISO 25239-3 and ISO 18785-3, respectively.

  • Draft
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the requirements and test methods for air-powered and electrical-powered scaler handpieces and scaler tips, including piezo and magnetostrictive type ultrasonic scalers, operated as stand-alone items or connected to dental units, for use on patients. This document also contains specifications on manufacturers’ instructions, marking and packaging.

  • Draft
    23 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61300-3-46:2025 provides a standard for the measurement of guide pin bore and fibre bore diameters for rectangular ferrules used in connectors specified in the IEC 61754 series. This second edition cancels and replaces the first edition published in 2011. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) addition of fibre bore measurement; b) addition of force gauge method; c) addition of Annex A on temperature dependence.

  • Draft
    10 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61847:2025 specifies: – the essential non-thermal output characteristics of ultrasonic surgical units; – methods of measurement of these output characteristics; – those characteristics to be declared by the manufacturers of such equipment. This document is applicable to equipment which meets the criteria of a), b) and c) below: a) ultrasonic surgical systems operating in the frequency range 20 kHz to 120 kHz; and b) ultrasonic surgical systems whose use is the fragmentation, emulsification, debridement, or cutting of human tissue, whether or not those effects are delivered in conjunction with tissue removal or coagulation; and c) ultrasonic surgical systems in which an acoustic wave is conducted by means of a specifically designed wave guide to deliver energy to the surgical site. This document is not applicable to: – lithotripsy equipment which uses extracorporeally induced pressure pulses, focused through liquid conducting media and the soft tissues of the body; – surgical systems used as part of the therapeutic process (hyperthermia systems); – surgical systems whose mechanism of action is through frictional heat generated by tissue in contact with the wave guide, e.g. clamp coagulators or clamping vibrational cutters; – surgical systems whose mechanism of action is through focused ultrasound for either thermal degradation (high intensity focused ultrasound – HIFU or HITU) or cavitation erosion (Histotripsy) of tissue remote from the ultrasound transducer; – surgical systems whose mechanism of action is through erosion of hard tissues in contact with the applicator tip, e.g. bone cutting or drilling. This document does not deal with the effectiveness or safety of ultrasonic surgical systems. This document does not deal with airborne noise from the systems, which can affect operators and patients. IEC 61847:2025 cancels and replaces the first edition published in 1998. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a) The upper frequency covered by this document has been raised from 60 kHz to 120 kHz. b) The hydrophone method of measuring ultrasound power is now normative. Because of difficulties in using the calorimetry method of measuring ultrasound power, it is no longer the primary approach. c) It is recognised that some systems can have more than one mode of vibration under user control, and the measurement techniques and declarations have been updated to address this. d) The high-frequency component, which relates to cavitation developed at the applicator tip and the vibration amplitude at which cavitation occurs is addressed. e) Specific requirements for measurement at excursion levels where no cavitation is present, and extrapolation to maximum excursion level(s) are described. f) Guidance is provided to adapt the methodology described to more complex designs and vibration patterns, excursion directions, and their output characteristics. g) Guidance is provided with respect to measurement tank arrangements for different types of systems. h) The list of ultrasound methods and systems not covered by this document was extended to incorporate recent developments. i) Definitions for cavitation related terms were added. j) Requirements for the measurement of directivity characteristics of the applicator tip were changed. k) Annex A was modified and Figure A.1 wa

  • Draft
    36 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document defines the standard mechanical interface dimensions for the type of SAC family of connectors.

  • Draft
    34 pages
    English language
    sale 10% off
    e-Library read for
    1 day

2022-05-30: Fragments 1 to 7 circulated to parallel CDV separately, then merged into this PR before FDIS stage
2020-10-06: PR changed from A3 to new edition furhter to same change at IEC

  • Draft
    95 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 61203:2025 This document provides procedures and supervision for the use and maintenance of synthetic esters in transformers and other electrical equipment. This document includes recommendations on tests and evaluation procedures and outlines methods for reconditioning and reclaiming the liquid, when necessary

  • Draft
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This New Work Item Proposal has the scope to provide an amendment of the European standard EN 50463-4 in order to update the reference to prEN 61375-2-6:2016 following the publication of the EN 61375-2-6:2018.

  • Draft
    4 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 63522-18:2025 This part of IEC 63522 is used for testing along with the appropriate severities and conditions for measurements and tests designed to assess the ability of DUTs to perform under expected conditions of transportation, storage and all aspects of operational use. The object of this test is to determine the thermal resistance of the relay coil.

  • Draft
    9 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 82474-1:2025 specifies the requirements and guidance for the content, format and exchange relating to material declarations for products. The main intended use of this document is to provide data up and down the supply chain that: - allows organizations to assess products against material and substance requirements, - allows organizations to assess process chemical substances used in manufacturing and other stages of the product life, - allows organizations to use this information in their activities related to environmentally conscious design process and across all product life cycle stages, - allows organisations to obtain information about material efficiency and circularity of their products. This document specifies mandatory declaration requirements and also provides optional declaration requirements. This document does not suggest any specific software solution to capture material declaration data in the supply chain. However, it provides a data format used to transfer information within the supply chain. Organizations can determine the most appropriate method to capture material declaration data without compromising data utility and quality. This document is intended to allow declaration based on engineering judgement, responder (supplier) material declarations, and/or sampling and testing. This document has the status of a horizontal publication in accordance with IEC Guide 123. This edition includes the following technical changes with respect to IEC 62474:2018 (edition 2): a) Definitions were sharpened to fulfil needs from sectors other than electrical and electronic products and systems and new terms have been added that support new topics introduced such as webservice methods, material efficiency and circularity, and new reference list types. b) A new subclause (4.6) covering process chemical declaration was included. This subclause covers requirements related to the information required about process chemical substances, the applicable processes where they are used, and the respective product life cycle phase(s). c) A new clause (8) covering web services on material declaration was included. This clause covers requirements related to topics such as machine-machine communication, authentication service, and data representation. d) Requirements and guidance for the development of reference lists such as query list (QL), and application/exemption lists (AL/EL) were included. This document has been given the status of a horizontal document in accordance with ISO/IEC Directives, Part 1. It is published as a double logo standard,

  • Draft
    56 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for determining the extension set of leather. It is intended for use on upholstery leather but is applicable to all flexible leathers.

  • Standard
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies fire testing requirements for water mist systems used for fire protection of domestic and residential occupancies up to a maximum ceiling height of 5,5 m.
EXAMPLE   Examples for residential occupancies are family dwelling/house, bed and breakfast, apartment buildings, blocks of flats, care homes, small hotels or hostels, and residential areas in hotel bedrooms and guest corridors.
NOTE   Some countries might have a national annex with guidance on the maximum height of the building, minimum design area and any additional requirements.

  • Draft
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document gives requirements and guidelines for the clinical investigation (CI) to establish the safety and performance of contact lenses and contact lens care products.
NOTE 1        This document attempts to align the recognised regulatory requirements for the conduct of a CI to meet the marketing and labelling requirements for contact lenses and contact lens care products around the world. However, national requirements vary greatly. Wherever national practice or regulations dictate some legal requirement, this requirement takes precedence over this document.
NOTE 2        For indications beyond correction of refractive error, additional considerations for safety and performance are to be included in the clinical investigation plan (CIP).

  • Draft
    36 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the method for non-destructive thickness measurement via the magnetic type of electrodeposited nickel coatings, also called “e-nickel”, on magnetic or non-magnetic substrates.
It is possible that the method is not applicable to autocatalytic (electroless) nickel coatings, since these coatings are often non-magnetic due to their chemical composition.
For the purposes of this document, two types of substrates are distinguished:
a)       nickel coatings on magnetic substrates (type A coatings);
b)       nickel coatings on non-magnetic substrates (type B coatings).
Not all instruments are applicable to both types of coating.
The effective measuring ranges of instruments using the principle of magnetic attraction are up to 50 µm for type A coatings and up to 25 µm for type B coatings.
For instruments using the principle of reluctance, the effective ranges are much greater, up to 1 mm or even more. This method is applicable to both types of coatings.

  • Draft
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a method for assessing the wind-opposed burning behaviour and spread of flame of horizontally mounted floorings exposed to a heat flux radiant gradient in a test chamber, when ignited with pilot flames. Annex A gives details of assessing the smoke development, when required.
This method is applicable to all types of flooring, e.g. textile carpet, cork, wood, rubber and plastics coverings as well as coatings. Results obtained by this method reflect the reaction to fire performance of the flooring, including any substrate if used. Modifications of the backing, bonding to a substrate, underlay or other changes of the flooring can affect test results. It cannot be used alone to describe or appraise the fire hazard or fire risk of floorings under actual fire conditions.
Information on the precision of the test method is given in Annex B.

  • Draft
    34 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies requirements for Guarantees of Origin of electricity from all energy sources and of gaseous
hydrocarbons, Hydrogen, and heating & cooling.
This standard will establish the relevant terminology and definitions, requirements for registration, issuing, transferring and
cancellation in line with the RED and Cogeneration.
This standard will specify how to create accounts and associated ownership rights.
This standard will also cover measuring methods and auditing procedures.
These Guarantees of Origin may be traded and/or used for Disclosure/Labelling.
This standard is suitable for certification purposes.
This standard will specify the requirements on the issuing bodies and on the auditing bodies.

  • Draft
    81 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies test methods for the evaluation of biological effects of medical devices used in dentistry. It includes testing of pharmacological agents that are an integral part of the device under test.
This document does not cover testing of materials and devices that do not come into direct or indirect contact with the patient's body.

  • Draft
    65 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This International Standard specifies the minimum requirements for billing of all consumption-based utility
network services to domestic customers. It covers the processes required to produce the bill and to deal with
issues that arise after the bill has been sent, as well as the content of the billing document or statement. This
International Standard is applicable to utility network services that are unmetered, metered at the point of
delivery or metered remotely (e.g. on the supplier's own premises), and it covers any unmetered or unmeasured
charges appearing on the same bill as metered or measured charges, as well as flat rate charges.
NOTE 1 Utility network services include electricity supply, water, sanitation, gas supply, district heating and
communications.
NOTE 2 The requirements given in this International Standard are also applicable to other consumers who are legally
entitled to use the service provided by the supplier, except where in order to comply with privacy or data protection
requirements, it is necessary for the supplier to obtain the authority of the registered customer before dealing with another
consumer on billing matters.
This International Standard does not cover pricing, except for a requirement to provide information to
customers. It is only applicable to billing for consumption-based utility network services and it applies to all bills
or statements for utility network services where there is an ongoing account relationship between the customer
and the supplier, regardless of the payment method used.
NOTE 3 This includes bills for metered consumption, bills where a formula is used to estimate consumption (e.g. water
bills based on the number of persons per household or the size of the house), or where a flat rate fee is charged regardless
of consumption (e.g. telephony or internet bills where the tariff allows unlimited usage). It also applies to prepayment
customers, where a bill or account from the supplier is necessary to enable the customer to reconcile the amount paid
in advance with the cost of consumption, or where the customer expects to receive a bill based on point of sale or other
advertising (e.g. mobile telephony and energy metering) where codes, keys, electronic dongles or electronic cards are
used to load and reload the service and to indicate what was purchased.
NOTE 4 Services that are not billed [e.g. mobile telephony paid for by pre-purchased SIM (Subscriber Identity Module)
cards that are unmetered] and services that are funded directly by the taxpayer without bills being issued are not covered
by this International Standard.
NOTE 5 Many of the key principles in this International Standard also apply to all forms of billing, and suppliers are
therefore encouraged to adopt the relevant requirements in this International Standard for billing of other services.

  • Standard
    27 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    21 pages
    English language
    sale 15% off

The present document specifies technical requirements, limits and test methods for Short Range Devices in the non-
specific category operating in the frequency range 25 MHz to 1 000 MHz.
The non specific SRD category is defined by the EU Commission Decision 2019/1345/EU [i.3] as:
"The non-specific short-range device category covers all kinds of radio devices, regardless of the application or the
purpose, which fulfil the technical conditions as specified for a given frequency band. Typical uses include telemetry,
telecommand, alarms, data transmissions in general and other applications".
These radio equipment types are capable of transmitting up to 500 mW effective radiated power and operating indoor or
outdoor.
NOTE: The relationship between the present document and the essential requirements of article 3.2 of
Directive 2014/53/EU [i.2] is given in Annex A

  • Standard
    107 pages
    English language
    sale 15% off
  • Standard
    107 pages
    English language
    sale 15% off
  • Standard
    107 pages
    English language
    sale 10% off
    e-Library read for
    1 day

DEN/ERM-TG28-561

  • Standard
    100 pages
    English language
    sale 15% off
  • Standard
    100 pages
    English language
    sale 15% off
  • Standard
    100 pages
    English language
    sale 10% off
    e-Library read for
    1 day

IEC 63461:2024 applies to laboratory model tests of any type of Pelton hydraulic turbine with unit power greater than 5 MW. It contains the rules governing test conduct and provides measures to be taken if any phase of the tests is disputed.
The main objectives of this document are:
- to define the terms and quantities used;
- to specify methods of testing and of measuring the quantities involved, in order to ascertain the hydraulic performance of the model;
- to specify the methods of computation of results and of comparison with guarantees;
- to determine if the contract guarantees that fall within the scope of this document have been fulfilled;
- and to define the extent, content and structure of the final report.
Full application of the procedures herein described is not generally justified for machines with smaller power. Nevertheless, this document can be used for such machines by agreement between the purchaser and the supplier.

  • Standard
    1 page
    English and French language
    sale 15% off

IEC TR 61850-90-30:2025, which is a Technical Report, describes extensions of the SCL Substation/Process Section allowing the creation of a comprehensive, IED and hardware independent specification of an IEC 61850 based power system.
It addresses how to:
• decompose functions in SCL
• show function classifications in SCL
• relate functions with the SCL Substation and Process Section
• relate functions to Logical Nodes and IEDs/Specification IEDs
• present information flow between functions in a hardware/implementation independent way
• position Functions in relation to "Application Schemes", "Distributed Functions", "Protection Schemes"
• consider the relationship to Basic Application Profiles (BAP) defined in IEC TR 61850-7-6
The document addresses the engineering process as far as it is related to the specification of Functions and their instantiation in IEC 61850 based power system. This includes the impact on the SCL Process Section during system configuration.
The engineering process related to the definition of Applications and their instantiation is addressed in the Basic Application Profile Document (BAP) in IEC TR 61850-7-6.
The System Configuration process is described in IEC 61850-6.
Modifications and extensions of SCL are done in a way to guarantee backwards compatibility.
In addition, this document introduces:
• Some further elements to SCL that improve the content and usefulness of SSD files and facilitate the handling of SCL files for engineering purposes,
• New variants of IED specific files: ISD file and FSD files,
• Evolution of the engineering rights management, to first improve the usage of SED and add a new concept of System Configuration Collaboration (SCC file) which allows collaboration on the same project with different engineers.

  • Technical report
    184 pages
    English language
    sale 15% off

IEC PAS 62443-2-2: 2025 provides guidance on the development, validation, operation, and maintenance of a set of technical, physical, and process security measures called Security Protection Scheme (SPS). The document’s goal is to provide the asset owner implementing an IACS Security Program (SP) with mechanisms and procedures to ensure that the design, implementation and operation of an SPS manage the risks resulting from cyberthreats to each of the IACS included in its operating facility.
The document is based on contents specified in other documents of the IEC 62443 series and explains how these contents can be used to support the development of technical, physical, and process security measures addressing the risks to the IACS during the operation phase.

  • Technical specification
    44 pages
    English language
    sale 15% off

IEC TR 62282-7-3:2025 is a generic assessment of the feasibility of standardizing accelerated test procedures (both proton exchange membrane (PEM) and oxide ion-conducting solid oxide cell (SOC) technologies) for fuel cell stacks that have been engineered for a specific system application. This document comprises a review of literature and projects, a discussion of the main physical phenomena of interest in accelerated testing campaigns (focusing on the cell and stack levels, not looking at the system as a black box), a compendium of measurement techniques that are applicable, and it suggests a macroscopic approach to the formulation of a representative accelerated testing campaign.

  • Technical report
    29 pages
    English language
    sale 15% off

IEC TR 63515:2025 provides a conceptual framework for power system resilience. It covers the definition, evaluation metrics and methods, improvement strategies and uses cases of power system resilience. This document is applicable to developing resilient power system and implementing resilience improvement strategies.
This document is not exhaustive, and it is possible to consider other aspects, such as different application scenarios, evaluation methods, and improvement measures.

  • Technical report
    39 pages
    English language
    sale 15% off

IEC TS 62271-315:2025 is applicable to direct current (DC) transfer switches designed for indoor or outdoor installation and for operation on HVDC transmission systems having direct voltages of 100 kV and above. DC transfer switches normally include metallic return transfer switches (MRTS), earth return transfer switches (ERTS), neutral bus switches (NBS) and neutral bus earthing switches (NBES).

  • Technical specification
    74 pages
    English language
    sale 15% off

IEC 60050-831:2025 gives the terms and definitions used in smart cities and smart city systems, as well as general terms pertaining to specific applications and associated technologies. This terminology is consistent with the terminology developed in the other specialized parts of the IEV. It has the status of a horizontal standard in accordance with IEC Guide 108.

  • Standard
    50 pages
    English and French language
    sale 15% off

IEC 61000-4-2: 2025 relates to the immunity requirements and test methods for electrical and electronic equipment subjected to static electricity discharges from operators directly and from personnel to adjacent objects. It additionally specifies ranges of test levels which relate to different environmental, and installation conditions and establishes test procedures. The objective of this document is to establish a common and reproducible basis for evaluating the performance of electrical and electronic equipment when subjected to electrostatic discharges. In addition, it includes electrostatic discharges which can occur from personnel to objects near the equipment. This document specifies:
- ideal waveform of the discharge current;
- range of test levels;
- test equipment;
- test setup;
- test procedure;
- calibration procedure;
- measurement uncertainty.
This document gives specifications for tests performed in laboratories and guidance to post-installation tests. This document is not intended to specify the tests to be applied to particular apparatus or systems. The main aim is to give a general basic reference to all concerned product committees. The product committees remain responsible for the appropriate choice of the tests and the severity level to be applied to their equipment. This document excludes tests intended to evaluate the ESD sensitivity of devices during handling and packaging. It is not intended for use in characterizing the performance of ESD protection circuit IEC Guide 107.
This document forms Part 4-2 of IEC 61000. It has the status of a basic EMC publication in accordance with IEC Guide 107. This third edition cancels and replaces the second edition published in 2008. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) added a calibration requirement for ESD generators with air discharge tip;
b) added a normative annex for test setups for particular kind of equipment (see Annex I);
c) added an informative annex for wearable devices (see Annex J);
d) added an informative annex on how to select test points and give guidance on how to specify the number of pulses for direct contact discharges (see Annex E);
e) moved Clause 9 into a new informative annex (see Annex K);
f) improvement of the current calibration procedure;
g) improvement of the measurement uncertainty considerations with examples of uncertainty budgets;
h) because post-installation tests cannot be performed in a controlled environment, this test method has been moved into a new informative Annex G.

  • Standard
    163 pages
    English and French language
    sale 15% off

ISO/IEC TR 30189-1:2025 describes a framework for the use of IoT technology for management of tangible cultural heritage assets, which includes the associated functional entities and information flows.

  • Technical report
    21 pages
    English language
    sale 15% off

IEC 62282-7-2:2025 applies to SOFC cell/stack assembly units, testing systems, instruments and measuring methods, and specifies test methods to test the performance of SOFC cells and stacks. This document is not applicable to small button cells that are designed for SOFC material testing and provide no practical means of fuel utilization measurement. This document is used based on the recommendation of the entity that provides the cell performance specification or for acquiring data on a cell or stack in order to estimate the performance of a system based on it. Users of this document can selectively execute test items suitable for their purposes from those described in this document.

  • Standard
    98 pages
    English and French language
    sale 15% off

REN/MSG-TFES-15-3

  • Standard
    67 pages
    English language
    sale 15% off
  • Standard
    67 pages
    English language
    sale 15% off
  • Standard
    67 pages
    English language
    sale 10% off
    e-Library read for
    1 day

ABSTRACT
This specification covers unreinforced vulcanized rubber sheets made from ethylene propylene diene terpolymer (EPDM) or butyl (IIR), intended for use in preventing water under hydrostatic pressure from entering a structure. The tests and property limits used to characterize these sheets are specific for each classification and are minimum values to make the product fit for its intended purpose. Types used to identify the principal polymer component of the sheet include: type I - ethylene propylene diene terpolymer, and type II - butyl. The sheet shall be formulated from the appropriate polymers and other compounding ingredients. The thickness, tensile strength, elongation, tensile set, tear resistance, brittleness temperature, and linear dimensional change shall be tested to meet the requirements prescribed. The water absorption, factory seam strength, water vapour permeance, hardness durometer, resistance to soil burial, resistance to heat aging, and resistance to puncture shall be tested to meet the requirements prescribed.
SCOPE
1.1 This specification covers unreinforced vulcanized rubber sheets made from ethylene propylene diene terpolymer (EPDM) or butyl (IIR), intended for use in preventing water under hydrostatic pressure from entering a structure.  
1.2 The tests and property limits used to characterize these sheets are specific for each classification and are minimum values to make the product fit for its intended purpose.  
1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    3 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Research O.N. correlates with commercial automotive spark-ignition engine antiknock performance under mild conditions of operation.  
5.2 Research O.N. is used by engine manufacturers, petroleum refiners and marketers, and in commerce as a primary specification measurement related to the matching of fuels and engines.  
5.2.1 Empirical correlations that permit calculation of automotive antiknock performance are based on the general equation:
Values of k1,  k2, and k3 vary with vehicles and vehicle populations and are based on road-O.N. determinations.  
5.2.2 Research O.N., in conjunction with Motor O.N., defines the antiknock index of automotive spark-ignition engine fuels, in accordance with Specification D4814. The antiknock index of a fuel approximates the Road octane ratings for many vehicles, is posted on retail dispensing pumps in the U.S., and is referred to in vehicle manuals.
This is more commonly presented as:
5.2.3 Research O.N. is also used either alone or in conjunction with other factors to define the Road O.N. capabilities of spark-ignition engine fuels for vehicles operating in areas of the world other than the United States.  
5.3 Research O.N. is used for measuring the antiknock performance of spark-ignition engine fuels that contain oxygenates.  
5.4 Research O.N. is important in relation to the specifications for spark-ignition engine fuels used in stationary and other nonautomotive engine applications.
SCOPE
1.1 This laboratory test method covers the quantitative determination of the knock rating of liquid spark-ignition engine fuel in terms of Research O.N., including fuels that contain up to 25 % v/v of ethanol. However, this test method may not be applicable to fuel and fuel components that are primarily oxygenates.2 The sample fuel is tested using a standardized single cylinder, four-stroke cycle, variable compression ratio, carbureted, CFR engine run in accordance with a defined set of operating conditions. The O.N. scale is defined by the volumetric composition of PRF blends. The sample fuel knock intensity is compared to that of one or more PRF blends. The O.N. of the PRF blend that matches the K.I. of the sample fuel establishes the Research O.N.  
1.2 The O.N. scale covers the range from 0 to 120 octane number but this test method has a working range from 40 to 120 Research O.N. Typical commercial fuels produced for spark-ignition engines rate in the 88 to 101 Research O.N. range. Testing of gasoline blend stocks or other process stream materials can produce ratings at various levels throughout the Research O.N. range.  
1.3 The values of operating conditions are stated in SI units and are considered standard. The values in parentheses are the historical inch-pound units. The standardized CFR engine measurements continue to be in inch-pound units only because of the extensive and expensive tooling that has been created for this equipment.  
1.4 For purposes of determining conformance with all specified limits in this standard, an observed value or a calculated value shall be rounded “to the nearest unit” in the last right-hand digit used in expressing the specified limit, in accordance with the rounding method of Practice E29.  
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see Section 8, 14.4.1, 15.5.1, 16.6.1, Annex A1, A2.2.3.1, A2.2.3.3 (6) and (9), A2.3.5, X3.3.7, X4.2.3.1, X4.3.4.1, X4.3.9.3, X4.3.11.4, and X4.5.1.8.  
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Gu...

  • Standard
    48 pages
    English language
    sale 15% off
  • Standard
    48 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
4.1 The force required to separate a metallic coating from its plastic substrate is determined by the interaction of several factors: the generic type and quality of the plastic molding compound, the molding process, the process used to prepare the substrate for electroplating, and the thickness and mechanical properties of the metallic coating. By holding all others constant, the effect on the peel strength by a change in any one of the above listed factors may be noted. Routine use of the test in a production operation can detect changes in any of the above listed factors.  
4.2 The peel test values do not directly correlate to the adhesion of metallic coatings on the actual product.  
4.3 When the peel test is used to monitor the coating process, a large number of plaques should be molded at one time from a same batch of molding compound used in the production moldings to minimize the effects on the measurements of variations in the plastic and the molding process.
SCOPE
1.1 This test method gives two procedures for measuring the force required to peel a metallic coating from a plastic substrate.2 One procedure (Procedure A) utilizes a universal testing machine and yields reproducible measurements that can be used in research and development, in quality control and product acceptance, in the description of material and process characteristics, and in communications. The other procedure (Procedure B) utilizes an indicating force instrument that is less accurate and that is sensitive to operator technique. It is suitable for process control use.  
1.2 The tests are performed on standard molded plaques. This method does not cover the testing of production electroplated parts.  
1.3 The tests do not necessarily measure the adhesion of a metallic coating to a plastic substrate because in properly prepared test specimens, separation usually occurs in the plastic just beneath the coating-substrate interface rather than at the interface. It does, however, reflect the degree that the process is controlled.  
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    4 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 The determination of the creep rate provides information on the behavior of sandwich constructions under constant applied force. Creep is defined as deflection under constant force over a period of time beyond the initial deformation as a result of the application of the force. Deflection data obtained from this test method can be plotted against time, and a creep rate determined. By using standard specimen constructions and constant loading, the test method may also be used to evaluate creep behavior of sandwich panel core-to-facing adhesives.  
5.2 This test method provides a standard method of obtaining flexure creep of sandwich constructions for quality control, acceptance specification testing, and research and development.  
5.3 Factors that influence the sandwich construction creep response and shall therefore be reported include the following: facing material, core material, adhesive material, methods of material fabrication, facing stacking sequence and overall thickness, core geometry (cell size), core density, core thickness, adhesive thickness, specimen geometry, specimen preparation, specimen conditioning, environment of testing, specimen alignment, loading procedure, speed of testing, facing void content, adhesive void content, and facing volume percent reinforcement. Further, facing and core-to-facing strength and creep response may be different between precured/bonded and co-cured facesheets of the same material.
SCOPE
1.1 This test method covers the determination of the creep characteristics and creep rate of flat sandwich constructions loaded in flexure, at any desired temperature. Permissible core material forms include those with continuous bonding surfaces (such as balsa wood and foams) as well as those with discontinuous bonding surfaces (such as honeycomb).  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text the inch-pound units are shown in brackets. The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    5 pages
    English language
    sale 15% off

ABSTRACT
This specification covers the properties and requirements for two types of asbestos-free asphalt roof coatings consisting of an asphalt base, volatile petroleum solvents, and mineral or other stabilizers, or both, mixed to a smooth, uniform consistency suitable for application by squeegee, three-knot brush, paint brush, roller, or by spraying. Type I is made from asphalts characterized as self-healing, adhesive, and ductile, while Type II is made from asphalts characterized by high softening point and relatively low ductility. The coatings shall conform to specified composition limits for water, nonvolatile matter, minerals and/or other stabilizers, and bitumen (asphalt). They shall also meet physical requirements as to uniformity, consistency, and pliability and behavior at given temperatures.
SCOPE
1.1 This specification covers asbestos-free asphalt roof coatings of brushing or spraying consistency.  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.  
1.3 The following precautionary caveat pertains only to the test method portion, Section 8, of this specification:  This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    2 pages
    English language
    sale 15% off

ABSTRACT
This specification covers coal tar primer suitable for use with coal tar pitch in roofing, dampproofing, and waterproofing below or above ground level, for application to concrete, masonry, and coal tar surfaces. Different tests shall be conducted in order to determine the following physical properties of coal tar primer: water content, consistency, specific gravity, matter insoluble in benzene, distillation, and coke residue content.
SCOPE
1.1 This specification covers coal tar primer suitable for use with coal tar pitch in roofing, dampproofing, and waterproofing below or above ground level, for application to concrete, masonry, and coal tar surfaces.  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    2 pages
    English language
    sale 15% off

ABSTRACT
This specification covers the testing and requirements for two types and two classes of asbestos-free asphalt roof cement consisting of an asphalt base, volatile petroleum solvents, and mineral and/or other stabilizers, mixed to a smooth, uniform consistency suitable for trowel application to roofing and flashing. Type I is made from asphalts characterized as self-healing, adhesive, and ductile, while Type II is made from asphalt characterized by high softening point and relatively low ductility. Class I is used for application to essentially dry surfaces, while Class II is used for application to damp, wet, or underwater surfaces. The roof cements shall comply with composition limits for water, nonvolatile matter, mineral and/or other stabilizers, and bitumen (asphalt). They shall also meet physical requirements such as uniformity, workability, and pliability and behavior at given temperatures.
SCOPE
1.1 This specification covers asbestos-free asphalt roof cement suitable for trowel application to roofings and flashings.  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.  
1.3 The following precautionary caveat pertains only to the test method portion, Section 8 of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    2 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 Motor O.N. correlates with commercial automotive spark-ignition engine antiknock performance under severe conditions of operation.  
5.2 Motor O.N. is used by engine manufacturers, petroleum refiners and marketers, and in commerce as a primary specification measurement related to the matching of fuels and engines.  
5.2.1 Empirical correlations that permit calculation of automotive antiknock performance are based on the general equation:
Values of k1, k2, and k3 vary with vehicles and vehicle populations and are based on road-octane number determinations.  
5.2.2 Motor O.N., in conjunction with Research O.N., defines the antiknock index of automotive spark-ignition engine fuels, in accordance with Specification D4814. The antiknock index of a fuel approximates the road octane ratings for many vehicles, is posted on retail dispensing pumps in the United States, and is referred to in vehicle manuals.
This is more commonly presented as:
5.3 Motor O.N. is used for measuring the antiknock performance of spark-ignition engine fuels that contain oxygenates.  
5.4 Motor O.N. is important in relation to the specifications for spark-ignition engine fuels used in stationary and other nonautomotive engine applications.  
5.5 Motor O.N. is utilized to determine, by correlation equation, the Aviation method O.N. or performance number (lean-mixture aviation rating) of aviation spark-ignition engine fuel.7
SCOPE
1.1 This laboratory test method covers the quantitative determination of the knock rating of liquid spark-ignition engine fuel in terms of Motor octane number, including fuels that contain up to 25 % v/v of ethanol. However, this test method may not be applicable to fuel and fuel components that are primarily oxygenates.2 The sample fuel is tested in a standardized single cylinder, four-stroke cycle, variable compression ratio, carbureted, CFR engine run in accordance with a defined set of operating conditions. The octane number scale is defined by the volumetric composition of primary reference fuel blends. The sample fuel knock intensity is compared to that of one or more primary reference fuel blends. The octane number of the primary reference fuel blend that matches the knock intensity of the sample fuel establishes the Motor octane number.  
1.2 The octane number scale covers the range from 0 to 120 octane number, but this test method has a working range from 40 to 120 octane number. Typical commercial fuels produced for automotive spark-ignition engines rate in the 80 to 90 Motor octane number range. Typical commercial fuels produced for aviation spark-ignition engines rate in the 98 to 102 Motor octane number range. Testing of gasoline blend stocks or other process stream materials can produce ratings at various levels throughout the Motor octane number range.  
1.3 The values of operating conditions are stated in SI units and are considered standard. The values in parentheses are the historical inch-pounds units. The standardized CFR engine measurements continue to be in inch-pound units only because of the extensive and expensive tooling that has been created for this equipment.  
1.4 For purposes of determining conformance with all specified limits in this standard, an observed value or a calculated value shall be rounded “to the nearest unit” in the last right-hand digit used in expressing the specified limit, in accordance with the rounding method of Practice E29.  
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For more specific hazard statements, see Section 8, 14.4.1, 15.5.1, 16.6.1, Annex A1, A2.2.3.1, A2.2.3.3(6) and (9), A2.3.5, X3.3.7, X4.2.3.1, X4.3.4.1, X4.3.9.3, X4.3.12.4, and X4.5.1.8. ...

  • Standard
    59 pages
    English language
    sale 15% off
  • Standard
    59 pages
    English language
    sale 15% off

ABSTRACT
This specification establishes the manufacture, testing, and performance requirements of two types of asphalt-based emulsions for use in a relatively thick film as a protective coating for metal surfaces. Type I are quick-setting emulsified asphalt suitable for continuous exposure to water within a few days after application and drying. Type II, on the other hand, are emulsified asphalt suitable for continuous exposure to the weather, only after application and drying. Upon being sampled appropriately, the materials shall conform to composition requirements as to density, residue by evaporation, nonvolatile matter soluble in trichloroethylene, and ash and water content. They shall also adhere to performance requirements as to uniformity, consistency, stability, wet flow, firm set, heat test, flexibility, resistance to water, and loss of adhesion.
SCOPE
1.1 This specification covers emulsified asphalt suitable for application in a relatively thick film as a protective coating for metal surfaces.  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.  
1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Technical specification
    2 pages
    English language
    sale 15% off

SIGNIFICANCE AND USE
5.1 The edgewise compressive strength of short sandwich construction specimens provides a basis for judging the load-carrying capacity of the construction in terms of developed facing stress.  
5.2 This test method provides a standard method of obtaining sandwich edgewise compressive strengths for panel design properties, material specifications, research and development applications, and quality assurance.  
5.3 The reporting section requires items that tend to influence edgewise compressive strength to be reported; these include materials, fabrication method, facesheet lay-up orientation (if composite), core orientation, results of any nondestructive inspections, specimen preparation, test equipment details, specimen dimensions and associated measurement accuracy, environmental conditions, speed of testing, failure mode, and failure location.
SCOPE
1.1 This test method covers the compressive properties of structural sandwich construction in a direction parallel to the sandwich facing plane. Permissible core material forms include those with continuous bonding surfaces (such as balsa wood and foams) as well as those with discontinuous bonding surfaces (such as honeycomb).  
1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text the inch-pound units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.  
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.  
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

  • Standard
    8 pages
    English language
    sale 15% off

DEN/ERM-TGAERO-31-2

  • Standard
    38 pages
    English language
    sale 15% off
  • Standard
    38 pages
    English language
    sale 15% off
  • Standard
    38 pages
    English language
    sale 10% off
    e-Library read for
    1 day